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Nonlinear dielectric susceptibilities: Accurate determination of the growing correlation volume in a
supercooled liquid
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The nonlinear dielectric susceptibilities χ
(1)
3 (ω,T ) and χ

(3)
3 (ω,T ), corresponding respectively to the first- and

third-harmonic responses, have been measured in supercooled glycerol close to the glass transition temperature Tg .
By analyzing the two contributions to the nonlinear response, saturation of the polarization and glassy correlations,
we show that the first one is dominant at low frequencies and verify the scaling prediction of Bouchaud and
Biroli [Phys. Rev. B 72, 064204 (2005)] in what concerns the second one. Such a detailed investigation allows an
accurate determination of the temperature dependence of the average number of correlated molecules Ncorr(T ).
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I. INTRODUCTION

The glass transition remains a topic of strong interest
because it is characterized by an increase of the viscosity when
the temperature decreases that is yet unexplained.1 A picture
which could account for this liquid-solid transition is that of
growing dynamical heterogeneities (DH’s):2,3 The extremely
fast rise of the relaxation time when the temperature T is
lowered would be related to an increase of the DH’s sizes. For
this reason, the temperature dependence of the average number
Ncorr(T ) of correlated molecules in a DH when T decreases
toward the glass transition temperature Tg recently has become
a major issue of the field.4–6 Two methods for evaluating
Ncorr(T ) from experimental data have been put forward in the
past several years. The first one uses the temperature derivative
of a two-point correlation function φ(t,T ) and yields Ncorr(T )
∝ T χT , with χT = ∂φ(t,T )/∂T .4,6 The second one is based
on the alternative current (a.c.) nonlinear susceptibility χ3,7,8

which describes the a.c. response of the fluid at a frequency
3 times that of the excitation (the latter can be of any nature,
e.g., dielectric as it is the case in practice8). It has been shown7

that χ3 is related to Ncorr(T ) through

χ3(ω,T ) ≈ ε0(�χ1)2a3

kBT
Ncorr(T )H (ωτα) , (1)

where ω is the angular frequency, �χ1 = χlin(ω = 0) −
χlin(ω → ∞) is the part of the static linear susceptibility
corresponding to the slow relaxation process we consider,
a3 the volume occupied by one molecule, and H a complex
scaling function going to zero both for small and large
arguments, the humped shape of |H(ωτα)| being a distinctive
feature of the glassy correlations. τα(T ) is the typical relaxation
time at temperature T . As mentioned in Refs. 8 and 9, the
method using the nonlinear susceptibility has the advantage
over that based on T χT to be free of some assumptions that
are not well under control. In addition, being inspired by the
spin glass phase transition physics,10 the method using χ3 can
be considered as an indicator of the possible existence of an
underlying phase transition for structural glasses.

Recently, we have measured the third-harmonic nonlinear
susceptibility in supercooled glycerol close to Tg , using a

specially dedicated experiment based on a two-capacitors
bridge.11 Our data verified the scaling prediction of Ref. 7
given by Eq. (1), and the dependence of Ncorr(T ) could
be determined experimentally from them. In practice,
investigating the scaling predicted by Eq. (1) consists in
verifying that the complex quantity χ3(ω,T ) depends only
on the product ωτα(T ), except that the modulus of χ3(ω,T )
should depend on T for a given value of ωτα(T ). However,
in doing so, it appears that one of the main limitations
to this study of the scaling is the fact that two physical
mechanisms contribute to the nonlinear susceptibility. The
first one stems from the dynamical correlations among the
molecules and is given by Eq. (1). In what follows, this
contribution to the nonlinear susceptibility will be called
singular. It was theoretically shown in Ref. 7 that on quite
general grounds this is related to dynamical correlations that
emerge when decreasing T . Several physical mechanisms
aimed at explaining the growth of dynamical correlations have
been put forward in the literature (see, e.g., the book quoted
in Ref. 9). The second contribution is due to the standard
well-known saturation of the microscopic polarization of the
dipoles.12,13 In what follows, this contribution to the nonlinear
susceptibility will be called “trivial,” as it should be present
whatever the system under study. On general grounds, one
expects χ3,trivial to be negligible with respect to χ3,singular only
in the case where Ncorr becomes infinite. This is not the case
of the glass transition, since the various estimates yield Ncorr

of a few tens close to Tg .2,6,14 In this paper, we investigate
the consequences of this double contribution for the study
of the scaling predicted in Ref. 7 and given by Eq. (1) and for
the extraction of the Ncorr(T ) dependence from experimental
data. We present the results of our measurements of two
distinct nonlinear susceptibilities on supercooled glycerol:
χ

(1)
3 and χ3 (that will be called χ

(3)
3 below) corresponding

respectively to the first- and the third-harmonic responses.
We show how they can be used to disentangle the trivial and
singular contributions to the nonlinear response, thus allowing
an accurate verification of the scaling predicted by Eqs. (1) and
(6) and a precise determination of the Ncorr(T ) dependence.
The χ

(1)
3 results we give in this paper are presented for
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the first time by us: Our previous results concerned χ
(3)
3

only. Measurements to which χ
(1)
3 can be related have been

presented by the R. Richert group:13,15 The variation of the
imaginary part of the dielectric susceptibility when the field is
increased should be proportional to the imaginary part of χ

(1)
3 .

We checked that this is indeed the case, even if the comparison
is not so straightforward since the temperature and field ranges
are not the same in our work and in Refs. 13 and 15; this will
be addressed in detail in the forthcoming paper in which we
shall also compare our χ

(1)
3 data with the model put forward

by the R. Richert group in a series of recent papers.13,15,16

II. EXPERIMENT

A. From measurements to nonlinear susceptibilities

We now turn to the detailed definition of the a.c. nonlinear
susceptibility and to the two related quantities that can be
reached experimentally, χ

(3)
3 (ω) and χ

(1)
3 (ω), which govern

respectively the contribution of the nonlinear susceptibility
to the third- and first-harmonic responses. We consider the
case where the excitation is an a.c. electric field at angular
frequency ω and first write the response [polarization P (t)] to
the excitation E(t) as a series expansion in E(t) [note that no
even terms are allowed because of the symmetry with respect
to field reversal E(t) → −E(t)]:

P (t)

ε0
=

∫ ∞

−∞
χ1(t − t ′)E(t ′)dt ′

+
∫∫∫ ∞

−∞
χ3(t − t ′1,t − t ′2,t − t ′3)

×E(t ′1)E(t ′2)E(t ′3)dt ′1dt ′2dt ′3 + · · · , (2)

where ε0 is the dielectric constant of vacuum, χ1 the linear
susceptibility, and χ3 the cubic nonlinear susceptibility in the
time domain. The dots in Eq. (2) correspond to an infinite
sum involving higher-order nonlinear susceptibilities χ5, and
so on. The Fourier transform of Eq. (2) for a purely a.c. field
E(t) = E0 cos(ωt) gives

P (ω′)
ε0

= E0

2

[
χ1(ω) + 3E2

0

4
χ3(−ω,ω,ω) + · · ·

]
δ(ω′ − ω)

+ E0

2

[
χ1(−ω) + 3E2

0

4
χ3(ω, − ω, − ω) + · · ·

]

×δ(ω′ + ω) + E3
0

8
χ3(ω,ω,ω)δ(ω′ − 3ω)

+ E3
0

8
χ3(−ω, − ω, − ω)δ(ω′ + 3ω) + · · · , (3)

where the polarization P and the susceptibilities χi are now
written in the frequency domain and the dots indicate again
infinite sums involving higher-order terms. The response P (t)
to E(t) can thus be written

P (t)/ε0 = Re
[(

E0χ1(ω) + 3/4E3
0χ

(1)
3 (ω) + · · · )e−iωt

]
+ Re

[
1/4E3

0χ
(3)
3 (ω)e−i3ωt + · · · ] + · · · . (4)

We have used the fact that because χ1 and χ3 are real in the time
domain, their Fourier transform verifies χ∗

1 (ω) = χ1(−ω) and
χ∗

3 (ω1,ω2,ω3) = χ3(−ω1, − ω2, − ω3) (the star denotes the

complex conjugate) and the invariance of χ3 by permutation
of its arguments. For simplicity, we write χ

(3)
3 (ω) = χ3(ω) =

χ3(ω,ω,ω) and χ
(1)
3 (ω) = χ3(−ω,ω,ω). Equation (4) can be

written:

P (t)/ε0 = E0 |χ1| cos(ωt − δ1) + 3/4E3
0

∣∣χ (1)
3

∣∣ cos
(
ωt − δ

(1)
3

)
+ · · · + 1/4E3

0

∣∣χ (3)
3

∣∣ cos
(
3ωt − δ

(3)
3

) + · · · , (5)

where the susceptibilities χ
(j )
i are written as |χ (j )

i |eiδ
(j )
i and

where −δ
(3)
3 and −δ

(1)
3 are the corresponding phases (reported

below in this work).
Thus, experimentally, the third-order nonlinear suscepti-

bility is given by two quantities, χ
(3)
3 (ω) and χ

(1)
3 (ω), which

are the Fourier transforms of χ3(t1,t2,t3) at points (ω,ω,ω)
and (−ω,ω,ω), respectively. They govern the third- and the
first-harmonic contributions to the nonlinear response. Both
correspond to contributions to P which are proportional to the
third power of the excitating electric field magnitude E0. As a
consequence, in a dielectric spectroscopy experiment using a
capacitor with the supercooled liquid as dielectric layer, they
can be obtained by performing the difference between the
responses obtained at two different values of the excitating
voltage.13,15 With the bridge technique that we use,8,11 each of
them can be obtained in a single experiment, just by selecting
the measurement harmonics. We verified that the magnitude
of the measured signal was indeed proportional to the third
power of the excitation voltage. An equation relating Ncorr to
χ

(1)
3 , similar to Eq. (1), holds:

χ
(1)
3 (ω,T ) ≈ ε0(�χ1)2a3

kBT
Ncorr(T )G (ωτα) . (6)

Where G is a complex scaling function going to zero both for
small and large arguments, with the humped shape of |G(ωτα)|
being a distinctive feature of the glassy correlations.

B. Experimental setup

The liquid used in this experiment is ultrapure (99.5%)
glycerol (Tg � 190 K) purchased from VWR (BDH Prolabo).
Special care was taken to avoid water absorption during sample
preparation. Two samples were prepared between metallic
electrodes 2 cm in diameter, with polymer spacers ensuring
interelectrode distances of 12 and 26 μm or of 8 and 27 μm.
The samples were placed in a cryogenerator, and their
temperature T was regulated with a precision much better
than 100 mK in an interval Tg + 4 K to Tg + 35 K.
A low-harmonic-distortion voltage source yielded a field
E0 � 3 × 106 V/m (rms) in the thinnest capacitor. χ

(3)
3 (ω,T )

and χ
(1)
3 (ω,T ) were respectively obtained from the third- and

first-harmonic currents. For the third-harmonic measurements,
our high-sensitivity method based on a bridge containing the
two glycerol capacitors11 allows us to get rid of the harmonic
distortion of our electronic apparatus. For the first-harmonic
measurements, a very careful equilibration of the bridge at low
voltage source allowed us to make the effect of χ1 negligible
with respect to that of χ

(1)
3 [see Eq. (5)] for E0 in the range

1.5–3 × 106 V/m.
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C. Getting rid of possible artifacts: Heating
and mechanical effects

We briefly explain how we managed to avoid any distortion
of the data reported here by heating or mechanical effects.
Heating effects come from the dissipated electrical power ρ

that raises the temperature T of the liquid by an amount δT .
For a field E(t) = E0 cos(ωt), one finds that ρ ∼ E2

0 contains
a constant term and a term oscillating at frequency 2ω; see
Ref. 17. As a result, δT (t) = δTdc + δT2(t), where δTdc ∼ E2

0
is a constant and δT2(t) ∼ E2

0 oscillates at 2ω. The heating
affects the polarization by an amount given, as a first-order
estimate, by δP (t) � [∂Plin(t)/∂T ]δT (t) ∝ E3

0 , where Plin(t)
is the linear part of the polarization. Thus, one sees that
δT2(t) enters in products of two terms oscillating at ω and
2ω, yielding a heating contribution to the third harmonics.
This contribution was carefully studied in Ref. 17 where it
was shown that it only plays a minor role at high frequencies
and high temperatures. In the range of parameters reported
here, this heating contribution to the third harmonics can be
safely neglected. The smallness of the heating effect on third
harmonics comes mainly from the “skin effect,” i.e., from
the fact that the oscillating part of heating is exponentially
damped in the thick metallic electrodes of the samples. This
contrasts with δTdc that is not damped in the electrodes and
yields the main contribution of heating to the nonlinear part
of the first harmonics. Fortunately, the thermal time constant
τdc ∼ 300 s associated with the settlement of δTdc is really
long since it corresponds to heat transfer across the whole
experimental cell. Thus, the effect of δTdc can be avoided by
carrying out the measurements of the nonlinear part of the
first harmonics over a time scale τ1 much smaller than τdc. As
in Refs. 13,15, and 16 we checked that different values of τ1
did not change the measured χ

(1)
3 noticeably, provided that the

condition τ1 
 τdc was obeyed. We note here that the heating
effects we consider must not be confused with those studied
in the box model framework13,15,16,18 because the latter are a
possible description of the physics of the connection between
the nonlinear susceptibilities and the DH’s.

Mechanical effects would come from a time dependence
of the thickness e of the capacitance due to electrical
forces between the electrodes that would yield a nonlinear
component in the response. We considered this possibility by
calculating its contribution to χ

(1)
3 and χ

(3)
3 . The oscillations

of the capacitance can be rather easily obtained by taking
into account the electric attractive force (∼E2

0) between the
electrodes and the elasticity of the spacers and glycerol layer.
As for heating effects of Ref. 17 evoked above, one finds
that the variation δe(t) of the thickness contains a constant
term and a term oscillating at angular frequency 2ω, i.e.,
δe(t) = δedc + δe2(t), where both terms are proportional to
E2

0 . The result of our calculation is that such an effect can
safely be neglected since it gives a contribution that is less
than 1.5% of the values of |X(i)

3 | reported here. In addition,
we note that, in our experiments, we checked [for X

(3)
3 ] that

the measured values are the same whatever the surface or
shape of the spacers. As their size and shape contribute to
the possible spurious nonlinear response, we consider this
experimental result as an important clue that the contribution
of the attractive force between the electrodes to the nonlinear
response can be neglected. Note that a similar calculation has

been performed by the authors of Ref. 13. Their result confirms
that electrode attraction can be disregarded as a significant
source of nonlinearity.

III. RESULTS AND DISCUSSIONS

In Fig. 1, the dimensionless value X
(3)
3 (ω,T ) = χ

(3)
3 (ω,T ) ×

kBT /[(�χ1)2a3ε0] is plotted as a function of the frequency
f = ω/(2π ) for six temperatures.19 The definition of X

(3)
3

is chosen in order that according to Eq. (1), |X(3)
3 | is

Ncorr(T ) |H(ωτα)|. Indeed, we find that for each temperature,
the frequency dependence exhibits the expected humped
shape, while the overall magnitude of the curves increases
when T decreases as expected from Eq. (1) since this
magnitude7 should be proportional to Ncorr(T ). Figure 2 shows,
for two temperatures, the dimensionless value X

(1)
3 (ω,T ) =

χ
(1)
3 (ω,T ) × kBT /[(�χ1)2a3ε0] as a function of the frequency.

As for X
(3)
3 , a humped shape is found and the magnitude of

|X(1)
3 (ω,T )| increases as T decreases, as expected from Eq. (6).

We now investigate the possible scaling behavior of X
(3)
3 (ω,T )

and X
(1)
3 (ω,T ).

A. Scaling of X (3)
3

The main part of Fig. 3 shows the same results as Fig. 1
but plotted as a function of the ratio f/fα , where fα(T ) =
1/[2πτα(T )] is the relaxation frequency at temperature T ,
obtained as the frequency for which χ ′′

1 is maximum. As
found in Ref. 8, for each temperature, the maximum value
of |X(3)

3 (ω,T )| is obtained for f/fα � 0.21. In the inset of
Fig. 3, for each temperature, the values of |X(3)

3 (ω,T )| have
been divided by their maximum value over frequency to test
the scaling predicted by Eq. (1). It can be seen that around the
peak of |X(3)

3 | the predicted scaling is well obeyed. The phase

FIG. 1. (Color online) |X(3)
3 (ω,T )|, the modulus of the dimen-

sionless third-harmonic nonlinear susceptibility χ
(3)
3 (ω,T ) measured

in supercooled glycerol, is plotted as a function of the frequency
for six temperatures labeling the curves. The arrows indicate the
relaxation frequency fα for each temperature, fα being the frequency
for which χ ′′

1 (ω,T ) is maximum.
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FIG. 2. (Color online) |X(1)
3 (ω,T )|, the modulus of the dimen-

sionless first-harmonic nonlinear susceptibility χ
(1)
3 (ω,T ) measured

in supercooled glycerol, is plotted as a function of the frequency
for two temperatures labeling the curves. The arrows indicate the
relaxation frequency fα for each temperature.

of X
(3)
3 (see Fig. 4) confirms this scaling, since, as found in

Ref. 8, the phases measured at different temperatures depend
only on f/fα .

In Fig. 3, the most important departure from scaling arises
for f/fα < 3 × 10−2 where the |X(3)

3 (ω,T )| curves fall on
the same plateau value ∼0.16 at low frequency. We explain
this deviation to complete scaling by the fact that at low
frequency χ

(3)
3 (ω) is dominated by the trivial contribution

χ
(3)
3,trivial (due to the saturation of the polarization of the dipoles).

To confirm this explanation, we evaluate χ
(3)
3,trivial by using

the analytic calculation of Ref. 12. In this calculation that
is free of any glassy correlations, the nonlinear response
χ

(3)
3,D(ω,T ) is calculated for a system made of independent

FIG. 3. (Color online) |X(3)
3 (ω,T )| is plotted as a function of f/fα

for six temperatures, where fα is the relaxation frequency at the
considered temperature. The data (and the temperatures) are the same
as those shown in Fig. 1. The continuous line is X

(3)
3,D(ω), an estimate

of the “trivial” contribution to the nonlinear susceptibility. (Inset)
The same data, normalized to test the scaling predicted by Eq. (1):
|X(3)

3 (ω,T )|/maxω|X(3)
3 (ω,T )| is plotted as a function of f/fα (trivial

estimate not shown).

FIG. 4. (Color online) (Upper graph) |X(3)
3 (ω,T )| and

|X(1)
3 (ω,T )|, the moduli of the dimensionless measured nonlinear

susceptibilities χ
(3)
3 (ω,T ) and χ

(1)
3 (ω,T ), are plotted as a function

of f/fα for two temperatures. The lines without symbols X
(3)
3,D(ω)

(black solid) and X
(1)
3,D(ω) (purple dashed) are estimates of the

“trivial” contributions to the nonlinear susceptibilities. (Lower
graph) Phases (in degrees) corresponding to the moduli of the upper
graph (same symbols).

rigid polar molecules with a Brownian rotational motion in
a viscous medium. To the best of our knowledge, Ref. 12
is the only framework yielding the frequency dependence
of the nonlinear effects for polar molecules under rotational
Brownian motion. This is, of course, a very simplified view
of the trivial contribution of glycerol where each molecule
contains several dipoles.

Following Ref. 12, we calculate χ
(3)
3,D(ω,T ). χ

(3)
3,D yields, as

for χ
(3)
3 , the dimensionless nonlinear susceptibility X

(3)
3,D(ω,T )

= |χ (3)
3,D(ω,T )| × kBT /[(�χ1)2a3ε0]. We find that X

(3)
3,D(ω,T )

depends only on the ratio f/fα and that the magnitude of
X

(3)
3,D(ω,T ) is independent of the temperature. The continuous

line in Fig. 3 shows the frequency dependence of |X(3)
3,D |: |X(3)

3,D|
has no peak at finite frequency. This confirms that the humped
shape of the measured |X(3)

3 | is a distinctive feature of glassy
correlations, as predicted by Bouchaud and Biroli in Ref. 7.
Besides, X

(3)
3,D reaches its maximum plateau value for f/fα <

10−1 and decreases to zero for f/fα > 10−1, becoming
negligible with respect to the measured |X(3)

3 (ω,T )| of glycerol
at f/fα > 1. Let us emphasize that the values of |X(3)

3,D(ω,T )|
reported in Fig. 3 are those calculated in Ref. 12 times a factor
0.8. This factor was chosen to enforce the agreement between
our model of trivial effects and the experimental measurements
in the plateau regime occuring for f/fα < 3 × 10−2. Due to the
fact that the analytic calculation of Ref. 12 is only a first crude
model of the trivial nonlinear effects of glycerol, the use of an
adjustable factor close to unity is reasonable. Thus, the fact
that χ

(3)
3 results from both the contributions of χ

(3)
3,singular (due

to glassy correlations7) that should be dominant for f/fα >

0.1 and of χ
(3)
3,trivial that is dominant for f/fα < 5 × 10−2 can

well explain that the scaling predicted by Eq. (1) is verified
only for f/fα > 0.05, as found in our previous paper.8
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B. Scaling of X (1)
3

In what concerns X
(1)
3 , similar results are obtained: in

Fig. 4 (closed symbols), we can see that for two different
temperatures, the curves |X(1)

3 (f/fα)| have the same shape but
not the same magnitude. In addition, the phases depend only
on f/fα as can be seen in Fig. 4. Thus the scaling predicted
by Eq. (6) holds for X

(1)
3 . Comparing the measured |X(1)

3 | and
|X(3)

3 | in Fig. 4 reveals that (i) the former is peaked at a value of
f/fα larger than the latter and (ii) both quantities decrease at
large frequencies with similar power laws whose exponent is
−0.61±0.04. These two features can be accounted for by using
(and extending) the considerations of Ref. 20 where χ

(3)
3 and

χ
(1)
3 were computed analytically within the mode coupling

theory (MCT) framework. As MCT is valid at temperatures
much higher than those of our experiments,21 the fact that some
of the features predicted within MCT are still observed close
to Tg might come from the dynamical amorphous order that
emerges in supercooled liquids as the temperature is decreased.
Comparisons with theoretical models, in particular the one
developed by the R. Richert group,13,15,16 was thoroughly
done very recently in Ref. 18 for X

(3)
3 and will be done in

a forthcoming publication for X
(1)
3 .

As for χ
(3)
3 , we have evaluated the contribution to χ

(1)
3 due

to the polarization saturation χ
(1)
3,trivial by calculating χ

(1)
3,D in

the model of Ref. 12. The resulting dimensionless nonlinear
susceptibility X

(1)
3,D , multiplied by the same factor 0.8 as in

Fig. 3, is shown in Fig. 4 (purple dashed line). As for |X(3)
3,D|, its

modulus has no peak and reaches a maximum plateau value at
low frequencies, which does not depend on T , and decreases
to negligible values at high frequencies. Even if, in Fig. 4,
the measured |X(1)

3 | is close to the trivial estimate |X(1)
3,D| for

frequencies as high as f/fα = 0.3, the phase of the measured
X

(1)
3 is still well above the value of ±180◦ which is expected,

on general grounds, for the trivial contribution. Thus, the trivial
contribution does not fully dominate the measured X

(1)
3,D in the

range f/fα = 0.1–0.3 and we hypothesize that this happens at
lower frequencies, say f/fα � 0.05, just as for χ

(3)
3 .

Finally, from Fig. 4 we conclude that concerning the scaling
and the extraction of Ncorr(T ) from the magnitude of the di-
mensionless nonlinear susceptibility, χ

(1)
3 is a better candidate

than χ
(3)
3 because, at the peak frequency [f/fα � 0.21 for χ

(3)
3

and f/fα � 2.5 for χ
(1)
3 ], the value of the estimated trivial

relative contribution is much smaller for χ
(1)
3 than for χ

(3)
3 .

C. Extraction of Ncorr(T )

Considering the results and discussions presented above,
we can now look for the best way to estimate the Ncorr(T )
dependence from the χ

(1)
3 and χ

(3)
3 data, taking into account the

fact that the glassy correlations contribution to the nonlinear
susceptibility is dominant only at “large” frequencies.

1. Subtraction of X (3)
3,D

Figure 5 shows the maximum values reached by |X(3)
3 (ω)|

and |X(1)
3 (ω)| when ω varies as a function of the temperature.

According to Eqs. (1) and (6), those quantities are proportional

FIG. 5. (Color online) Estimated Ncorr(T ) dependence obtained
from the maximum of |X(3)

3 (ω,T )|, according to Eq. (1) (filled
squares) and from the maximum of |X(1)

3 (ω,T )|, according to Eq. (6)
(open lozenges). The triangles pointing down correspond to the
maximum of X′

3(ω,T ) that is obtained from X
(3)
3 (ω,T ) by subtracting

an estimated trivial contribution. The filled triangles correspond to
|X(3)

3 (f/fα = 2.5,T )|, which should be free of any trivial contribution
(see text). The continuous line is a simplified estimator of the number
of correlated molecules estimated from T × χT (see Ref. 6 and text).
All the data are normalized to 1 at T = 204.7 K to allow an accurate
comparison of their relative evolution with temperature.

to Ncorr, the average number of correlated molecules in a DH.
The comparison of the rates of increase of maxω[|X(3)

3 (ω,T )|]
and maxω[|X(1)

3 (ω,T )|] when T decreases below 205 K
confirms our previous discussion on the two contributions.
Indeed, as at the peak frequency the relative contribution
of the trivial component is weaker for X

(1)
3 than for X

(3)
3 ,

the maximum of |X(1)
3 | increases faster than the maximum

of |X(3)
3 |. Figure 5 shows the quantity maxω[|X′

3(ω,T )|],
where X′

3 is the dimensionless nonlinear susceptibility from
which the estimate of the trivial contribution has been
subtracted:

X′
3(ω,T ) = X

(3)
3 − X

(3)
3,D. (7)

We can see in Fig. 5 that when T decreases, the increase of
maxω[|X′

3(ω,T )|] is steeper than that of maxω[|X(3)
3 (ω,T )|],

which again confirms the importance of getting rid of the
trivial contribution to χ

(3)
3 for estimating the Ncorr(T ) de-

pendence from the nonlinear susceptibility. The difference
between the rates of increase of maxω[|X′

3(ω,T )|] and of
maxω[|X(1)

3 (ω,T )|] is yet unexplained. This suggests that we
should clarify our two assumptions. First, the estimate of the
trivial contribution could be refined, since the detailed shapes
of the X

(3)
3 (ω) and X

(1)
3 (ω) functions compared to that of the

X
(i)
3,trivial � X

(i)
3,D play a major role in the comparison of Fig. 5.

Second, our assumption that the trivial contribution simply
adds to the singular one is questionable, especially when
the two contributions are of the same order of magnitude.
A refined theoretical analysis would be needed on that
point.
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FIG. 6. (Color online) Estimated Ncorr(τα) dependence obtained
from the maximum of |X(1)

3 (ω,T )|, according to Eq. (6) (open
lozenges). τα is defined as τα(T ) = 1/[2πfα(T )]. The filled triangles
correspond to |X(3)

3 (f/fα = 2.5,T )|, which should be free of any
trivial contribution (see text). As in Fig. 5, all the data are normalized
to 1 at T = 204.7 K.

2. The best estimate of the T dependence of Ncorr(T )

We see in Fig. 5 that |X(1)
3 (f/fα = 2.5)| has the same

temperature dependence as |X(3)
3 (f/fα = 2.5)|. This confirms

that, in the range where the trivial contribution is fully
negligible, both |χ (1)

3 | and |χ (3)
3 | have the same temperature

evolution, as expected from Eqs. (1) and (6). This is why the
most precise way to extract the T dependence of Ncorr(T ) is to
follow |X(1)

3 (f/fα = 2.5)| or |X(3)
3 (f/fα = 2.5)|. This yields

a T dependence faster than that of T χT : we note here that
T χT is defined as T χT = maxω[T ∂(χ ′

lin(ω)/�χ1)/∂T ], see
Ref. 6, where χ ′

lin(ω) is the real part of the linear dielectric
response. Let us emphasize that T χT is an approximate
estimator of Ncorr(T ). It has the great advantage of being
easily obtained from experiments, but its ability to reproduce
the T dependence of the “true” Ncorr(T ) is not guaranteed.
For example, in the case of strong glasses where one expects
Ncorr to be independent of temperature, one finds instead
T χT ∝ 1/T . For fragile liquids, the T dependencies of T χT

and of Ncorr(T ) are only the same provided a prefactor
sensitive to microscopic details can be assumed to be tem-
perature independent.22 Since this assumption is not needed
to relate the nonlinear response to the “true” Ncorr(T ),
the T dependence extracted from |X(3)

3 (f/fα = 2.5)| and
|X(1)

3 (f/fα = 2.5)| is, in our opinion, the most reliable estimate
to date of the T dependence of Ncorr(T ).

This increase of |X(1)
3 (f/fα = 2.5)| and of |X(3)

3 (f/fα =
2.5)| when approaching the glass transition is plotted as a

function of ln τα in Fig. 6, exhibiting a linear behavior in the
experimentally accessible region (but note that the relative
change of ln(τα/τ0) is only 20%, assuming τ0 = 10−13 s. This
means that a nonlinear dependence, if any, is hard to detect).
Plotting the corresponding quantities for other supercooled
liquids on such a plot would be interesting as it would allow us
to compare directly the rate of increase of Ncorr(T ) for glasses
with different fragilities and possibly put some experimental
constraints onto the microscopic theories aiming at describing
the glass transition. Finally, we note that such a logarithmic
increase of Ncorr(T ) with τα has already been considered,
e.g., in Refs. 6 and 23: The relaxation time would be related
exponentially to an activation energy or a configurational
entropy that would be proportional to a power of Ncorr. This
is why it is conceivable that an increase of Ncorr(T ) by 35%
corresponds to an increase of τα by 2 decades, as in Fig. 6.

IV. CONCLUSION

In order to determine experimentally the important physical
information provided by the dependence of the number of
dynamically correlated molecules Ncorr on temperature, we
have measured the two a.c. nonlinear dielectric susceptibilities
χ

(3)
3 and χ

(1)
3 in supercooled glycerol. According to Ref. 7,

those quantities contain a contribution χ
(i)
3,singular due to glassy

correlations that should have a scaling behavior in its frequency
and temperature dependencies and be proportional to Ncorr.
By performing a detailed study of the trivial contributions,
χ

(3)
3,trivial and χ

(1)
3,trivial, due to standard polarization saturation,

we have shown that they indeed affect the scaling, primarily
at the lowest frequencies. As a consequence, an accurate
determination of the temperature dependence of Ncorr from
the nonlinear susceptibilities needs an appropriate subtraction
of the trivial contributions in order to extract the singular part
of the nonlinear susceptibility. It seems difficult to have a
precise theoretical prediction of the trivial contribution and
on its interplay with the glassy contribution to the nonlinear
susceptibility. This is why, at present, the most reliable way
to get rid of the trivial contribution is to compare the T

dependence of χ
(3)
3 and of χ

(1)
3 . This allowed us to conclude that

in glycerol the T dependence of Ncorr is faster than previously
determined using the dynamic susceptibility, T χT , a method
used in many previous publications.4,6,23
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