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The structure and phase stability of binary tungsten-vanadium and tungsten-tantalum alloys are investigated
over a broad range of alloy compositions using ab initio and cluster expansion methods. The alloys are
characterized by the negative enthalpy of mixing across the entire composition range. Complex intermetallic
compounds are predicted by ab initio calculations as the lowest energy structures for both alloys. The effect
of atomic relaxation on the enthalpy of mixing is almost negligible in W-V, but is substantial in W-Ta alloys.
Canonical Monte Carlo simulations are used for predicting the order-disorder transition temperatures for both
alloys. Differences in the short-range order between the two alloys are explained by the opposite signs of the
second nearest-neighbour cluster interaction coefficients for W-V and W-Ta. Using the predicted ground-state
structures, we evaluate the monovacancy formation energies and show that in W-Ta alloys they are highly sensitive
to the alloy composition and the local environment of a vacancy site, varying from 3 to 5 eV. In the dilute tungsten
alloy limit, a 〈111〉 self-interstitial atom crowdion defect forms a configuration strongly bound to a vanadium
solute atom, whereas interaction between the same defect and a tantalum solute atom is repulsive. Values of
elastic constants computed for all the ground-state structures and several metastable cubic alloy structures are
used for assessing the effect of alloying on mechanical properties. Values of the Young modulus and the Poisson
ratio, as well as the empirical Rice-Thompson criterion, are applied to screening the alloys, to assess the effect
of chemical composition on ductility.
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I. INTRODUCTION

Tungsten has attractive engineering properties, including
its high melting temperature, significant high-temperature
strength, good thermal conductivity, and low sputtering rate,
which make it suitable for various high-temperature appli-
cations including filament manufacturing. Recently, tung-
sten received attention as a candidate material for fusion
power-plant technology, for example plasma-facing armour or
shielding components, and some structural applications.1–4 An
armor material is expected to retain high fracture toughness
under extreme thermal operating conditions, and it is also
expected to be compatible with constraints derived from
plasma-wall interaction studies.5,6 The drawbacks associated
with technological applications of tungsten include its high
brittle to ductile transition temperature (BDTT),7 significant
irradiation embrittlement occurring even if the material is
irradiated at relatively high temperatures, and the grain growth
and recrystallization effects detrimental to its high-temperature
performance,8 which together represent a major challenge for
fusion materials science.9

A possible way of overcoming the problem of low-
temperature brittleness of W, and improving its recrys-
tallization behavior and radiation stability, consists of the
identification of alloying elements increasing the ductility of
the material. For example, rhenium reduces the BDTT and
increases both ductility and hardness of tungsten.10–13 At the
same time, alloying W with Re reduces radiation swelling
of tungsten.14 Of further significance for the design of W
components for fusion power generation is the effect of nuclear

transmutations.15–17 The primary products of neutron-induced
nuclear transmutations of tungsten are rhenium and osmium.
Calculations by Cottrell17 suggest that after five years of
exposure to fusion neutrons, the concentration of Re in W
may reach 11.8 at. %, whereas Os concentration may reach
12.7 at. %. This would give rise to the formation of ternary
alloys W-Re-Os in the composition range close to that of the σ

phase. The formation of σ -phase precipitates, which are both
denser and more brittle than the original body-centred-cubic
(bcc) α-phase crystal structure, would have a detrimental effect
on mechanical properties. However, a recent study by Gilbert
and Sublet,18 which takes into account the effect of giant
resonances in the absorption nuclear scattering cross section
on the neutron energy spectrum and nuclear transmutation
rates, shows that after five years of fusion neutron irradiation
the concentration of rhenium reaches only 3.8 at. %, whereas
the osmium concentration remains below 1.4 at. %. These
results suggest that the formation of σ -phase precipitates in
tungsten under fusion neutron irradiation is less likely than
was previously anticipated.

In this paper we describe results of an ab initio study of
phase stability and elastic constants of binary W-V and W-Ta
alloys. The experimental phase diagrams of W-Ta and W-V
alloys are given in Refs. 19–21. These phase diagrams show
that W-Ta and W-V alloys exhibit full solubility in bcc α phase
up to the solidus line, showing no occurrence of intermetallic
phases. Still, there are indications that chemical short-range
order (SRO) is present in these systems. Experimental results
show that solid W-Ta alloys exhibit deviations from the ideal
solid solution behavior over the temperature range between
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1050 and 1200 K.22 Furthermore, the measured negative
excess free energies of mixing result primarily from the
negative enthalpies of mixing, and the observed small negative
entropies of mixing can be attributed to phonon excitations.
First-principles electronic structure calculations were carried
out recently to investigate the negative enthalpies of mixing
of W-Ta alloys,23–25 whereas theoretical analysis of phase
stability of W-V alloys is almost absent in the literature. The
enthalpies of mixing of binary W-V alloys calculated using an
effective pair interaction model26 or tight-binding electronic
structure methods27 were found to be positive, at variance with
experimental observations showing negative deviations from
Vegard’s law.19 The observed negative enthalpies of mixing
suggest the occurrence of chemical ordering, but none has yet
been found experimentally in the range of temperatures acces-
sible to observations. This can be explained by the exceedingly
slow self-diffusion in the alloys and the resulting long structure
relaxation time scales. The latter is consistent with our earlier
first-principles calculations showing high vacancy formation
(�3.5 eV) and vacancy migration (�1.8 eV) energies in
bcc tungsten.28–30 The fact that time scales associated with
processes controlled by diffusion of vacancies in tungsten,
for example those involved in the formation of dislocation
loops in collision cascades, are significantly greater than in
other metals is consistent with in situ electron microscope
observations of microstructural evolution under irradiation.31

Binding energies of complexes involving interstitial impurity
atoms, for example carbon or nitrogen, and vacancies, are also
higher in tungsten in comparison with other bcc transition
metals.32

Our study is a part of a broader program of work aimed
at finding out how the choice of chemical composition and
microstructure influences properties of materials exposed to
fusion neutron irradiation. Using ab initio calculations, we
attempt to rationalize systematic trends characterizing phase
stability, point defects, and elastic properties of concentrated
W-Ta and W-V binary alloys, as a step toward modeling
larger-scale microstructural features including grain bound-
aries, dislocations, and dislocation ensembles. The stability
of microstructure in the environment of a fusion power plant,
where the combined effect of high temperature, stresses, and
irradiation drives nonequilibrium microstructural evolution,
determines engineering properties of materials.33 Ab initio cal-
culations provide information about microscopic phenomena,
the understanding of which is required for the development
of larger-scale coarse-grained models, for example molecular
dynamics and Monte Carlo simulations. Ab initio calculations
also provide input for models describing fracture of tungsten-
vanadium and tungsten-tantalum alloys.34,35

The paper is organized as follows. In Sec. II, we describe
a computational model for predicting low-energy phases of
W-Ta and W-V binary alloys. The model combines ab initio
and cluster expansion (CE) calculations. Using ab initio data,
we deduce numerical values of CE interaction parameters for
both W-Ta and W-V alloys. In Sec. III we investigate both the
finite temperature thermodynamic properties and SRO of the
alloys. These properties are calculated using canonical Monte
Carlo simulations performed at fixed alloy compositions.
Microstructural evolution of materials under irradiation is
driven by accumulation, migration, and agglomeration of point

defects (vacancies and self-interstitial atoms), as well as by
interaction of these defects with solute and impurity atoms
in the alloys. In Sec. IV, we investigate the composition
dependence of monovacancy formation energies, using the
lowest energy structures of W-Ta and W-V alloys. A study of
elastic constants spanning all the low-energy crystal structures
is described in Sec. V. In the same section, we discuss
implications of our findings for the fracture properties of the
alloys. Section VI summarizes the results and concludes the
paper.

II. GROUND-STATE PREDICTION

To predict the low-temperature structure of a binary alloy
and investigate its phase stability at a finite temperature,
we combine quantum-mechanical density-functional theory
(DFT) calculations with lattice statistical mechanics sim-
ulation methods. We evaluate thermodynamic parameters
characterizing the alloys, for example their enthalpies of
mixing,

�HDFT(�σ ) = Etot(AxB1−x,�σ ) − xEtot(A) − (1 − x)Etot(B),

(1)

where x denotes the average concentration of component
A of the alloy, and 1 − x refers to the concentration of
component B of the alloy. We use the lattice site occupation
variables σi = ±1, which show whether a site i is occupied
by an atom of type A (corresponding to σi = +1) or B

(corresponding to σi = −1). If we denote by �σ the vector
of all the “spins” {σi} = (σ1,σ2, . . . ,σN ), the configuration
enthalpy of formation �HDFT(�σ ) of the alloy is described
exactly by a set of multisite interaction parameters {J } entering
an Ising-like Hamiltonian of the form

�HDFT(�σ ) = J0 +
∑

i

Jiσi +
∑
i,j

Ji,j σiσj

+
∑
i,j,k

Ji,j,kσiσjσk + · · · . (2)

This is the defining equation of the CE formalism.36–38 For
a binary alloy AxB1−x , modeled using a cell with N sites,
there are 2N possible structures, each characterized by its
own vector �σ . Attempting to perform ab initio calculations
for all the 2N transpositions of atoms in an alloy to find the
minimum-energy structure is practically impossible. Hence
Eq. (2) is often approximated by a CE Hamiltonian, expressed
as a polynomial function of occupation variables,

�HCE(�σ ) =
∑

α

mαJα

〈∏
i∈α

′
σi

〉
, (3)

where α denotes a cluster (a set of sites i). Summation in
Eq. (3) is over all the clusters α that are not equivalent to
each other via a symmetry operation of the parent lattice
space group, while the average is taken over all the clusters
α

′
that are equivalent to α by symmetry. Coefficients Jα in

this expansion embody information about the relative energies
of alloy configurations, and are called the effective cluster
interaction (ECI) parameters. Multiplicity mα is the number
of clusters equivalent by symmetry to α. In a real alloy, small
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differences between atomic radii give rise to local distortions
of the lattice. However, this does not change the topology
of the crystal structure, and hence the cluster coefficients
effectively map the actual relaxed distorted atomic lattice
configurations onto a perfect lattice. In this way small local
elastic deformations associated with atomic size mismatch are
included in the cluster expansion coefficients. Alternatively,
elastic effects can be taken into account explicitly using the
method developed in Ref. 37.

Although Eq. (3) contains many ECIs Jα , the energy
of interatomic bonds is usually dominated by short-range
interactions. Therefore a relatively small number of parameters
Jα already provides a sufficiently accurate mapping of DFT
to CE. We note here that the accuracy of CE parametrization
is not determined solely by the error in the energies predicted
by CE in comparison with energies predicted by DFT. It is
important to make sure that the CE model predicts the correct
lowest energy crystal structures. In this paper we use the Alloy
Theoretic Automatic Toolkit (ATAT),39 which allows assigning
extra weights to certain crystal structures, to ensure that the
lowest energy structures predicted by CE simulations agree
with DFT results.

To find the optimum set of ECIs for both W-Ta and
W-V alloys, we use a database of DFT energies computed
for 58 bcc-like structures. DFT calculations involve full
atomic relaxations, as in our earlier studies of Fe-Cr binary
alloys.40–42 Most of the DFT calculations described in this
paper were performed using the Perdew-Burke-Ernzerhof
electron exchange-correlation functional within generalized
gradient approximation (PBE-GGA).43 We used the projector
augmented wave (PAW) pseudopotentials implemented in the
Vienna Ab-initio Simulation Package (VASP).44–46 Given the
fact that the semicore electronic states make a non-negligible
contribution to the formation energies of self-interstitial atom
(SIA) defects,28–30 all the calculations described in this work
were performed using the PAW potentials Xpv , where the
semicore p states are treated as valence states. The calculations
were performed using a 4 × 4 × 4 bcc supercell, with plane-
wave cutoff energy of 400 eV and 3 × 3 × 3 k-point mesh
with spacing of 0.2 Å−1. In the case of pure bcc tungsten with
two atoms per unit cell we used a 14 × 14 × 14 k-point grid,
corresponding to the same k-point spacing of 0.2 Å−1.

The calculated enthalpies of mixing for 58 crystal structures
of W-Ta and W-V alloys are shown in Figs. 1 and 2,
respectively, where they are labeled “DFT-Initial.” These initial
input data include not only the conventional A3B, AB3 (DO3),
A2B, AB2 (C11b), and AB (B2) structures,23 but also a
number of 2 × 2 × 2 bcc supercell structures, including A15B

and AB15, which span a broad range of alloy environments
characterized by higher-order multiatom interactions. The
enthalpies of mixing computed for the initial structures are
negative for both alloys.

From the available DFT structure database, the initial
values of CE interaction coefficients are derived using the
so-called structure inversion method (SIM), also known as
the Connolly-Williams method.47 The initial CE formation
enthalpies (denoted as “CE-Initial”) are shown in Figs. 1 and
2 for both W-Ta and W-V alloys. Even at this preliminary
stage of fitting the ECIs, the CE technique enables one to make
guesses about the ground states of the alloys. For instance, the
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FIG. 1. (Color online) The enthalpy of mixing of W-Ta alloys
evaluated using cluster expansion.

C11b structure is predicted as the lowest energy structure of
W2Ta and W2V compounds at T = 0 K. The initial ECI set
serves as a starting point for further automatic refinement of CE
parameters, which is achieved by generating new structures,
hence enabling the verification of accuracy of predictions
made using the ATAT method.39 In this study, the best choice
of CE coefficients for both alloys corresponds to the cross-
validation error between DFT and CE formation enthalpies
(denoted as “DFT-MAPS” and “CE-MAPS,” respectively) of
3.5 meV/atom.

Deriving the final sets of CE parameters, corresponding
to the limit where the above criterion is satisfied, involves
analyzing more than 100 bcc-like structure types. In order to
validate and verify the accuracy of CE parametrization, we
use the final ECI sets to calculate the lowest mixing enthalpies
of the alloys, which we find using simulated annealing and
3 × 3 × 3 and 4 × 4 × 4 bcc supercells. The relevant data are
shown in Figs. 1 and 2 together with the values calculated
using the so-called special quasirandom structures (SQS),48

which mimic disordered configurations of the alloys.
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FIG. 2. (Color online) The enthalpy of mixing of W-V alloys
evaluated using cluster expansion.
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FIG. 3. (Color online) Symmetry-weighted effective cluster in-
teraction parameters for W-Ta and W-V alloys.

The lowest-energy structures predicted using the CE
parametrization are shown in Figs. 1 and 2, and are referred
to as ground-state CE (GS-CE). Some of those GS-CE stable
structures, found using the DFT-Initial and DFT-MAPS sets,
are referred to as GS-DFT. For the W-rich part of Figs. 1
and 2, by comparing the enthalpies of formation calculated for
stable GS-CE and GS-DFT structures, we find good agreement
between the lowest energy atomic configurations predicted
by CE and DFT. Insets in Figs. 1 and 2 show how well the
enthalpies of mixing calculated using CE and DFT agree in
the region from 100 to 80 at. % W.

Figure 3 shows full sets of ECIs for W-Ta and W-V
alloys. We have derived eight two-body, nine three-body,
seven four-body, and four five-body interaction parameters
for both systems. In addition to the fact that our results are in
agreement with previous studies24,25 in terms of the maximum
(five-body) size of the final set of ECIs, we note that the
new CE parametrization given here not only includes a more
extensive set of pairwise and many-body interactions for W-Ta
alloys, but it also represents the first CE parametrization of
W-V alloys available in the literature. The values of all the
optimized ECIs are given in Appendix A for both W-Ta and
W-V alloys. We find that the first nearest-neighbor (1NN) pair
interaction is positive and dominant in both cases, implying
that the 1NN effective cluster interaction strongly favors A-B
chemical mixing. The sign of the second-nearest-neighbor
(2NN) pair interaction varies; it is negative (−10.704 meV)

for W-Ta and positive (+34.992 meV) for W-V. This means
that the 2NN atomic environments in W-Ta and W-V alloys are
dissimilar. The difference is particularly visible for x = 1/2
(i.e., 50% tungsten, 50% Ta or V) alloys. For example, the
B23 structure, where the 2NN atoms form pairs of A-A or
B-B type, is predicted for the W-Ta alloy, whereas the B32

structure, where the 2NN atom pairs are of A-B type, is found
for the W-V alloy. The prediction of B23 structure for the 50
at. % W and 50 at. % Ta alloy agrees with findings by Blum
and Zunger.24

Table I shows selected low-energy structures of intermetal-
lic compounds found in CE and DFT calculations. These
structures are shown in Figs. 1 and 2 as filled circles. Additional
low-energy configurations, shown by open circles in Figs. 1
and 2 in the W-rich region, are found using CE simulations
performed using larger unit cells. These low-energy structures
are not included in Table III. The ground-state line of the most
stable structures was calculated using an algorithm described
in Refs. 24 and 25. Information about the space-group
symmetry of selected stable structures is given in Appendix
B. For W-Ta binary alloys, we found new ordered structures
W15Ta, W7Ta, W4Ta, W5Ta3, W5Ta7, which were not included
in the analysis performed earlier.24 In the W-rich region,
we found that W5Ta3 structure has the lowest enthalpy of
mixing (−117.1 meV/atom). This is at variance with previous
work24,25 where Mo3Ta2 (W3Ta2) structure appears to have
the lowest enthalpy of mixing. Although there is no detailed
information about the ECI parameters and enthalpies of mixing
in Refs. 24 and 25, the differences can be explained by the fact
that we use larger sets of ECIs, which include more many-
body interactions, described in Appendix A. The ground-state
lowest energy structure curves are also slightly different from
those found earlier,24,25 for example the enthalpy of mixing
for W2Ta (in C11b structure) calculated using LDA24,25 equals
−125 meV/atom, whereas the enthalpy of mixing evaluated
for the same structure using GGA is −116 meV/atom.

For W-V binary alloys, none of the predicted low-energy
structures (W15V, W7V, W4V, W3V, W2V, W3V2, W2V2,
W2V3, W3V5, and W3V12) were reported previously. The
lowest enthalpy of mixing (−92.9 meV/atom) is predicted
for the C11b structure (W2V), corresponding to an alloy
composition containing 66.7 at. % W. The space-group data
given in Table III show that although all of the predicted

TABLE I. The lowest energy structures predicted by DFT, CE, and Monte Carlo (MC) simulations for W-Ta and W-V alloys. The enthalpy
of mixing �Hmix is given in eV/atom units, and the order-disorder transition temperatures Tord are given in Kelvin units.

System Space group �Hmix Tord System Space group �Hmix Tord

W15Ta Pm3̄m −0.0275 140 W15V Pm3̄m −0.0258 70
W7Ta Cmmm −0.0540 270 W7V I4/mmm −0.0518 150
W4Ta I4/mmm −0.0843 430 W4V R3̄m −0.0750 200
W2Ta I4/mmm −0.1164 590 W3V Fm3̄m −0.0826 220
W5Ta3 P 4/mmm −0.1171 600 W2V I4/mmm −0.0929 250
W6Ta6 Cmmm −0.1084 550 W3V2 R3̄m −0.0906 240
W5Ta7 P 3̄m1 −0.0975 500 W2V2 Fd 3̄m −0.0793 210
W4Ta9 I4/m −0.0763 400 W2V3 R3̄m −0.0672 180
W4Ta12 P 42/mnm −0.0653 330 W3V5 R3̄m −0.0629 170

W3V12 R3̄m −0.0363 100
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FIG. 4. (Color online) The volume relaxation effect in W-Ta alloys.

intermetallic W-Ta and W-V compounds have crystal struc-
tures derived from bcc structure, the majority of them belong
to the tetragonal and orthogonal systems, with a relatively
small subset of trigonal structures.

Figures 4 and 5 show the effect of volume and atomic re-
laxations found using DFT for selected low-energy structures
for both W-Ta and W-V alloys. In W-Ta alloys (note that Ta
is a 5d transition metal) relaxations have a more significant
impact on the enthalpy of formation of the alloy, especially in
the range of relatively high Ta concentration. The W-V alloys
are different in this respect, and atomic relaxations in W-V
(where vanadium belongs to the 3d metal series) do not
influence the enthalpy of mixing, despite the fact that the
atomic sizes of vanadium and tungsten are quite different.
The difference between W-Ta and W-V alloys can probably
be explained by the fact that bonding between 3d-V and
5d-W orbitals has stronger covalent character than covalency
characterizing the 5d-Ta–5d-W bonds. This interpretation is
justified in the next section where we compare electronic
structures of W-Ta and W-V alloys and investigate chemical
SRO characterizing those alloys.
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FIG. 5. (Color online) The volume relaxation effect in W-V alloys.

III. ELECTRONIC STRUCTURE AND
SHORT-RANGE ORDER

Tungsten has the highest cohesive energy among all
the transition metals in the Periodic Table,49 and it is not
inconceivable that this fact has a bearing on its inter- and
trans-granular fracture properties. Its bcc crystal structure and
the strength of interatomic bonding are in turn related to the
electronic structure of tungsten, and to the fact that it has
an approximately half filled 5d band with the Fermi energy
situated in the pseudominimum of the electronic density of
states (DOS).50 The pseudominimum separates bonding and
antibonding states formed by 5d orbitals.

It is appropriate to pose the question of how the electronic
structure of W alloys change as a function of Ta and V content,
which in turn is related to the variation of the average number of
electrons per atom (e/a). The electronic densities of states for
several ground-state configurations of W-Ta and W-V alloys
are shown in Figs. 6 and 7, respectively. Alloying tungsten
with Ta or V, which both have one fewer valence electron
than tungsten, alters the behavior of DOS, as shown in Figs. 6
and 7. As the concentration of Ta or V increases, the Fermi
energy moves away from the minimum of DOS, and bonding
in the alloys becomes less covalent and more metallic. It is
important to note here that although all the predicted ground-
state structures in W-Ta and W-V alloys have different space-
group symmetries in comparison with that of bcc W, Ta, and V,
the above analysis of electronic structure as a function of the
(e/a) ratio shows that it can be well described by the rigid-band
approximation. This is also consistent with the fact that all the
structures predicted by CE simulations are derived from bcc
lattice. We will return to the question about electronic structure
in Sec. V, where we apply the Rice-Thompson criterion to
assess the ductility of W-Ta and W-V alloys.

Figure 8 shows the finite-temperature enthalpies of mixing
of the alloys derived from canonical Monte Carlo simulations
performed using a bcc supercell with 20 × 20 × 20 lattice
sites. Both curves refer to 50 at. % tungsten alloys, where
simulations of W-Ta alloys were performed assuming T =
2000 K, whereas the W-V alloys were simulated assuming
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FIG. 6. Electronic density of states calculated for the ground
states of W-Ta alloys as a function of Ta content.
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FIG. 7. Electronic density of states calculated for the ground
states of W-V alloys as a function of V content.

T = 1000 K. We see that the enthalpy of mixing remains
negative at high temperatures for both alloys, confirming
that the SRO effects and deviations from fully random
atomic arrangements play a significant part even in the
high-temperature limit. Similar negative enthalpies of mixing
at high temperatures were also found in a recent CALPHAD

analysis of the W-Ta phase diagram,51 which involved a
somewhat more limited DFT database.23 There are reasons
to believe that these earlier results are less accurate than
those described in the present work, as confirmed by the
earlier prediction of B2 and DO3 structures as ground-state
configurations for W-Ta and W3Ta, respectively. Our results
for W-V do not agree with these earlier findings, which were
derived from empirical tight-binding simulations, where the
latter predict positive enthalpy of mixing for W-V alloys.26

We note that both curves in Fig. 8 show minima at 60 at. %
W concentration, which are well correlated with the minima
in the enthalpy of formation values found for T = 0 K.
The order-disorder transition temperatures found using Monte
Carlo simulations are given in Table III for several ground-state
structures. The maximum ordering temperature is close to
600 K for W-Ta alloys and to 250 K for W-V alloys. These
maximum ordering temperature values are well correlated with
the minima of the enthalpy of mixing curves predicted by DFT
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FIG. 8. (Color online) The enthalpy of mixing of W-Ta and W-V
alloys at finite temperatures.

calculations. In comparison with previous studies carried out
at equiatomic composition (x = 50%), our predicted value of
Tc = 550 K for W-Ta is higher than the value (Tc = 360 K)
found in a previous CE investigation.24 The predicted lowest
energy crystal structure B23 is the same in both cases.

Some differences between the present work and those from
Ref. 24 can be, however, explained not only by the fact that
more ECIs were included in the simulations done here, but
also by the fact that we use DFT data sets derived from GGA
calculations rather than LDA ones.24 Since the numerical
values of the effective cluster interaction parameters used
in Ref. 24 were not published, identifying the origin of the
differences between the earlier results and our work is difficult.
There were four three-body, one four-body, and one five-body
interaction parameters included in the earlier study, whereas
in the present case the corresponding numbers are 9, 7, and
4, respectively. Hence our work includes many more cluster
interactions, and this is probably the main reason why the
predicted lowest energy crystal structures are not the same for
some compositions. The most notable difference is between
the nearest-neighbor effective pair-interaction parameters for
W-Ta. We found the value of ≈ 109 meV, whereas the earlier
result is �70 meV; see Ref. 24. In both cases this effective
interaction plays the dominant part.

Figure 9 describes order-disorder transitions in both alloys,
and illustrates changes in the enthalpy of mixing as well as
differences between the transitions themselves. Monte Carlo
simulations were performed for three alloy compositions near
the minimum of the enthalpy of mixing: W2Ta, W5Ta3,
and W6Ta6 in W-Ta and W2V, W3V2, and W2V2 in W-V.
The difference between the ordering temperatures found for
W6Ta6 (Tc = 550 K) and W2V2 (Tc = 210 K) alloys can
be explained by the opposite signs of 2NN pair interactions
discussed above. We note that the ordering temperature of
W6Ta6 (B23) derived from the mixed-basis cluster expansion
calculations24 was predicted to be 360 K. A tight-binding-
based analysis27 predicts that the transition from the ordered
B2 structure to the high-temperature disordered bcc phase
occurs in WTa at T = 920 K. According to our analysis,

-0.11

-0.10

-0.09

 0  1000

W2Ta

-0.10

-0.09

 0  1000 1500

E
nt

ha
lp

y 
of

 m
ix

in
g 

(e
V

)

W5Ta3

-0.10

-0.09

-0.08

 0  1000

WTa

 0  1000  2000

-0.09

-0.08

W2V

 0  1000  2000
-0.09

-0.08

-0.07

E
nthalpy of m

ixing (eV
)

W3V2

 0  1000  2000

-0.08

-0.075

-0.07

Temperature (K)

WV

FIG. 9. (Color online) Order to disorder transformations obtained
by using Monte Carlo simulations with full set of effective cluster
interactions for three ground states W2Ta, W5Ta3, and W6Ta6 and
W2V, W3V2, and W2V2 for each binary alloy.

104115-6



PHASE STABILITY, POINT DEFECTS, AND ELASTIC . . . PHYSICAL REVIEW B 84, 104115 (2011)

the B2 structure has higher enthalpy of mixing than the B23

structure [E(B2) − E(B23) = 7.8 meV/atom], and we expect
that, as temperature decreases, the alloy first transforms from
the high-temperature disordered bcc phase into the B2 phase
and then from B2 to the lowest energy B23 phase.

The degree of SRO in a binary alloy AxB1−x can be
described using the Warren-Cowley parameters αn(x), defined
as52

αn(x) = 1 − P B−A
n

/
x, (4)

where n is the index of a coordination shell, and P B−A
n is

the conditional probability of finding an atom A in the nth
coordination shell of atom B. The SRO parameter αn(x)
vanishes if P B−A

n = x, meaning that there is no preference for
a given atom to be surrounded by atoms of any type. This
criterion defines the ideal solid solution limit. Segregation
or clustering of atoms of a particular kind give rise to
positive αn(x), whereas negative values of the Warren-Cowley
parameter indicate a tendency toward ordering. If in the limit
|1 − x| 	 1 each atom B is surrounded by A atoms, i.e.,
P B−A

n = 1, then the SRO parameter takes its lowest possible
value, αmin

n (x) = −(1 − x)/x.
The first nearest-neighbor (1NN) and the average between

the 1NN and 2NN coordination shells, values of Warren-
Cowley parameters derived from equilibrium MC simulations
performed on a 10 × 10 × 10 bcc supercell, are shown in
Figs. 10 and 11. Simulations were performed for T = 2000 K
in the case of W-Ta alloys, and for T = 1000 K in the case
of W-V alloys. The high-temperature results are compared
with the corresponding values of SRO parameters calculated
for the T = 0 K alloy configurations, also derived from MC
simulations. For comparison, Figs. 10 and 11 show the function
αmin

n = −x/(1 − x) for x < 0.5, and αmin
n = −(1 − x)/x for

x > 0.5, representing the minimum possible, for a given
x, values of the Warren-Cowley parameters for the 1NN
coordination shell. We see that the 1NN Warren-Cowley SRO
parameters computed from T = 0 K CE configurations are
negative over the entire range of alloy compositions. For
x � 0.3 and x � 0.70, complete ordering is found for both
binary systems, confirmed by the fact that the calculated
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values of the 1NN SRO parameters approach the minimum
possible values. In the 30–70 at. % W composition range, the
Warren-Cowley parameters computed for the 1NN shell shows
a lesser degree of ordering. In particular, the zero value of
the 1NN Warren-Cowley parameter for the 50 at. % W alloy
comes from the atomic environment of the B32 lowest energy
structure. The average, between the 1NN and 2NN shells, SRO
parameters found for T = 0 K show partial ordering between
20 and 80 at. % W for both alloys. At high temperatures
(T = 2000 K for W-Ta and T = 1000 K for W-V), where
alloys adopt disordered solid solution bcc configurations, the
values of SRO parameters evaluated from full CE simulations
are negative but small. This confirms that deviations from the
solid solution behavior seen in both alloys at high temperature
is due to the presence of SRO, in agreement with experimental
observations.22

IV. POINT DEFECT PROPERTIES

We start from the investigation of formation energies of
self-interstitial atom (SIA) and monovacancy defects in pure
bcc tungsten and dilute tungsten alloys. The calculations are
carried out using 4 × 4 × 4 bcc supercells containing 128
atoms and a 3 × 3 × 3 mesh of k points.

TABLE II. Formation energies (in eV) of self-interstitial atom
and vacancy defects in tungsten and dilute tungsten alloys.

Defect Defect composition

configuration W-W W-Ta W-V Ta-Ta V-V

〈111〉 10.086 10.251 7.810 10.533 5.993
〈110〉 10.545 10.858 8.320 11.218 5.636
〈100〉 12.200 12.349 9.582 12.703 7.348
Vacancy-1NN 3.378 3.265
Vacancy-2NN 3.544 3.266
Vacancy-3NN 3.445 3.131
Vacancy-4NN 3.366 3.089
Vacancy-5NN 3.397 3.123
Vacancy-6NN 3.330 3.081
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The calculated formation energies are given in Table II
where the reference energies per atom for pure bcc tungsten,
tantalum, and vanadium were calculated using the same 4 ×
4 × 4 bcc supercells. In agreement with previous studies,28,30

we found that the 〈111〉 SIA configuration has the lowest
formation energy. We note that although the SIA formation
energy has been recently measured using low-temperature
evaporation of tungsten in a field-ion microscope, observa-
tions gave no information about the structure of single SIA
configurations.53 〈111〉 crowdion cluster configurations were
observed using in situ electron transmission microscopy in bcc
iron54 and tungsten.55

The 〈110〉 and 〈100〉 dumbbell configurations both have
higher formation energies than that of a 〈111〉 crowdion. To
investigate how this relation changes in an alloy, we calculated
formation energies of mixed W-Ta and W-V dumbbells, as
well as of Ta-Ta and V-V dumbbells, assuming pure tungsten
environment. The data given in Table II show that, with
the exception of the V-V SIA defect, the 〈111〉 dumbbell
configuration remains the most stable in all cases but one. We
find that the V-V SIA dumbbell adopts the 〈110〉 configuration
with the formation energy of 5.636 eV. The fact that the 〈110〉
SIA configuration has the lowest formation energy for a Re-Re
dumbbell (again, assuming the matrix of pure W) was recently
reported in Ref. 56. We note that, similarly to a rhenium atom, a
vanadium atom has smaller size than a tungsten atom, whereas
a Ta atom has the size greater than that of a tungsten atom. The
formation energies of a vacancy interacting with an impurity
Ta (or V) atom, which is situated 1NN, 2NN, . . . , 6NN
distance away from the vacancy, are also given in Table II. The
vacancy formation energy decreases smoothly as the distance
between the vacancy and an impurity atom decreases from the
1NN to 4NN distance, then it slightly increases at the 5NN
interatomic separation, before decreasing again at the 6NN
separation.

Before moving on to the investigation of vacancies in
W-Ta and W-V alloys, we evaluate the energies of formation
of small vacancy clusters in bcc-W, which are important
for modeling kinetics of nucleation and growth of voids in
tungsten under irradiation.57–59 Table III shows the calculated
formation and binding energies of small clusters of vacancies
(Nv = 2–6) calculated for pure tungsten using the PBE-GGA

TABLE III. Formation energies (Ef ) and binding energies (Eb),
in eV, of vacancy clusters in tungsten. Positive values of the binding
energy indicate attraction between the vacancies, leading to clustering
of vacancies, whereas negative values indicate repulsion.

PBE PBE-AM05 PBE PBE-AM05
Cluster Ef Ef Eb Eb

1 3.327 3.568
2 (〈111〉) 6.624 7.129 0.029 0.007
2 (〈100〉) 6.989 7.325 −0.365 −0.190
3 9.711 10.454 0.269 0.250
4 12.242 13.398 1.065 0.874
5 14.669 16.103 1.965 1.736
5 (Ref. 71) 15.744 17.230 0.890 0.610
6 17.847 19.457 2.113 1.950

exchange-correlation functional43 with semicore electrons
included in the PAW potential implemented within the VASP

code. The calculated formation energies for the first-nearest-
neighbor and second-nearest-neighbor divacancies are 6.624
and 6.989 eV, respectively, in agreement with values found
previously (6.71 and 6.93 eV) using the PLATO code and
atomiclike orbital basis sets.28,30 The monovacancy formation
energy of 3.327 eV found in the present work is 0.23 eV lower
than the value 3.56 eV found earlier using the PLATO code.28,30

We note that the earlier VASP calculations60–62 carried out using
a different exchange-correlation functional63 and a smaller
energy cutoff of 240 eV, as opposed to 400 eV used here,
predicted an even lower vacancy formation energy of 3.11 eV.
Ab initio investigation of defects in tungsten carried out using
SIESTA code64 found vacancy formation energies in the range
between 3.2 and 3.3 eV, in agreement with the values given
in Table V.

To estimate the contribution to the vacancy formation
energy from exchange-correlation effects we investigated how
this energy depends on the choice of exchange-correlation
functional. By using the AM05 functional,65 which provides a
reasonably accurate treatment of systems with open surfaces,
for example vacancies or vacancy clusters, we found the
formation energy for a monovacancy in bcc W of 3.57 eV.
The latter value correlates well with the earlier values found
using the PLATO code28,30 and it also agrees with experimental
data for bcc-W showing that the vacancy formation energy
lies in the interval between 3.5 and 4.1 eV.28 The fact that the
monovacancy formation energy appears to be sensitive to the
choice of exchange-correlation functional and that it varies in a
relatively broad interval between 3.11 eV60–62 and 3.56 eV28,30

warrants further analysis.
The calculated binding energies of vacancy clusters shown

in Fig. 12 are all positive, apart from the 2NN divacancy
configuration. The binding energy for a divacancy cluster
Eb

2v = 2E
f
v − E

f

2v , where E
f
v and E

f

2v are the formation
energies for a monovacancy and a divacancy, in the 1NN
divacancy configuration is fairly small (0.029 eV), whereas
the binding energy for a divacancy in the 2NN configuration
is negative (−0.365 eV) and the two vacancies repel each
other. These results, found using the VASP code, are broadly
consistent with binding energies of 0.05 and −0.27 eV
for the 1NN and 2NN divacancy configurations reported
recently in Ref. 66 whereas earlier experimental work per-
formed using field ion microscopy and showing vacancy
clusters formed at free surface indicate that the favorable
configurations of divacancies in tungsten are of the 1NN
type.67

There is another reason why one should expect unusual
properties of divacancies in tungsten. The strength of elastic
interaction between two vacancies in a cubic crystal depends
on the degree of elastic anisotropy of the material.68,69

Tungsten is elastically isotropic, i.e., in tungsten the difference
C11 − C12 − 2C44 is very close to zero, resulting in that
the self-energy of a line dislocation is independent of the
orientation of the dislocation line with respect to the lattice,70

and in that the strength of elastic interaction between two
vacancies is anomalously small in comparison with other bcc
metals; see Eq. (13) of Ref. 69.

104115-8



PHASE STABILITY, POINT DEFECTS, AND ELASTIC . . . PHYSICAL REVIEW B 84, 104115 (2011)

The binding energy of a vacancy cluster in the Nv = 3–6
range increases with the number of vacancies in a cluster, as
shown in Table III. We find that the lowest energy configuration
for a cluster of five vacancies is different from the square
pyramid shape found in simulations performed using empirical
potentials.71 For the latter configuration, the formation and
binding energies found in DFT calculations are also shown in
the table. The formation energy of the square pyramid shape
configuration is 1.075 eV higher than the formation energy of
the five-vacancy cluster shown in Fig. 12. Positron annihilation
measurements suggest that vacancies form clusters at ≈650 K
and that the size of clusters varies in the range Nv = 4–10.57

Table III also shows the formation and binding energies for
vacancy clusters computed using another exchange-correlation
energy functional, AM05.65 We find trends similar to those
found using the PBE functional.

We now investigate monovacancy formation energies for a
selected set of ground-state structures of W-Ta and W-V alloys.
For example, the formation energy of a vacancy removed from
a crystallographic site occupied by a W atom is defined as

E
f

vacancy in X-W,Y -Ta(V) = E(X−1)-W,Y -Ta(V) − EX-W,Y -Ta(V)

+ 1

128
E128W, (5)

where X and Y denote the number of tungsten and tantalum
(or vanadium) atoms in the 128-atom unit cell of compound
WXTa(V)Y . E(X−1)-W,Y -Ta(V) is the energy of a configuration
with a vacancy on a tungsten site, EX-W,Y -Ta(V) is the energy of
the alloy with no defect, and E128W is the energy of a bcc cell

FIG. 12. Tungsten vacancy cluster configurations (Nv = 2−6)
investigated in the present study.

containing 128 tungsten atoms. Here we use pure bcc W (or Ta,
V) as a reference for calculating vacancy formation energies.
A more accurate determination of W (or Ta, V) chemical
potential referring to a particular constituting element in an
intermetallic compound involves taking into account not only
vacancies at each lattice site of the structure (see Appendix B)
but also other possible point defects such as antisite defects or
self-interstitials.

Figure 13 shows formation energies of monovacancy
defects, calculated for a number of lattice sites characterized
by the space groups given in Table I. The formation energy for
a monovacancy in W-Ta strongly depends on the environment
of a vacancy site, varying by as much as 2 eV between Ta and
W sites. The origin of the effect is likely associated with atomic
volume mismatch between the tungsten and tantalum atoms.
The case of W-V alloys is very different in that we do not find
any significant variation between the formation energies of
vanadium or tungsten vacancies. Tables IV and V summarize
the calculated values of vacancy formation energies shown in
Fig. 13 for W-Ta and W-V binaries. The Wyckoff positions
denote the crystallographic symmetry of each site occupied by
W, Ta, or V atoms.

Finally, we investigate the strength of interaction between a
〈111〉 SIA crowdion with Ta and V impurity atoms. We define
the binding energy of this interaction, say between a crowdion
and a Ta atom, as

Eb
crowdion = E129W

crowdion + E127W1Ta − E128W − E128W1Ta
crowdion , (6)

where E129W
crowdion is the energy of a crowdion in pure tungsten,

E127W1Ta is the energy of a defect-free 127W1Ta alloy system,
E128W is the energy of an ideal bcc W cell containing 128
atoms, and E128W1Ta

crowdion is the energy of a crowdion in 128W1Ta
alloy.

Figure 14 shows how the binding energy of interaction
between a crowdion and a V or a Ta or a Re atom in bcc
tungsten varies as a function of the position of an impurity
atom in a 〈111〉 string containing the crowdion defect. We find
that the binding energy is positive (attraction) for a vanadium

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

F
or

m
at

io
n 

en
er

gy
 (

eV
)

Ta(V) Concentration

WTa-W lattice site 
WTa-Ta lattice site 

WV-W lattice site 
WV-V lattice site 

FIG. 13. (Color online) Monovacancy formation energies com-
puted for the ground-state intermetallic structures of W-Ta and W-V
binary alloys.
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TABLE IV. Vacancy formation energy computed for the ground states of W-Ta alloys. The formation energy equals Ev
f = Etot

V (N − 1) −
Etot + EX , where Etot

V and Etot are the total energies of alloys with and without a vacancy. EX is the energy of an atom in a W or Ta crystal,
depending on the lattice site where the vacancy was created.

Ground-state Lattice site Wyckoff position Ev
f (eV) Ground-state Lattice site Wyckoff position Ev

f (eV)

W15Ta W 1b 3.289 W6Ta6 W 2d 2.905
W 3c 3.403 W 4g 3.498
W 3d 3.692 Ta 2b 5.066
W 8g 3.695 Ta 4h 4.371
Ta 1a 3.652 W5Ta7 W 1a 3.278

W7Ta W 2d 3.580 W 2d 2.804
W 4f 4.045 W 2d 3.417
W 4g 3.673 Ta 2c 4.765
W 4i 3.985 Ta 2d 4.748
Ta 2a 4.275 Ta 2d 4.915

W4Ta W 4e 3.577 Ta 2d 4.850
W 4e 4.157 W4Ta9 W 8h 2.804
Ta 2b 4.796 Ta 2a 2.954

W2Ta W 4e 3.865 Ta 8h 3.665
Ta 2a 4.890 Ta 8h 4.912

W5Tai3 W 1a 3.867 W4Ta12 W 4f 2.775
W 2g 3.900 Ta 4f 3.878
W 2h 3.960 Ta 8i 4.103
Ta 1b 4.502
Ta 2h 4.896

atom, and that the binding energy is negative (repulsion) for a
tantalum atom. For comparison, Fig. 14 also shows the binding
energy of interaction between a crowdion and a rhenium atom.
We see that the cases of V and Re are similar, and in this case
the binding energy of interaction between a defect and an
impurity atom is positive (i.e., the defect and an impurity atom
form a bound configuration). Figure 14 suggests that V and Re
substitutional impurities trap SIA defects in bcc-W, and this

should be expected to affect microstructural evolution of the
alloys under irradiation; see, for example, Refs. 72 and 73. The
pattern of interaction between a SIA defect in tungsten and V
or Re atoms is somewhat similar to that found by Olsson et al.74

for the case of a 〈111〉 crowdion defect in bcc iron interacting
with manganese and chromium impurity atoms. Comparing
the effect of Re and V impurities, we find that vanadium atoms
trap SIA defects stronger than rhenium atoms.

TABLE V. Vacancy formation energy computed for the ground states of W-V alloys. The formation energy equals Ev
f = Etot

V (N − 1) −
Etot + EX , where Etot

V and Etot are the total energies of alloys with and without a vacancy. EX is the energy of an atom in a W or V crystal,
depending the lattice site where the vacancy was created.

Ground-state Lattice site Wyckoff position Ev
f (eV) Ground-state Lattice site Wyckoff position Ev

f (eV)

W15V W 1b 3.555 W3V2 W 3a 3.864
W 3c 3.568 W 6c 3.852
W 3d 3.614 V 6c 3.847
W 8g 3.724 W2V2 W 8a 3.695
V 1a 3.788 V 8b 3.437

W7V W 2b 3.697 W2V3 W 6c 3.341
W 4e 3.705 V 3b 3.345
W 8g 3.764 V 6c 3.416
V 2a 4.005 W3V5 W 3a 3.345

W4V W 6c 3.704 W 6c 3.364
W 6c 3.755 V 3b 3.421
V 3b 3.988 V 6c 3.402

W3V W 4b 3.903 V 6c 3.412
W 8c 4.046 W3V12 W 3a 2.980
V 4a 4.122 V 6c 2.878

W2V W 4e 4.107 V 6c 2.909
V 2a 3.960
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FIG. 14. (Color online) Binding energy of a crowdion in-
teracting with substitutional Ta, V, and Re atoms in bcc-W
lattice.

V. ELASTIC CONSTANTS OF W-V AND W-TA ALLOYS

Elastic properties of W-Ta and W-V alloys were inves-
tigated using fully relaxed and optimized lowest energy
structures derived from DFT total-energy calculations. Using a
single distortion for each of the necessary strains, it is possible
to find all the elastic constants for a given atomic structure.
Several strains can be used to provide more data points for
the fitting procedure, thus leading to higher accuracy and
better numerical stability of the method. A large number of k

points was used in these calculations, with the spacing between
the k points approaching 0.01 Å−1. Table VI summarizes
values of elastic constants calculated for all the ground-state
structures predicted for W-Ta and W-V binaries, which mostly

form structures with lower symmetry than cubic. Only the
independent elastic constants for a given crystallographic
symmetry of the underlying crystal structure are shown in
the table. All the eigenvalues of the elastic constant matrices
are positive, confirming that the compounds are mechanically
stable at low temperature. Experimentally measured values of
elastic constants found assuming cubic symmetry of the lattice
are available for W-Ta alloys for various Ta compositions.75

Our DFT analysis shows that the only cubic lowest energy
W-Ta alloy structure is W15Ta, for which the calculated values
of elastic constants are C11 = 497 GPa, C12 = 197 GPa, and
C44 = 134 GPa. Comparing them with the corresponding
experimental values of C11 = 482 GPa, C12 = 196 GPa, and
C44 = 139 GPa determined at T = 4.2 K for a W-rich alloy
composition (x = 83%), we find good agreement between the-
ory and experiment. Comparison with elastic constants found
for pure bcc-W shows that all the elastic constants for W15Ta
are lower, in agreement with experimental observations.

More detailed analysis of elastic constants data shown in
Table VI will be given elsewhere. Here we focus on the
anisotropic elastic properties of several cubic structures, which
are the closest metastable matches to the configurations found
as ground states. For a single crystal, the Young modulus in
a particular crystallographic direction is defined as follows. If
tensile stress is applied in a particular direction, the ratio of
stress to strain in the same direction equals the Young modulus.
In a cubic crystal, the reciprocal of the Young modulus is given
by the following equation:32

E−1 = s11 − 2[s11 − s12 − (1/2)s44][(α11)2(α12)2

+ (α11)2(α13)2 + (α12)2(α13)2], (7)

where α11, α12, and α13 are the cosines of the angles between
a chosen direction ([100] in the present study) and the three

TABLE VI. Results of first-principles calculations of various independent elastic constants (in GPa) found for W-Ta and W-V ground-state
structures of the alloys.

System C11 C12 C13 C15 C23 C24 C25 C33 C44 C46 C55

W15Ta 497 197 134
W7Ta 497 183 1.3 185 −1.7 495 126 1.8 139
W4Ta 484 183 188 472 124 125
W2Ta 452 169 179 471 112 124
W5Ta3 424 189 178 417 96 97
W6Ta6 369 184 5.7 185 −6.9 370 66 −13.4 73
W5Ta7 352 179 4.5 −3.2 75 −9.1
W4Ta9 396 214 206 0.4 406 97 83
W4Ta12 352 150 159 341 88 80

W15V 495 195 132
W7V 467 234 189 512 160 123
W4V 451 191 13 201 441 130 137
W3V 464 184 101
W2V 454 166 174 455 95 99
W3V2 400 192 29 214 395 104 117
W2V2 359 184 49
W2V3 276 183 21 193 290 47 61
W3V5 281 173 19 181 303 54 69
W3V12 233 144 17 146 250 45 62
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FIG. 15. (Color online) Angular dependence of the relative Young
modulus of W-Ta and W-V alloys.

Cartesian axes. The compliances sij are expressed in terms of
the stiffness (or elastic) constants Cij . Equation (7) is used for
investigating the anisotropy behavior of the calculated Young
moduli for W-Ta and W-V alloys. For polycrystalline samples,
we use the Voigt-Reuss-Hill method to evaluate the effective
shear modulus G as

GHill = (1/2)(GVoigt + GReuss), (8)

where GVoigt = (1/5)(C11 − C12 + 3C44) and GReuss =
5/[4(s11 − s12) + 3s44]. The Poisson ratio ν is given by a
theory of elasticity formula relating it to the shear (G) and the
bulk (B) moduli via

ν = B − (2/3)G

2[B + (1/3)G]
. (9)

Figure 15 shows variation of the anisotropic Young mod-
ulus, evaluated using Eq. (7) for pure bcc W, Ta, and V, and
several alloys, using the values of elastic constants found in
DFT calculations. The results for pure metals are in agreement
with experimental observations. For pure tungsten the Young

modulus is almost isotropic, i.e., it is independent of the
crystallographic direction in which the material is deformed,
whereas in pure tantalum the modulus has a strong maximum
in the [111] direction. In pure vanadium the maximum is in
the [100] direction. The W-rich Ta and V alloys (containing
6.25%, 12.5%, and 25% of alloying elements) appear more
anisotropic than pure bcc-W. The Young modulus is maximum
in the [100] direction. These predictions can be verified using
the recently developed technique for measuring the anisotropy
of Young’s modulus by means of microcantilever testing.76

Table VII shows the DFT predicted change in the Poisson
ratio [Eq. (9)] for the three alloys (containing 6.25%, 12.5%,
and 25% of Ta or V) and compares the results with those found
for bcc-W. Our calculations show that alloying increases the
Poisson ratio in comparison with pure tungsten. In particular,
we find that the addition of 6.25% V (or Ta) increases the Pois-
son ratio by less than 2.5% whereas for 25% V or Ta alloys we
find a 9.7% or 7.11% increase of the Poisson ratio, respectively.
According to Cottrell’s criterion,77 the value of the Poisson
ratio is correlated with the ductility of crystalline alloys,
namely the higher the Poisson ratio, the more ductile is the
metal.

In Table VII we also show values of the Rice-Thompson
parameter (bμ/γ ),78 using which one could assess the ef-
fect of alloying on the ductility of the material. Here b
and μ denote the Burgers vector of a dislocation and the
shear modulus, respectively, in the preferred slip plane. γ

is the surface energy corresponding to the fracture plane.
In the present study we consider the (110) slip plane. Applying
the Rice-Thompson criterion, we take that materials where the
ratio (bμ/γ ) exceeds 10 tend to be brittle and those where the
ratio (bμ/γ ) � 10 tend to deform in a ductile manner. Our
DFT calculations show that for W alloys with 25% of V or Ta,
this ratio decreases by about 32% from the value characterizing
pure W, changing from (bμ/γ ) = 13.834 for pure W to 9.288
or 9.375 for the 25% V or Ta alloys, respectively. It is important
to stress here that better understanding of brittle fracture
requires applying a microscopic criterion where plastic work
is a nonlinear function of γ , the ideal work for fracture,
which in turn depends strongly on the cohesive energy of

TABLE VII. The calculated values of the Pugh-Cottrell (PC) and Rice-Thompson (RT) criteria for ductilizing W by Ta and V alloying.

W W15Ta W15V W7Ta W7V W3Ta W3V

Space group Im3̄m Pm3̄m Pm3̄m Pm3̄m Pm3̄m Fm3̄m Fm3̄m

C11 (GPa) 526 497 495 506 501 459 464
C12 (GPa) 194 197 195 190 186 185 184
C44 (GPa) 146 134 132 132 132 110 101
B (GPa) 314 297 295 295 291 276 277
GVoigt (GPa) 154 140 139 156 142 121 117
GReuss (GPa) 153 140 139 154 141 119 114
GHill (GPa) 154 140 139 155 142 120 115
ν 0.289 0.296 0.296 0.293 0.291 0.310 0.318
Change in ν (%) 0.0 2.28 2.31 1.17 0.35 7.11 9.70
μ (GPa) 166 150 150 158 158 137 140
b (Å) 2.771 2.770 2.753 2.773 2.743 2.788 2.720
γ (J/m2) 3.325 3.197 3.147 3.234 3.243 4.074 4.100
bμ/γ 13.834 12.997 13.122 13.548 13.364 9.375 9.288
Change in bμ/γ (%) 0.0 −6.05 −5.15 −2.07 −3.40 −32.23 −32.86
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the materials.49 Performing this analysis would require going
beyond the scope of the present DFT study.

VI. CONCLUSIONS

In this work, we investigated the phase stability of W-Ta
and W-V alloys by combining DFT, cluster expansion and
Monte Carlo simulations, and explored the relatively low-
temperature part of the phase diagram of these alloys. Both
alloys are characterized by negative enthalpies of mixing, and
a significant degree of chemical SRO. The results show that
both W-Ta and W-V alloys are characterized by significant
deviations from the random solution limit, at variance with
conventional understanding of experimental high-temperature
phase diagrams. We find differences between SRO parameters
characterizing W-Ta and W-V alloys, which stem mainly
from the fact that the 2NN effective CE interaction parameter
changes sign in W-Ta in comparison with W-V: it is negative
for W-Ta but positive in W-V. The origin of this difference is
related to the difference between 5d-3d and 5d-5d metallic
bonding in the two alloys. This interpretation is confirmed by
the effect of volume and atomic relaxation on the enthalpy of
mixing across the entire range of composition of the alloys.

Using DFT, we have also investigated the structure
and stability of point defects formed in the alloys under
irradiation. DFT calculations, carried out using the PBE
exchange-correlation functional, showed that divacancy
binding in tungsten is weak, but the stability of a vacancy
cluster increases as a function of the number of vacancies in
the cluster. By exploring various SIA configurations and their
interaction with alloying elements, we found that a stable
〈110〉 dumbbell SIA configuration may form in W-V alloys
near V-V atom pairs whereas the 〈111〉 SIA configuration
represents the most stable defect structure even in the presence
of V and Ta impurities, and even the pairs of Ta atoms. We have
also explored the vacancy formation energy in both alloys as a
function of Ta and V concentration. Our results show that the
atomic size mismatch has a profound effect on monovacancy
formation energies. For example, the removal of a Ta atom
from an W-Ta ordered intermetallic compound results in the
vacancy formation energy that is different by more than 2 eV
from the energy associated with forming a vacancy at a W
site. On the other hand, this difference is almost negligible
in the case of W-V alloys. We also find that the energy of
binding between a crowdion and a vanadium impurity atom
in W-V alloy is positive, and V atoms are expected to trap
SIA defects in dilute W-V alloys. Finally, we have created a
database of low-temperature elastic constants for both W-Ta
and W-V binary alloys, which shows a significant degree of
elastic anisotropy characterizing the alloys. Applying DFT to
the evaluation of the Rice-Thompson parameter, we find that
alloying tungsten with more than 25% of V or Ta would reduce
the ratio (bμ/γ ) by more than 30% in comparison with pure
W, possibly resulting in the improved ductility of the materials.
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APPENDIX A: EFFECTIVE CLUSTER INTERACTIONS
FOR W-Ta AND W-V ALLOYS

Tables VIII and IX contain complete sets of values of
effective cluster interaction coefficients for W-Ta and W-V
binary systems.

APPENDIX B: RELAXED LOW-ENERGY STRUCTURES OF
W-Ta AND W-V BINARY ALLOYS

W15Ta
Space group: Pm3m (no. 221).
Lattice constant:
a = 6.39130 Å
Wyckoff positions:
W1 1b( 1

2 , 1
2 , 1

2 )
W2 3c(0, 1

2 , 1
2 )

W3 3d( 1
2 ,0,0)

W4 8g(0.25104,0.25104,0.25104)
Ta1 1a(0,0,0)

W7Ta
Space group: Cmmm (no. 65).
Lattice constants:
a = 6.408 25 Å, b = 9.045 00 Å, c = 4.529 42 Å
Wyckoff positions:
W1 2d(0,0, 1

2 )
W2 4f ( 1

4 , 1
4 , 1

2 )
W3 4g(0.247 92,0,0)
W4 4i(0,0.250 36,0)
Ta1 2a(0,0,0)

W4Ta
Space group: I4/mmm (no. 139).
Lattice constants:
a = 3.151 57 Å, c = 15.723 95 Å
Wyckoff positions:
W1 4e(0,0,0.097 27)
W2 4e(0,0,0.301 58)
Ta1 2b(0,0, 1

2 )
W2Ta

Space group: I4/mmm (no. 139).
Lattice constants:
a = 3.221 05 Å, c = 9.702 84 Å
Wyckoff positions:
W1 4e(0,0,0.329 77)
Ta1 2a(0,0,0)

W5Ta3

Space group: P 4/mmm (no. 123).
Lattice constants:
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TABLE VIII. Many-body effective cluster interactions (in meV) derived for W-Ta binary alloys

No. of points mα Points in clusters Symmetry-weighted ECI

0 1 −150.435
1 2 (0.0,0.0,0.0) 84.152
2 8 (0.0,0.0,0.0;0.5,0.5,0.5) 108.568
2 6 (0.0,0.0,0.0;1.0,0.0,0.0) −10.704
2 12 (0.0,0.0,0.0;1.0,0.0,−1.0) 14.592
2 24 (0.0,0.0,0.0;0.0,1.5,0.0) −9.840
2 8 (0.5,0.5,0.5;1.5,1.5,−0.5) 13.568
2 6 (0.0,0.0,0.0;0.0,0.0,2.0) 9.348
2 24 (0.0,0.0,0.0;1.5,1.5,0.5) −0.168
2 24 (0.0,0.0,0.0;−2,1.0,0.0) 14.040
3 24 (0.5,0.5,0.5;1.0,0.0,0.0;1.5,0.5,0.5) 0.720
3 24 (0.5,0.5,0.5;1.0,0.0,0.0;1.5,0.5,−0.5) −13.584
3 24 (0.5,0.5,0.5;1.5,0.5,0.5;1.5,0.5,−0.5) −8.400
3 16 (0.5,0.5,0.5;0.5,1.5,−0.5;1.5,0.5,−0.5) 1.584
3 48 (0.5,0.5,0.5;0.0,0.0,0.0;0.0,−1.0,0.0) −35.856
3 96 (0.5,0.5,0.5;1.0,0.0,0.0;0.0,−1.0,0.0) −29.856
3 48 (0.5,0.5,0.5;.5,0.5,−0.5;0.0,−1.0,0.0) −8.352
3 48 (0.5,0.5,0.5;1.5,−0.5,0.5;0.0,−1.0,0.0) −4.560
3 24 (0.5,0.5,0.5;−0.5,0.5,−0.5;0.0,−1.0,0.0) 6.600
4 12 (0.5,0.5,0.5;1.0,1.0,0.0;1.0,0.0,0.0;1.5,0.5,0.5) 4.056
4 12 (0.5,0.5,0.5;1.0,1.0,0.0;1.0,0.0,0.0;1.5,0.5,−0.5) 2.532
4 48 (0.5,0.5,0.5;1.0,0.0,0.0;1.5,0.5,0.5;1.5,0.5,−0.5) 1.440
4 6 (0.5,0.5,0.5;0.5,0.5,−0.5;1.5,0.5,0.5;1.5,0.5,−0.5) 2.694
4 16 (0.5,0.5,0.5;1.0,1.0,0.0;0.5,1.5,−0.5;1.5,0.5,−0.5) −0.752
4 16 (0.5,0.5,0.5;0.5,0.5,−0.5;0.5,1.5,−0.5;1.5,0.5,−0.5) 1.152
4 4 (0.5,0.5,0.5;1.5,1.5,0.5;0.5,1.5,−0.5;1.5,0.5,−0.5) −2.744
5 24 (0.5,0.5,0.5;1.0,1.0,0.0;1.0,0.0,0.0;1.5,0.5,0.5;1.5,0.5,−0.5) 11.208
5 12 (0.5,0.5,0.5;1.0,0.0,0.0;0.5,0.5,−0.5;1.5,0.5,0.5;1.5,0.5,−0.5) 12.288
5 16 (0.5,0.5,0.5;1.0,1.0,0.0;0.5,0.5,−0.5;0.5,1.5,−0.5;1.5,0.5,−0.5) −14.592
5 4 (0.5,0.5,0.5;1.0,1.0,0.0;1.5,1.5,0.5;0.5,1.5,−0.5;1.5,0.5,−0.5) 2.856

a = 3.224 59 Å, c = 12.978 53 Å
Wyckoff positions:
W1 1a(0,0,0)
W2 2g(0,0,0.253 81)
W3 2h( 1

2 , 1
2 ,0.372 61)

Ta1 1b(0,0, 1
2 )

Ta2 2h( 1
2 , 1

2 ,0.124 95)
W6Ta6

Space group: Cmmm (no. 65).
Lattice constants:
a = 13.791 83 Å, b = 3.239 55 Å, c = 4.595 01 Å
Wyckoff positions:
W1 2d(0,0, 1

2 )
W2 4g(0.170 27,0,0)
Ta1 2b( 1

2 ,0,0)
Ta2 4h(0.336 74,0, 1

2 )
W5Ta7

Space group: P 3m1 (no. 164).
Lattice constants:
a = 4.595 33 Å, c = 11.359 21 Å
α = 90.00◦, β = 90.00◦, γ = 120.00◦
Wyckoff positions:
W1 1a(0,0,0)
W2 2d( 1

3 , 2
3 ,0.170 31)

W3 2d( 1
3 , 2

3 ,0.412 93)
Ta1 1b(0,0, 1

2 )
Ta2 2c(0,0,0.243 21)
Ta3 2d( 1

3 , 2
3 ,0.661 07)

Ta4 2d( 1
3 , 2

3 ,0.919 09)
W4Ta9

Space group: I4/m (no. 87).
Lattice constants:
a = 11.828 13 Å, c = 3.279 55 Å
Wyckoff positions:
W1 8h(0.538 18,0.307 41,0)
Ta1 2a(0,0,0)
Ta2 8h(0.151 19,0.224 91,0)
Ta3 8h(0.378 75,0.074 30,0)

W4Ta12

Space group: P 42/mnm (no. 136).
Lattice constants:
a = 9.297 69 Å, c = 3.293 02 Å
Wyckoff positions:
W1 4f (0.125 58,0.125 58,0)
Ta1 4f (0.380 08,0.380 08,0)
Ta2 8i(0.132 99,0.622 24,0)

W15V
Space group: Pm3m (no. 221).
Lattice constant:
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TABLE IX. Many-body effective cluster interactions (in meV) derived for W-V binary alloys

No. of points mα Points in clusters Symmetry-weighted ECI

0 1 −126.704
1 2 (0.0,0.0,0.0) 78.528
2 8 (0.0,0.0,0.0;0.5,0.5,0.5) 91.208
2 6 (0.0,0.0,0.0;1.0,0.0,0.0) 34.992
2 12 (0.0,0.0,0.0;1.0,0.0,−1.0) 8.844
2 24 (0.0,0.0,0.0;0.0,1.5,0.0) −19.968
2 8 (0.5,0.5,0.5;1.5,1.5,−0.5) 5.896
2 6 (0.0,0.0,0.0;0.0,0.0,2.0) 4.218
2 24 (0.0,0.0,0.0;1.5,1.5,0.5) −1.008
2 24 (0.0,0.0,0.0;−2,1.0,0.0) −4.224
3 24 (0.5,0.5,0.5;0.0,0.0,0.0;0.5,0.5,−0.5) −20.112
3 24 (0.5,0.5,0.5;0.0,0.0,0.0;0.5,−0.5,−0.5) −19.656
3 24 (0.5,0.5,0.5;0.5,0.5,−0.5;0.5,−0.5,−0.5) −12.264
3 16 (0.5,0.5,0.5;−0.5,0.5,−0.5;0.5,−0.5,−0.5) 7.472
3 48 (1.0,1.0,1.0;1.5,1.5,1.5;1.5,1.5,2.5) −18.480
3 96 (1.0,1.0,1.0;1.5,0.5,1.5;1.5,1.5,2.5) −22.848
3 48 (1.0,1.0,1.0;2.0,1.0,1.0;1.5,1.5,2.5) 8.352
3 24 (1.0,1.0,1.0;2.0,2.0,1.0;1.5,1.5,2.5) 0.864
3 48 (1.0,1.0,1.0;1.0,−0.0,2.0;1.5,1.5,2.5) 5.808
4 12 (0.5,0.5,0.5;1.0,0.0,0.0;0.0,0.0,0.0;0.5,0.5,−0.5) 2.772
4 12 (0.5,0.5,0.5;1.0,0.0,0.0;0.0,0.0,0.0;0.5,−0.5,−0.5) 5.532
4 48 (0.5,0.5,0.5;0.0,0.0,0.0;0.5,0.5,−0.5;0.5,−0.5,−0.5) 7.824
4 6 (0.5,0.5,0.5;0.5,−0.5,0.5;0.5,0.5,−0.5;0.5,−0.5,−0.5) 2.640
4 16 (0.5,0.5,0.5;0.0,0.0,0.0;−0.5,0.5,−0.5;0.5,−0.5,−0.5) −3.952
4 16 (0.5,0.5,0.5;0.5,0.5,−0.5;−0.5,0.5,−0.5;0.5,−0.5,−0.5) −1.184
4 4 (0.5,0.5,0.5;−0.5,−0.5,0.5;−0.5,0.5,−0.5;0.5,−0.5,−0.5) −4.384
5 24 (0.5,0.5,0.5;1.0,0.0,0.0;0.0,0.0,0.0;0.5,0.5,−0.5;0.5,−0.5,−0.5) 8.208
5 12 (0.5,0.5,0.5;0.0,0.0,0.0;0.5,−0.5,0.5;0.5,0.5,−0.5;0.5,−0.5,−0.5) 6.636
5 16 (0.5,0.5,0.5;0.0,0.0,0.0;0.5,0.5,−0.5;−0.5,0.5,−0.5;0.5,−0.5,−0.5) −4.656
5 4 (0.5,0.5,0.5;0.0,0.0,0.0;−0.5,−0.5,0.5;−0.5,0.5,−0.5;0.5,−0.5,−0.5) −0.020

a = 6.355 74 Å
Wyckoff positions:
W1 1b( 1

2 , 1
2 , 1

2 )
W2 3c(0, 1

2 , 1
2 )

W3 3d( 1
2 ,0,0)

W4 8g(0.248 47,0.248 47,0.248 47)
V1 1a(0,0,0)

W7V
Space group: I4/mmm (no. 139).
Lattice constants:
a = 4.474 63 Å, c = 12.679 78 Å
Wyckoff positions:
W1 2b(0,0, 1

2 )
W2 4e(0,0,0.249 12)
W3 8g(0, 1

2 ,0.376 48)
V1 2a(0,0,0)

W4V
Space group: R3m (no. 166).
Lattice constants:
a = 4.460 05 Å, c = 13.653 03 Å
α = 90.00◦, β = 90.00◦, γ = 120.00◦
Wyckoff positions:
W1 6c(0,0,0.100 95)
W2 6c(0,0,0.299 74)
V1 3b(0,0, 1

2 )

W3V
Space group: Fm3m (no. 225).
Lattice constants:
a = 6.283 27 Å
Wyckoff positions:
W1 4b( 1

2 , 1
2 , 1

2 )

W1 8c( 1
4 , 1

4 , 1
4 )

V1 4a(0,0,0)
W2V

Space group: I4/mmm (no. 139).
Lattice constants:
a = 3.124 78 Å, c = 9.346 78 Å
Wyckoff positions:
W1 4e(0,0,0.335 42)
V1 2a(0,0,0)

W3V2

Space group: R3m (no. 166).
Lattice constants:
a = 4.393 48 Å, c = 13.504 91 Å
α = 90.00◦, β = 90.00◦, γ = 120.00◦
Wyckoff positions:
W1 3a(0,0,0)
W2 6c(0,0,0.200 68)
V1 6c(0,0,0.398 89)
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W2V2

Space group: Fd3m (no. 227).
Lattice constants:
a = 6.194 40 Å
Wyckoff positions:
W1 8a( 1

8 , 1
8 , 1

8 )
V1 8b( 3

8 , 3
8 , 3

8 )
W2V3

Space group: R3m (no. 166).
Lattice constants:
a = 4.331 70 Å, c = 13.400 91 Å
α = 90.00◦, β = 90.00◦, γ = 120.00◦
Wyckoff positions:
W1 6c(0,0,0.200 68)
V1 3b(0,0, 1

2 )
V2 6c(0,0,0.398 89)

W3V5

Space group: R3m (no. 166).

Lattice constants:
a = 4.307 12 Å, c = 21.602 09 Å
α = 90.00◦, β = 90.00◦, γ = 120.00◦
Wyckoff positions:
W1 3a(0,0,0)
W2 6c(0,0,0.12450)
V1 3b(0,0, 1

2 )
V2 6c(0,0,0.249 57)
V3 6c(0,0,0.374 13)

W3V12

Space group: R3m (no. 166).
Lattice constants:
a = 4.292 64 Å, c = 13.173 94 Å
α = 90.00◦, β = 90.00◦, γ = 120.00◦
Wyckoff positions:
W1 3a(0,0,0)
V1 6c(0,0,0.198 43)
V2 6c(0,0,0.400 95)
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I. Uytdenhouwen, J. G. van der Laan, L. Veleva, L. Ventelon,
S. Wahlberg, F. Willaime, S. Wurster, and M. A. Yar, J. Nucl.
Mater., doi: 10.1016/j.jnucmat.2011.01.075.
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