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Influence of interface sink strength on the reduction of radiation-induced defect concentrations and
fluxes in materials with large interface area per unit volume
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We use a reaction–diffusion model to demonstrate that buried interfaces in polycrystalline composites
simultaneously reduce both the concentrations and the fluxes of radiation-induced defects. The steady-state
radiation-induced defect concentrations, however, are highly sensitive to the interface sink strength η. Materials
containing a large volume fraction of interfaces may therefore be resistant to multiple forms of radiation-induced
degradation, such as swelling and hardening, as well as to embrittlement by solute segregation, provided that the
interfaces have suitable η values.
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I. INTRODUCTION

Radiation-resistant materials have long been recognized
as critical to making nuclear energy generation maximally
safe, clean, and economical.1 ‘Radiation damage of materials’
however, does not refer to a single problem. Rather, it is
an umbrella term for a host of degradation modes, such
as swelling,2 hardening,3,4 and embrittlement.5 In addition,
mitigating one mode may exacerbate another.

For instance, buried interfaces (i.e., interfaces between
adjacent components in a composite) are sinks for radiation-
induced point defects6–9 and may reduce swelling and harden-
ing. In alloys, however, they are the cause of radiation-induced
segregation (RIS) of solutes,10,11 which in turn enhances cor-
rosion and embrittlement. Therefore, there may be a tradeoff
between decreasing radiation-induced defect concentrations
by increasing their flux to interfaces and decreasing defect
fluxes to inhibit RIS.

In this paper, we use a reaction–diffusion model to show
that maximizing the area per unit volume of buried interfaces
simultaneously reduces both concentrations and fluxes of
radiation-induced defects. However, the radiation response of
materials where the greatest reductions in both are achievable
shows extreme sensitivity to the sink strength η of the
interfaces. Design of materials for radiation resistance thus
requires both a high interface area per unit volume and the
control of η.

We base our model on composites of alternating layers
of different phases, each of thickness l. Examples include
multilayers synthesized using sputter deposition12 and accu-
mulated roll bonding13 or lath martensite morphologies in fer-
ritic/martensitic steels.14 The interfaces between neighboring
layers are sinks of varying efficiency for point defects.9,15

Their area per unit volume equals 1/l and so may be
controlled by choosing l. Some of these materials have proved
remarkably stable under irradiation, exhibiting no intermixing
or breakdown in layered morphology after sustaining several
displacements per atom (dpa) of damage,9,16 even at elevated
temperatures17 or when the successive layers are as thin as
2 nm.18

Furthermore, multilayer composites are ideal model sys-
tems for studying the effect of interfaces on radiation response.

Their periodic morphology may be analyzed in one spatial
dimension using a reaction–diffusion model of a single
crystalline layer bounded by two interfaces, as shown in Fig. 1.
We expect, however, that the qualitative conclusions of our
study will hold for materials with more complex morphologies.

II. REACTION–DIFFUSION MODEL

Composite materials may exhibit a variety of responses
to radiation, such as phase transformations, microstructure
changes, or enhanced susceptibility to aggressive chemical
environments.4 Nevertheless, to isolate the effect of interfaces
and their sink strength η on radiation-induced defect concen-
trations and fluxes, it is convenient to study a simplified model.

We consider only two species of radiation-induced de-
fects: isolated vacancies and self-interstitials. This assumption
corresponds well to light ion irradiation, which has been
used in many experimental studies on multilayers.9 Our
model accounts for the creation of vacancy–interstitial pairs
at a constant and uniform rate, their diffusion, and mutual
annihilation.

We begin with a model in which there are no defect sinks
besides interfaces. This assumption is experimentally justified
in several multilayer composites. For example, transmission
electron microscopy and x-ray diffraction investigations have
not found appreciable quantities of dislocations or precipitates
in as-synthesized and even severely plastically deformed
Cu-Nb composites with sufficiently thin layers.19,20 Absence
of dislocation substructures is attributed to efficient dislocation
trapping at interfaces,21 whereas lack of precipitates is due
to the well-controlled synthesis procedure, which does not
introduce impurities, as well as absence of intermixing.12,13

We show in Sec. III that our conclusions are not sensitive to
this assumption by introducing hypothetical sinks with a bias
for absorbing interstitials into our model.

Clustering of vacancies and interstitials has also been
neglected. This assumption holds for sufficiently high tem-
peratures, low collision energies, low irradiation rates, or low
defect concentrations.4 Should defect clusters form, however,
they would also act as sinks for point defects and could diffuse
independently.
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FIG. 1. (Color online) (a) The multilayer morphology motivates
(b) the one-dimensional reaction–diffusion model of a crystalline
layer bounded by two interfaces. cv and ci in this plot were obtained
at T = 300K and K0 = 1025m3s using the parameters in Table I for
l = 25 and 5 nm. The solution for 1 = 5 nm is shown in the bottom
left corner in (b). Note the reduction of average defect concentrations
and concentration gradients near interfaces for l = 5 nm compared to
l = 25 nm.

Under these assumptions, the concentrations cv and ci of
vacancies and interstitials, respectively, are described by the
coupled reaction–diffusion equations

∂cv

∂t
= Dv

∂2cv

∂x2
+ K0 − Kivcvci

(1)
∂ci

∂t
= Di

∂2ci

∂x2
+ K0 − Kivcvci,

where K0 is the vacancy–interstitial pair creation rate, Kiv is
their recombination rate coefficient, and Dv and Di are vacancy
and interstitial diffusivities, respectively.

We investigate defect concentrations once a time-invariant
steady state has been reached. The only time scales in our
model are (1) the time for defect recombination and creation
rates to balance in the absence of diffusion and (2) the diffusion
times over distance l. The former is proportional to (KivK0)−1/2

and is on the order of microseconds for room temperature He
implantation in metals.4,9,22 The latter is proportional l2/D

and equals ∼12.5 ns for interstitials and ∼20 s for vacancies at
room temperature in a 10-nm-thick Cu layer. The steady-state
assumption is therefore justified in implantation studies of
metal multilayers, which typically last several hours. It might
not hold at cryogenic temperatures or in ceramics, where defect
diffusivities are much lower than in metals.

Setting the time derivatives in Eq. (1) to zero, introducing
the changes in variables

x = l

2
y

cv =
√

K0Di

KivDv

(m + n) (2)

ci =
√

K0Dv

KivDi

(n − m)

(m and n are scaled concentration variables expressible in
terms of cv and ci using the definitions in Eq. (2)), and

assuming concentration-independent diffusivities, the govern-
ing equations become

∂2m

∂y2
= 0 (3a)

and

(1 + m2) − n2 + s
∂2n

∂y2
= 0 (3b)

where s =
√

16DvDi

l4K0Kiv
. Integrating Eq. (3a) and using Eq. (2)

gives

∂m

∂y
= const. ⇒ Dv

∂cv

∂x
− Di

∂ci

∂x
= const., (4)

i.e., the difference between vacancy and interstitial fluxes is
constant throughout the layer.

Because our model geometry is symmetrical about the
layer midpoint, we apply a no-flux boundary condition at
x = l/2: ∂cv

∂x
|l/2 = ∂ci

∂x
|l/2 = 0. Together with Eq. (4), this

says that steady-state vacancy and interstitial fluxes are equal
throughout the layer. In particular, point defects arrive at
interfaces at equal rates, allowing their continuous trapping
and recombination without a buildup of either.

Integrating ∂m
∂y

= 0 and using Eq. (2), we obtain m =√
Kiv

4K0DvDi
(Dvcv − Dici) = const. Thus, in the absence of

distributed sinks, steady-state vacancy and interstitial con-
centrations are related through the constant m, regardless of
location within the sample or boundary conditions applied at
the interfaces. To assign a specific value to m, we assume that
cv and ci have equilibrated with distant free surfaces, where
they take on thermal equilibrium values, cv = ce

v,ci = ce
i .

Elsewhere, cv and ci may have other values even though these
are related through the constant value of m, as set at the free
surfaces. The free surfaces are not explicitly modeled but must
be present in any real material. A different value of m would
simply alter the first term on the left-hand side of Eq. (3b).

If the interfaces are perfect sinks, we have at x = 0 (directly
adjacent to an interface)

cv|0 = ce
v, ci |0 = ce

i . (5)

For an imperfect sink interface, we define the sink strength η

as the ratio of defect flux into that interface (Jimperfect) to the
defect flux into a perfect sink interface (Jperfect)23:

η = Jimperfect

Jperfect
. (6)

Because the fluxes of vacancies and interstitials throughout
the layer are equal, different values of η are not needed for
these two defect types. To study the influence of η, we first
solve our model for a perfect sink interface using the boundary
conditions in Eq. (5), find the defect flux Jperfect, and then
solve again under the new boundary conditions: −Dv

∂cv

∂x
|0 =

−Di
∂ci

∂x
|0 = ηJperfect.

With m = const., Eq. (3b) may be multiplied by ∂n
∂y

and
integrated with respect to y, yielding

(1 + m2)n − 1

3
n3 + 1

2
s

(
∂n

∂y

)2

= C, (7)
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TABLE I. Parameters for Cu used in the numerical solution of the
reaction–diffusion model. The diffusivity of defect a is computed as
Da = a2

Cuνae
−�Em

a /kBT .

Quantity Value

Cubic lattice parameter, aCu 3.615 Å
Vacancy formation energy, �Ef

v 1.26 eV
Interstitial formation energy, �E

f

i 3.24 eV
Vacancy migration energy, �Em

v 0.69 eV
Interstitial migration energy, �Em

i 0.084 eV
Vacancy migration attempt frequency, νv 3.36 × 1013/s
Interstitial migration attempt frequency, νi 6.67 × 1012/s

where C is a constant of integration that depends on l and
boundary conditions. The solution to this equation is the
Weierstrass P-function.24 We are not aware of any convenient
analytical method of computing the value of C for a given l and
boundary conditions, so instead we investigate the solutions to
Eq. (3b) numerically using material parameters appropriate to
Cu. These were obtained from the Voter Cu embedded atom
method (EAM) potential25 and are given in Table I.

The defect recombination rate coefficient was computed
as Kiv = NraCu(Dv + Di), where Nr is the number of sites
surrounding a vacancy where introduction of an interstitial
leads to spontaneous recombination (following Ref. 4, we take
Nr = 12) and aCu is the cubic lattice parameter of Cu. Using
the Stopping and Range of Ions in Matter (SRIM) program,26

we find that K0 ≈ 1025/m3s for typical He ion implantation
experiments9 and K0 ≈ 1020/m3s is more appropriate for
nuclear reactor conditions.1 The boundary value problem that
describes our model was solved using the collocation method
implemented in MATLAB.

III. RADIATION-INDUCED DEFECT
CONCENTRATIONS AND FLUXES

Figure 1(b) shows a typical solution for cv and ci with
temperature T = 300K for l = 25 and 5 nm. cv and ci

have the same shape but differ by a large multiplicative
factor arising from the much higher diffusivity of interstitials
compared to vacancies. For l = 25 nm, within ∼5 nm of
each interface, vacancy and interstitial concentrations are
reduced compared to the layer midpoint x = l/2. For l = 5
nm, these zones overlap, decreasing both the average defect
concentrations in the layer and the concentration gradients near
the interface. For sufficiently large l, the effect of these zones is
negligible.

We investigated defect concentrations and fluxes for l in
the range 1–100 nm and temperatures T of 300–700 K. In this
parameter range, interfaces have a significant effect on aver-
age defect concentrations. We define a defect concentration
measure Pa = c̄a/c

∞
a (a = v, i), where c̄a = 2

l

∫ l/2
0 ca(x)dx is

the average concentration in a crystalline layer of thickness l
and c∞

a is the average concentration in an infinitely thick layer.
Similarly, for fluxes we define Q = Jx=0/J

∞
x=0, where Jx=0 is

the flux of defects into an interface for a layer of given l and
J∞

x=0 is the flux in an infinitely thick layer.
Figures 2(a)–2(c) and 2(e)–2(g) show contour plots

of log10(Pv), log10(Pi), and log10(Q) as functions of l
and T for two different K0 values. For K0 = 1020/m3s,
350 K < T < 500 K, and l < 10 nm, the average radiation-
induced interstitial concentration is reduced by as much as
seven orders of magnitude and the defect flux to the interface
is simultaneously reduced by three orders of magnitude. In
this range of T and l, the vacancy concentration is also reduced
by as many as six orders of magnitude. For sufficiently high
T, however, Pv approaches unity and becomes l-independent

FIG. 2. The dependence on l and T of (a) and (e) log10(Pv), (b) and (f) log10(Pi), (c) and (g) log10(Q), and (d) and (h) log10(1 − ηt ).
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FIG. 3. For given irradiation conditions, there is a transitional
sink strength ηt above which Pv is insensitive to η and below which
Pv varies as

√
1 − η. All plots in this figure are for T = 450K.

as the thermal equilibrium vacancy concentration reaches
and eventually exceeds the radiation-induced one. Similar
trends may be seen for K0 = 1025/m3s. Evidently, increasing
interface area per unit volume simultaneously minimizes both
defect concentrations and fluxes in a technologically important
range of temperatures1 for both ion implantation and nuclear
reactor conditions.

Figure 3 shows the dependence of Pv on (1 − η) for several
example sets of irradiation conditions (all at T = 450 K but
differing in l and K0 as stated in the figure legend). In each
case, there is a transitional sink strength value ηt above which
Pv is η-independent and below which Pv varies as

√
1 − η.

The dependence of Q on η follows directly from Eq. (6).
Defining ηt as the value of η at which Pv exceeds the

perfect sink case by 20%, we computed ηt for a variety of
irradiation conditions and plot log10(1 − ηt ) in Fig. 2(d) and
2(h). The lowest values of (1 − ηt ) occur in the range of T
and l, where the greatest reductions in vacancy concentration
and flux are achievable. Because Pv ∼ √

1 − η when η <

ηt , for ηt close to unity, even modest decreases in η may
cause Pv to increase by orders of magnitude, dramatically
reducing the effectiveness of interfaces in removing radiation-
induced point defects. Thus, synthesis of materials that
simultaneously minimize both the concentration and the flux
of radiation-induced defects requires not only a large interface
area per unit volume but also the control of interface sink
strength η.

We repeated our calculations for systems containing biased
sinks in concentrations equivalent to dislocation densities
of 1012–1014/m2 and found that the qualitative behavior is
unaffected: under all conditions, there exists a transition
sink strength ηt , and the value of (1 − ηt ) is lowest for T
and l, where defect concentrations and fluxes may be most
markedly reduced by increasing interface area. Below ηt ,
Pv varies as

√
1 − η for low sink concentrations. For high

sink concentrations, it varies as (1 − η) for η just below
ηt but resumes the

√
1 − η trend with decreasing η. When

biased sinks are included in the reaction–diffusion model, the
difference between vacancy and interstitial fluxes is no longer
constant and vacancy and interstitial concentrations are not
related through the constant m. Our conclusions therefore
do not depend on such special features characteristic of
Eq. (1).

IV. DISCUSSION AND CONCLUSIONS

Early analytical studies of the effect of buried interfaces on
radiation-induced defect concentrations only considered one
defect type—usually vacancies—and modeled recombination
using an effective sink term with the coefficient Ksv .27 This
approach is simpler than ours; instead of the nonlinear, coupled
system in Eq. (1), it gives rise to just one linear differential
equation:

∂cv

∂t
= Dv

∂2cv

∂x2
+ K0 − Ksvcv. (8)

Solving this equation under steady-state conditions for inter-
faces with sink strength η, the following analytical expression
for the vacancy concentration measure Pv is obtained:

Pv = 1 − η

(
1 − Ksvc

e
v

K0

)
r. (9)

Here, r = ( 2
l

√
D

Ksv
)tanh( l

2

√
Ksv

D
) is a factor that does not

depend on η. Thus, when recombination is neglected, Pv varies
linearly with η and the model predicts neither the transitional
sink strength ηt nor the square root dependence of Pv on
(1 − η). Both of these features arise from the explicit inclusion
of bulk recombination in our model. Several other authors
have studied the reaction–diffusion model in Eq. (1),22,28 and
some have even assessed rigorously the impact of treating
recombination as an effective sink.27,29 Nevertheless, the effect
of interface sink strength η was not investigated in these
previous studies, so the sensitivity of radiation-induced defect
concentrations to η was not noticed.

The difference between the single- and the two-defect cases
just described suggests that studies of interface sink strength
carried out using quenched-in vacancy concentrations may
not provide interface behavior representative of irradiation.30

However, both the single- and the two-defect approaches show
that the flux and the concentration of defects become smaller
with decreasing l.

We have shown that interfaces, if present in high enough
densities, may simultaneously reduce average radiation-
induced defect concentrations and defect fluxes to the inter-
faces. This implies that interfaces may be used to control
multiple radiation-induced failure modes, including void
swelling, hardening, and RIS, and thus offer one route to
designing materials that withstand several forms of radiation
damage.

However, radiation-induced defect concentrations increase
rapidly as η drops below ηt . Thus, a material with a high density
of interfaces whose sink strength is below the transitional value
ηt may be far less radiation resistant than would be expected
if all interfaces were perfect sinks. Design of radiation-
resistant composites therefore requires not only maximizing
the interface area per unit volume but also controlling η.
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The sink strength η of an interface depends on its structure
and the detailed mechanisms by which it interacts with point
defects. For example, Balluffi and Granato derived an expres-
sion for η of tilt grain boundaries under diffusion-controlled
conditions, assuming that point defects are trapped at jogs on
edge misfit dislocations in these boundaries. They obtained
η = 1/(1 + ln(cds)ds/dd), where ds is the average distance
between point defect trapping sites within the boundary, dd

is the characteristic defect diffusion distance to the boundary,
and c is a constant.31 Therefore, η is close to unity for small
ds (which may be characteristic of many grain boundaries32)
and decreases rapidly with increasing ds .

Relations between the detailed structure of general, het-
erophase interfaces and their sink strengths under irradiation

are currently not available. Should they be developed, it
may become possible to control η by tailoring the het-
erophase interface character distribution in composite mate-
rials, in analogy to grain boundary engineering in homophase
polycrystals.33,34
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