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Hybrid deterministic and stochastic approach for efficient atomistic simulations at long time scales

Pratyush Tiwary"
Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, USA

Axel van de Walle
School of Engineering, Brown University, Providence, Rhode Island 02912, USA
(Received 30 August 2011; published 23 September 2011)

We propose a hybrid deterministic and stochastic approach to achieve extended time scales in atomistic
simulations that combines the strengths of molecular dynamics (MD) and Monte Carlo (MC) simulations in
an easy-to-implement way. The method exploits the rare event nature of the dynamics similar to most current
accelerated MD approaches but goes beyond them by providing, without any further computational overhead,
(a) rapid thermalization between infrequent events, thereby minimizing spurious correlations, and (b) control
over accuracy of time-scale correction, while still providing similar or higher boosts in computational efficiency.
We present two applications of the method: (a) Vacancy-mediated diffusion in Fe yields correct diffusivities over
a wide range of temperatures and (b) source-controlled plasticity and deformation behavior in Au nanopillars at
realistic strain rates (10*/s and lower), with excellent agreement with previous theoretical predictions and in situ
high-resolution transmission electron microscopy observations. The method gives several orders-of-magnitude
improvements in computational efficiency relative to standard MD and good scalability with the size of the

system.
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With vast improvements in the quality of available in-
teratomic force fields and computer power, the classical
molecular dynamics (MD) simulation has seen a dramatic
increase in its use across a variety of fields over the past few
decades.'™ One of the features that makes MD so appealing
is its ability to actually follow the dynamical evolution of the
system, thus giving insight into the microscopic behavior of
the material. However, this is where the major limitation of
MD comes into light, too: Most of the interesting dynamics
occurs as the system moves from one energy basin to another
through infrequent rare events, while the system remains stuck
in some energy basin for extended periods of time. This non-
ergodicity, coupled with the small time steps (on the order of
femtoseconds) needed for the total energy staying conserved,
severely restricts the time scales accessible in MD simulations
and also leads to limited phase-space exploration. There have
been many attempts at addressing this time-scale problem
in MD—examples include metadynamics,’ the activation
relaxation technique,® parallel replica dynamics, temperature-
accelerated dynamics, and hyperdynamics.”-® There are several
excellent reviews such as Ref. 7 available on the subject.
The hyperdynamics method® offers an elegant and practical
way to increase the rate of infrequent events. It consists of
adding a potential energy bias that makes the potential wells,
in which the system normally remains trapped for extended
periods, less deep. A time-scale correction is also evaluated
in terms of the bias potential. The hyperdynamics method,
especially with the advent of a variety of easy-to-implement
biasing forms, has seen several compelling applications over
the past years.””'> Our approach in this Rapid Communication
builds upon the crucial insights of Voter and co-workers while
seeking improvements along two important dimensions. First,
it bypasses a fundamental trade-off present in hyperdynamics:
A shallower potential well provides faster dynamics but, at
the same time, reduces the ability of the modified potential
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to properly thermalize the system in between the infrequent
events, resulting in artificial correlation between these events.
Second, our method provides better independent control over
the accuracy of time-scale correction, while hyperdynamics
time-scale estimates can remain noisy up to long simulation
times, especially for large system sizes (see Ref. 14 for a
discussion).

Let the state of the system be characterized by position
x and velocity v, each being a 3N-dimensional vector for
a system of N atoms. When the potential energy V(x) of
the system is above a threshold V), the system evolves via
constant-energy (or constant-temperature) MD according to
its true Hamiltonian (Fig. 1). This high-energy region of the
phase space contains the interesting but infrequently occurring
events. The method is formally correct for any choice of Vp;
a higher choice of Vj merely limits our ability to monitor the
detailed dynamics of some events. When the system’s potential
energy falls below Vj, two MC simulations are initiated
(denoted a and b). Simulation a runs MC with a perfectly
uniform potential inside the potential well W, consisting of the
points x where the true potential energy V(x) lies below Vj
(i.e., all moves are accepted as long as they do not go outside the
well). Simulation « is run until the system is well thermalized
and has lost memory of how it entered the well (this takes a
few MC passes, an insignificant amount of wall-clock time).
MD then resumes with positions drawn from the last MC state
that visited the boundary of the potential well. The vector
v of the velocities of all atoms for restarting MD is drawn
from a Maxwell-Boltzmann distribution corresponding to the
temperature 7' of interest, conditional on v - VV(x) > 0 (i.e.,
we only consider velocities in the half space pointing outward
of the well). MC simulation « is first of the crucial differences
between our approach and hyperdynamics: It ensures proper
thermalization of the system between rare events even when
using a completely flat potential in the well. Even though it is
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FIG. 1. (Color online) Schematic and flowchart of the algorithm.
Shell S,, of constant potential energy and energy well W as described
in the text are shown here. See Eq. (6) for a definition of fyy.

done with a uniform potential, it does not lead to the molecular
structure being completely lost since we rule out all moves that
lead to energy higher than V.

In parallel to simulation a, another MC simulation b is
launched to estimate the mean time the system should have
spent in the well W. Akin to simulation a, b also rejects all
moves that land outside the well W. The mean time spent in
W is given by the reciprocal of the flux exiting'® the well W:

— —1
fw = lim (<31(x € sw)>> , (1
w—0 w

where the average (- - - ) is taken over x drawn from the well W
with a probability density proportional to e~"®/%s7)  where
kp is Boltzmann’s constant and the following definitions hold:
1(A) equals 1 if the event A is true and 0 otherwise, S,, is a
shell of width w at the boundary of the well W, which can be
defined in the limit of small w as

Sw={x:|V(x) — Vol S w|VV(x)]/2}, @)

and v denotes the mean projection of a Maxwell-Boltzmann-
distributed velocity along the unit vector u parallel to VV (x),
conditional on v - u > 0. The latter is given by

3

where m; is the mass of atom i and |¢;| denotes length of
the three-dimensional subvector of u# associated with atom
i. Note that Eq. (3) reduces to the familiar expression'
v = +/kgT /2w m when all atoms have the same mass, in which
case v factors out of the average in (1). Since Eq. (1) involves an
average, it can be approximated by MC simulations. However,
the most straightforward implementation of this approach
would be very inefficient because x would rarely visit the
boundary S,, of the well. The efficiency can be considerably
improved by using a biased potential V*(x) which is the same
as the real potential in the high-energy regions [i.e., regions
outside well W with V(x) > V], but lifted up in the deep
energy basins. With this Eq. (1) becomes

<e*ﬂ(V(x)7V*(X))>*

“

tw = lim — ,

Wm0 (Ze- VOV 1(x € 8y
where the averages (- - - )* are taken over x drawn from the well
W with a probability density proportional to e~""®/*sT) and
B =1/kgT. MC simulation b is the second main difference
with hyperdynamics: It provides separate control over the

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 84, 100301(R) (2011)

accuracy of the speed-up factor since the length of the MC
simulation b can be adjusted independently of the length of
the whole simulation.

The form of biasing we use is a well-established and
easy-to-implement biasing potential used in several imple-
mentations of Voter’s hyperdynamics method, proposed by
Hamelberg et al.:’

0, Vix) = W,

Vo=V ) ®)
a+Vp—V(x)’ V()C) < VO'

V) = V(x) +

The times tw obtained via MC simulations b can be directly
added to the physical time spent doing MD simulations to
yield the overall physical time of the simulation. However,
refinements of the method can yield further improvement in
efficiency. Instead of computing #w for each well W, one may
keep a running average

1
fw=— ¢ (©)
W ”wa:W

of the time spend in the n;, wells sampled via MC simulation
b (n,, the number of wells actually visited, may well far
exceed n;). Once this average is converged, there is no need
to initiate MC simulation b anymore. The overall time spent
in all the wells will simply be fw * n,/n,. Note that there is
no need to keep separate averages for different types of wells,
which would have been difficult to implement. Although MC
simulations « still need to be performed for all wells, these
converge much more rapidly. Other efficiency improvements
can be obtained by not performing fully converged MC
simulations b and exploiting the fact that errors will average
out over wells in Eq. (6). Note that this scheme must be used
while ensuring that the biasing potential is sufficiently strong
so that most of the random errors in Eq. (4) are concentrated in
the numerator, to avoid a systematic bias due to nonlinearity
of the ratio. We would like to point out that only the parameter
w is additional to those in any typical hypderdynamics scheme
(Hamelberg et al.’s” in this case), the choice of which does not
effect the result since we extrapolate ty to the limit of small
w.'> Our approach compares favorably with hyperdynamics®
where one does not have control over the accuracy of the
accelerated time (hyperdynamics relies on this error canceling
out over time but does not provide an estimate of how much
it is®1%), and one is obliged to keep performing dynamics
with the biased potential at all stages of the calculation.
Thus our method offers boosts as high as those that one
could get from setting @ = 0 in Eq. (5) (akin to the flooding
scheme!®!7), but still avoiding the slow convergence in time
and problems with discontinuous forces that one encounters
in implementing flooding based hyperdynamics. In addition,
we avoid errors from sampling the system in the state when
it is not thermalized between two rare events—once MD is
relaunched in our scheme, the system is well thermalized by
virtue of simulation a. To minimize the wall-clock time needed
for calculation of time in Eq. (4) via simulation b, we use an
optimal extent of biasing as suggested in Ref. 9. This involves
setting @ >~ Vy — Vinin, Which allows the biased potential to
capture the shape of the potential wells.” & smaller than this
would improve sampling of the numerator in Eq. (4) but
deteriorate that of the denominator. We picked two problems
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FIG. 2. (Color online) log,,(diffusivity) vs inverse temperature.
(a) The straight lines denote Mendelev et al’s (Ref. 18) MD
calculations. These are valid only until 700 K. (b) Asterisks denote
diffusivity measurements per our approach. (c) The dashed line
shows experimental measurements (Ref. 19) valid between 1000 and
1200 K.

to demonstrate that our method yields correct dynamics: (a)
vacancy diffusion in bcc Fe at room temperature, and (b)
deformation behavior in Au nanopillars at realistic strain
rates.

Lattice diffusion at low temperatures is beyond the time
scales one can access in current MD simulations, with most
investigations'® going only beyond 700 K. The system we
consider is 249 Fe atoms (5 x 5 x 5 bee supercell with one
vacancy) interacting through the embedded atom method
(EAM) potential.'® For the MD part here and in deformation
behavior problem, we performed NVT simulations using a time
step of 2 x 10™1% s and a Langevin thermostat with a coupling
constant 1 x 107! s=!. The biasing parameter o was 50 eV.
The V, values we used at 500 and 300 K were —975.5 and
—984 eV, respectively (4 and 2.5 eV more than the mean energy
at 500 and 300 K, respectively). We took the equilibrium
concentration of defects'® to convert our effective diffusivity
into equilibrium diffusivity. In Fig. 2 we plot the equilibrium
diffusivity as obtained from (a) MD simulations,'® (b) our
proposed approach, and (c) experimental measurements'’
that include contributions from interstitial migrations also
and hence are only slightly higher than both ours and MD
values. We obtain an approximately five orders-of-magnitude
boost, with similar speedup factors for system sizes up to
30 000 atoms.

For our second problem (see Fig. 3), we looked at the
deformation behavior of Au nanopillars. With the advent of
excellent in situ transmission electron microscopy (TEM) and
high-resolution TEM (HRTEM) tools, there are many elegant
experiments on sub-10-nm-sized crystals.”>?*>* Deformation
in such small sizes is controlled by dislocation nucleation, and
has been phenomenologically predicted® and experimentally
found?%>*?* to have small activation volumes and strong strain-
rate sensitivity. However, to the best of our knowledge, there
is no direct MD-based confirmation of this strong strain-rate
sensitivity due to the inability of MD to reach strain rates lower
than 107/s.
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FIG. 3. (Color online) Simulation cell for stress-strain calcula-
tions. (a) Prior to application of any strain, (b) after yielding (strain =
12%) with strain rate = 5 x 10*/s. In (b) the leading partial has
nucleated on a {111} slip plane, leaving behind the two-layer-thick
hep region denoting an intrinsic stacking fault. Failure is thus through
slip and not twinning, in agreement with Ref. 23. Atoms are identified
as per bond order parameter Q¢ (Refs. 21 and 22). Perfect hcp atoms
have been removed for clarity.

Using our method we were able to reach a 10*/s strain-rate
regime with only ~48 h of computer time. We could also
obtain several correct qualitative and quantitative aspects of
the deformation dynamics, without assuming anything about
the nature of deformation. The system we consider is 2016 Au
atoms (a cylinder with height 7.4 nm and diameter 2.5 nm)
interacting through an EAM potential.”® The biasing parameter
a was 1500 eV, while the starting V|, value used was —7266 eV
(8 eV more than the mean energy at 300 K), adjusted every
1000 MD steps to take into account the pressure-volume work
contribution from the stress. The cylinder was initially carved
out from perfect fcc lattice [Fig. 3(a)]. Periodic boundary
conditions were imposed only along the cylinder axis z, which
is the same as the compression axis (001). The cylinder was
first equilibrated for 500 ps before beginning the compression
carried out by uniformly rescaling the z coordinates of all
atoms. The atomic virial stress’’ was used to obtain the
Cauchy stress. Four different strain rates ¢ were considered:
5% 10%/s,2.5 x 10%/s,5 x 10 /s,and 5 x 10*/s. We present
the resulting stress (o')-strain (€) plots in Fig. 4(a). Several
conclusions can be drawn from Figs. 3 and 4 that prove
our algorithm is capable of predicting correct dynamics in
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FIG. 4. (Color online) (a) Stress-strain plots at three differ-
ent strain rates: 2.5 x 10°/s (open circles), 5 x 10°/s (asterisks),
5 x 10*/s (pluses). The initial stress corresponding to zero strain
is nonzero due to surface effects (Ref. 27). (b) log,,(stress) at
11%; strain (relative to surface stress at zero strain) vs log,
(strain rate).
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complicated systems. The yielding occurs at ~10% strain,
and is through slip and not twinning or elastic instabilities:
A leading partial nucleates on a {111} slip plane at lower
stresses than a trailing partial. This can be seen in Fig. 3(b),
where the leading partial nucleated from the surface and left
behind a two-layer-thick hcp region which again changes
back to fcc after the trailing partial also nucleates at higher
stresses and recombines with the leading partial. Figure 3(b)
is identical to HRTEM images for the (001) loading of Au
nanowires.”> The strain rate sensitivity m in the relation
o = 0p€™ (derived by looking at stress at 11%; strain) is
approximately 0.14 +0.07 [see Fig. 4(b)], while Ref. 20
reports it to be ~0.11 for 75-nm-diam pillars. The activation
volume € for the deformation as calculated through®® Q =
V3kpT d(lge)/do is ~1b* (b = Burgers vector), in excellent
agreement with experimental observations.?%>
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To summarize, we have proposed an approach that com-
bines the strengths of MC and MD, thus offering boosts of
several orders of magnitudes with good system size scaling.
We have applied the method to study lattice diffusion in bcc
Fe at low temperatures and the deformation of Au nanopillars
at low strain rates, and found it to work really well in both
cases, predicting correct dynamics and exhibiting good scaling
with an increase in the system size from 249 to 2016 atoms.
We thus expect the method to be useful in a variety of
situations.
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