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Magnetic properties of lightly doped antiferromagnetic YBa2Cu3O y
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The present work addresses YBa2Cu3Oy at doping below x = 6% where the compound is a collinear
antiferromagnet. In this region YBa2Cu3Oy is a normal conductor with finite resistivity at zero temperature.
The value of the staggered magnetization at zero temperature is ≈0.6 μB , the maximum value allowed by spin
quantum fluctuations. The staggered magnetization is almost independent of doping. On the other hand, the Néel
temperature decays very quickly, from TN = 420 K at x = 0 to practically zero at x ≈ 6%. The present paper
explains these remarkable properties and demonstrates that the properties result from the physics of a lightly
doped Mott insulator with small hole pockets. Nuclear quadrupole resonance data are also discussed. The data
shed light on mechanisms of stability of the antiferromagnetic order at x < 6%.
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I. INTRODUCTION

It is well known that cuprates are layered compounds
consisting of CuO2 planes and there are no doubts that the
generic physics of cuprates are related to the CuO2 plane.
In spite of the same generic physics, specific properties of
cuprates can be very different depending on crystal structure,
ways of doping, etc. The goal of the present work is to shed
light on the generic physics via understanding the specific
properties of lightly doped antiferromagnetic YBa2Cu3Oy

(YBCO).
Cuprates are essentially doped Mott insulators. It is well

established that Mott insulators possess long-range antiferro-
magnetic (AF) order; therefore one of the generic problems
is how the AF order evolves with doping. Another generic
problem is the shape of the Fermi surface. Are there small
hole pockets as one expects for a very lightly doped Mott
insulator, and how does the surface evolve with doping?

Cuprates are intrinsically disordered materials because of
mechanisms of doping. Disorder complicates a theoretical
analysis of experimental data, usually masking the generic
physics. YBCO is probably the least-disordered cuprate in
the low-doping regime. In this paper I denote the hole
concentration per unit cell of the CuO2 layer by x; this is
the “doping.” YBCO is not superconducting below x ≈ 0.06,
where it behaves as a normal conductor with delocalized holes.
The zero temperature resistivity remains finite,1 apart from
very weak logarithmic temperature dependence2,3 expected
for weak disorder. The heat conductivity also indicates delo-
calization of holes.4 This is very different from La2−xSrxCuO4,
where holes are localized and hence the compound is an
Anderson insulator5,6 at x � 0.15.7 Ultimately, at very low
doping, x � 0.01, the disorder wins even in YBCO and it also
becomes the Anderson insulator.1 It is helpful to have in mind
an approximate empiric formula1,8

x ≈ 0.35(y − 6.20) (1)

to relate the doping level x and the oxygen content y in
underdoped YBCO at x � 0.12.

The static “staggered” magnetization in YBCO has been
recently measured in the μSR experiment.9 The experimental
plot of the zero-temperature magnetization versus doping
is shown in Fig. 1 (top). Remarkably the zero-temperature

magnetization is almost doping independent up to x ≈ 0.06
and then it quickly decays. It is known from neutron scattering
experiments10–13 that the static magnetization fully disappears
at the quantum critical point (QCP) x ≈ 0.09, indicating
transition to a state without static magnetism. Importantly, the
magnetism at x > 0.06 is incommensurate, which is why in the
first sentence of this paragraph I put “staggered” in quotations.
Value of the incommensurate wave vector Q divided by 2π

versus doping is plotted in Fig. 2.
While in the collinear antiferromagnetic phase the zero-

temperature staggered magnetization is almost independent of
doping, and the Néel temperature decays very quickly from
TN = 420 K at x = 0 to practically zero at x ≈ 6%. This is
shown in Fig. 1 (bottom), copied from Ref. 9. The present
paper explains these puzzling magnetic properties and shows
that they are related to small hole pockets of a lightly doped
Mott insulator.

One could think that the survival of antiferromagnetism
in lightly doped YBCO is similar to the survival of anti-
ferromagnetism in electron-doped cuprates. However, these
are very different phenomena. Antiferromagnetism in lightly
electron-doped cuprates is a simple effect well understood
within the t − t ′ − t ′′ − J model. Due to t ′ and t ′′ the
electron-hole symmetry is violated; therefore, when injected,
electrons go to the antinodal points (±π,0), (0,±π ) (see, e.g.,
Ref. 17). The structure of the charge-carrier-magnon vertex in
the t − t ′ − t ′′ − J model is such that the vertex is zero at the
antinodal points. Therefore mobile electrons do not frustrate
the AF background. This is the mechanism behind survival of
antiferromagnetism in electron-doped cuprates up to x ≈ 0.15,
when electrons start to penetrate to the nodal points.17 Holes,
when injected, always go to the nodal points where their
interaction with magnons is maximum, frustrating the AF
background. Therefore antiferromagnetism of the hole-doped
YBCO with mobile holes18 is a highly nontrivial effect. This
effect is addressed in the present work.

YBa2Cu3Oy is doped via filling oxygen chains located
above the CuO2 planes. It has been argued that at y = 6.5 when
every second chain is full, the chain modulation generates the
charge density wave (CDW) of in-plane holes.19,20 Nuclear
quadruple resonance (NQR) for in-plane Cu is an excellent
local probe of the hole density.21 Figure 3 shows 63Cu
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FIG. 1. (Color online) The YBCO μSR data from Ref. 9. Top:
Zero-temperature “staggered” magnetization versus doping. The
solid line shows results of the present calculations. Bottom: The
Néel temperature and the staggered magnetization versus doping.
The inset shows the superconducting critical temperature versus
doping. Large red dots show the Néel temperature calculated in the
present work.

NQR frequency sweeps from Ref. 22 for several values of
oxygen content. There is a single narrow line at about optimal
doping y ≈ 7 indicating a very homogeneous hole density
corresponding to completely filled chains. On the other hand,
at y ≈ 6.5 there are two distinct lines indicating a bimodal
hole density distribution, in agreement with Refs. 19 and
20. Importantly, the bimodal distribution is evident even at
lower doping, y = 6,4,6.45, indicating the CDW induced by
the oxygen chain superstructure. Below y = 6.5 the NQR
lines are broader compared to y = 6.5. This is because the
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FIG. 2. (Color online) Incommensurate wave vector versus dop-
ing. The blue square,14 the red circle,10 the red diamond,12 and the
red triangle15 show neutron-scattering data. The solid line shows the
theoretical value.16

FIG. 3. (Color online) In-plane 63Cu NQR frequency sweeps
from Ref. 22.

oxygen superstructure with every second chain filled cannot
be perfect away from y = 6.5. It is worth noting that holes
go to the CuO2 plane only at y > 6.2 [see Eq. (1)]. In the
undoped case, x = 0, y < 6.2, there is only one NQR line with
frequency ν0 ≈ 23.3 MHz independent of y (see Ref. 23). By
comparing ν0 with frequencies of lines in Fig. 3 we see that
the hole doping shifts the NQR frequency very strongly.21 The
present paper explains the significance of the chain-induced
CDW for stability of the collinear antiferromagnetic phase
at x < 0.06.

The structure of the paper is the following: The effective
theory describing YBCO at low doping was formulated previ-
ously in Ref. 16. Section II summarizes ideas of the effective
theory. In Sec. III the theory is applied to calculate reduction
of the staggered magnetization in the antiferromagnetic phase
at zero temperature. Temperature reduction of the staggered
magnetization at zero and nonzero doping, 0 < x < 0.06, is
calculated in Sec. IV. Interplay between the chain-induced
CDW, small hole pockets, and stability of the collinear
antiferromagnetic phase is discussed in Sec. V. Section VI
presents the conclusions of the paper.

II. EFFECTIVE LOW-ENERGY THEORY DESCRIBING
LIGHTLY DOPED YBCO

This section summarizes the most important points of the
effective low-energy theory suggested in Refs. 24 and 16 to
describe YBCO at low doping. The analysis is based on the
two-dimensional t − t ′ − t ′′ − J model at small doping. The
generic case of the single layer has been considered in Ref. 24.
After integrating out the high-energy fluctuations one comes
to the effective low-energy action of the model. The effective
low-energy Lagrangian is written in terms of the bosonic �n field
(n2 = 1) that describes the staggered component of the copper
spins, and in terms of fermionic holons ψ . The term “holon” is
used instead of “hole” to stress that spin and charge are to large
extent separated (see Ref. 24). The holon has a pseudospin
that originates from two sublattices, so the fermionic field ψ

is the spinor in the pseudospin space. Minimums of the holon
dispersion are at the nodal points q0 = (±π/2, ± π/2), so
there are holons of two types corresponding to two pockets.
The dispersion in a pocket is somewhat anisotropic, but for
simplicity let us use here the isotropic approximation ε(p) ≈
1
2βp2, where p = q − q0. The lattice spacing is set to be equal
to unity, 3.81 Å → 1. All in all, the effective Lagrangian for
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the single layer reads24

L = χ⊥
2

�̇n2 − ρs

2
(∇�n)2 +

∑
α

{
i

2
[ψ†

αDtψα − (Dtψα)†ψα]

−ψ†
αε(P)ψα +

√
2g(ψ†

α �σψα) · [�n × (eα · ∇)�n]

}
. (2)

The first two terms in the Lagrangian represent the usual
nonlinear σ model. The magnetic susceptibility and the
spin stiffness are χ⊥ ≈ 0.53/8 ≈ 0.066 and ρs ≈ 0.175.25

Hereafter the antiferromagnetic exchange of the initial t-J
model is set to be equal to unity,

J ≈ 130 meV → 1.

Note that ρs is the bare spin stiffness; therefore by definition it
is independent of doping. The rest of the Lagrangian in Eq. (2)
represents the fermionic holon field and its interaction with
the �n field. The index α = a,b indicates the pocket in which
the holon resides. The pseudospin operator is 1

2 �σ , and eα =
(±1/

√
2,1/

√
2) is a unit vector orthogonal to the face of the

magnetic Brillouin zone (MBZ) where the holon is located.
The argument of εα in Eq. (2) and the time derivative of the
fermionic field in the same equation are “long” (covariant)
derivatives,

P = −i∇ + 1
2 �σ · [�n × ∇�n],

Dt = ∂t + i

2
�σ · [�n × �̇n].

The covariant derivatives reflect gauge invariance of the initial
t − t ′ − t ′′ − J model.

Numerical calculations within the t − t ′ − t ′′ − J model
with physical values of hopping matrix elements give the
following values of the coupling constant and the inverse mass:
g ≈ 1, β ≈ 2.4. The value of the inverse mass β = 2.4 corre-
sponds to the effective mass m∗ = 1.8me. The dimensionless
parameter

λ = 2g2

πβρs

(3)

plays the defining role in the theory. If λ � 1, the ground state
corresponding to the Lagrangian (2) is the usual Néel state; the
state is collinear at any small doping. If 1 � λ � 2, the Néel
state is unstable at arbitrarily small doping and the ground
state is a static or a dynamic spin spiral. The wave vector of
the spiral is

Q = g

ρs

x. (4)

If λ � 2, the system is unstable with respect to phase separation
and/or charge-density-wave formation and hence the effective
long-wavelength Lagrangian (2) becomes meaningless. The
pure t − J model (t ′ = t ′′ = 0) is unstable since it corresponds
to λ > 2.

To find parameters of the effective action (2) one can
rely on calculations within the t − t ′ − t ′′ − J model or
alternatively, one can fit experimental data. Both approaches
produce very close values of the parameters. The fit of
elastic and inelastic neutron scattering data for La2−xSrxCuO4

performed in Ref. 24 gives the following values: g = 1,
β ≈ 2.7 (m∗ = 1.5 me), λ ≈ 1.30. The fit of data on magnetic
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FIG. 4. (Color online) Filling of split holon bands in YBCO at
x < x0 (left) and x > x0 (right). The solid and the dashed lines
in the spin-spiral state, x > x0, correspond to different pseudospin
projections, and the splitting is ±gQ. The doping x1 indicated on the
top of the right figure is x1 = 0.5x0/(λ − 1) (see Ref. 16).

quantum oscillations in YBa2Cu3Oy performed in Ref. 26
gives two possible sets:

g = 1, β = 2.78 (m∗ = 1.45 me), λ = 1.31,

g = 1, β = 2.95 (m∗ = 1.35 me), λ = 1.23. (5)

These values are used in the present work.
It is very easy to understand the reason for instability of

the commensurate AF order under doping. Assuming such an
order one can calculate the magnon Green’s function

G(ω,q) ∝ 1

ω2 − c2q2 − P(ω,q) + i0
, (6)

where c = √
ρs/χ⊥ ≈ 1.17

√
2J is the magnon speed in the

parent Mott insulator, andP(ω,q) is the fermionic polarization
operator. A well-known peculiarity of the two-dimensional
(2D) polarization operator is its independence of doping as
soon as ω = 0 and q is sufficiently small. A straightforward
calculation gives at q → 0,P(0,q) = −λc2q2. Hence at λ > 1
the Stoner criterion in (6) is violated and the Green’s function
possesses poles at imaginary frequency, indicating instability
of the AF ground state at an arbitrary small doping.

In YBCO the AF order is commensurate at x < 0.06;
therefore the effective action (2) cannot be directly applied
to this compound. To understand YBCO one can certainly
assume that λ is doping dependent, λ < 1 at x < 0.06 and
λ > 1 at x > 0.06. Purely theoretically it is hardly possible to
have a significant x dependence of λ, but as a scenario one can
consider this. However, in this scenario the incommensurate
wave vector Q must jump from Q = 0 at x < 0.06 to Q given
by Eq. (4) at x > 0.06. This is not consistent with data—there
is no jump, and the incommensurate wave vector evolves
smoothly above x = 0.06 (see Fig. 2).

A model describing the smooth evolution of Q with doping
was suggested in Ref. 16. In addition to (2) the model
incorporates two points. (i) Due to the bilayer structure the
magnon spectrum in YBCO is split into acoustic and optic
mode. The optic gap is about 70 meV;27 hence the optic
mode does not influence the low-energy dynamics, only
acoustic magnons are important for these dynamics. (ii) The
second point of the model is an assumption that the fermionic
dispersion is split in two brunches as shown in Fig. 4 (left).
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The splitting is �0. The effective action that originates from
(2) and incorporates these two points reads

L = 2 ×
[χ⊥

2
�̇n2 − ρs

2
(∇�n)2

]
+

∑
α=a,b

∑
γ=±1

{
i

2
[ψ†

α,γDtψα,γ − (Dtψα,γ )†ψα,γ ]

−ψ†
α,γ

[
εα(P) − γ

�0

2

]
ψα,γ

+
√

2g(ψ†
α,γ �σψα,γ ) · [�n × (eα · ∇)�n]

}
. (7)

Compared to (2) the first line is multiplied by two, since
the bilayer has the twice larger spin stiffness and magnetic
susceptibility. In addition to the pocket index α, the holon
field ψα,γ gets an additional index γ = ±1 that indicates the
branch of the split dispersion as it is shown in Fig. 4. Originally
the paper16 suggested that the hole band splitting γ = ±1 was
due to the hole hopping between layers inside the bilayer.
So �0 was the bonding-antibonding splitting. However, our
recent analysis28 indicates that antiferromagnetic correlations
forbid the bonding-antibonding splitting. So, contrary to the
assumption in Ref. 16, the interlayer hopping cannot contribute
to �0. In Sec. VI of the present paper I argue that the splitting
�0 is due to oxygen chains. For now let us accept the action
(7) and study the consequences of this action.

When doping is sufficiently small,

x < x0 = �0

πβ
, (8)

only the γ = 1 band is populated [see Fig. 4 (left)]. In
this case the fermionic polarization operator is half of that
for the single-layer case: P(0,q) = − 1

2λc2q2, q → 0. Hence
the Stoner stability criterion in Eq. (6) is fulfilled and the
Néel order is stable. According to both neutron-scattering
data10,12,14 shown in Fig. 2 and to μSR data9 shown in Fig. 1,
the value of x0 is x0 ≈ 0.06. Hence due to Eq. (8) the band
splitting is

�0 ≈ 0.5J ≈ 65 meV. (9)

At x > x0 fermions populate both γ = 1 and γ = −1 bands
[Fig. 4 (right)], the polarization operator is doubled compared
to the x < x0 case, and the Stoner instability is there. As a
result at x > x0 the system develops the spiral with the wave
vector,16

Q = g

ρs

x − x0

3 − 2λ
. (10)

The plot of Q/2π versus doping is shown in Fig. 2 by the
solid line. The development of the spin spiral is driven by the
pseudospin splitting of the fermionic bands ±gQ, as shown
by the solid and dashed lines in Fig. 4 (right). Thus x0 is a
Lifshitz point, where the γ = −1 band starts to populate and
where the spin spiral simultaneously starts to develop. In the
present paper I consider quantum and thermal fluctuations in
the Néel state, x < x0. Quantum fluctuations in the spin spiral
state at x > x0 are considered separately.29

To summarize this section: The small hole pockets and
associated spin spiral state are generic properties of all cuprates

at low doping. The key point of the YBCO phenomenology
is splitting of the hole pockets. This splitting together with
splitting of magnon to the acoustic and the optic mode provides
stability of the AF order up to 6%; doping.

III. QUANTUM FLUCTUATIONS IN THE NÉEL PHASE,
REDUCTION OF THE ZERO-TEMPERATURE

STAGGERED MAGNETIZATION

There are two magnons (two polarizations) in the Néel
phase at x < x0. The Green’s function of each magnon reads

G(ω,q) = (2χ⊥)−1

ω2 − c2q2 − P0(ω,q) + i0
. (11)

Only the γ = 1 band [see Fig. 4 (left)] contributes to the
polarization operator P0(ω,q). Calculation of the polarization
operator for the single layer was performed in Ref. 24.
Comparing the single-layer action (2) and the double-layer
action (7) and having in mind that at x < x0 only the γ = 1
band is occupied, one immediately concludes that in the
double-layer case the polarization operator is half of that
calculated in Ref. 24. Hence

Re P0(ω,q)

= − c2g2

πβ2ρs

{
βq2 − R1

√
1 − R2

0

/
R2

1 θ
(
1 − R2

0/R
2
1

)
−R2

√
1 − R2

0/R
2
2 θ

(
1 − R2

0

/
R2

2

)}
,

Im P0(ω,q) = − c2g2

πβ2ρs

{
θ
(
R2

0 − R2
1

) √
R2

0 − R2
1

−
√

R2
0 − R2

2 θ
(
R2

0 − R2
2

)}
,

R0 = βqpF , R1 = 1

2
βq2 − ω,

R2 = 1

2
βq2 + ω, pF =

√
2πx. (12)

Here pF is the Fermi momentum of the γ = 1 band and θ (x)
is the usual step function. I’ve already pointed out above that
at q < 2pF , P0(0,q) = − λ

2 c2q2, so the Néel state is stable if
λ < 2.

It is instructive to look at the magnon spectral func-
tion −ImG(ω,q) that describes inelastic neutron scattering.
Spectral functions for x = 0.05 and for three values of
the momentum q are plotted in Fig. 5 by solid lines.
Spectral functions for both sets of parameters from Eq. (5)
are almost identical. To be specific I present functions for
the second set. In the same Fig. 5 the dashed lines show
spectral functions in the parent Mott insulator [P0(ω,q) = 0].
The spectra demonstrate the low-energy incoherent part
that absorbs more that 50%; of the spectral weight. The
magnon quasiparticle peaks are still clearly pronounced. Their
intensities are about half of that in the parent compound,
and positions are slightly shifted up compared to the parent;
the shift is proportional to the doping, δωq ∝ x. It is worth
noting that while the reduction of the spectral weight is the
reliable result, the upward shift is probably a byproduct of the
low-energy effective theory. The effective theory accurately
accounts for the magnon “repulsion” from the particle-hole
continuum that is below the magnon. The “repulsion” results
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FIG. 5. (Color online) Solid lines show magnon spectral functions
−ImG(ω,q) versus ω for three values of momentum q and for doping
x = 0.05. Dashed lines show spectral functions in the parent Mott
insulator at the same values of momentum.

in the upward shift. However, there is also a “repulsion” from
very-high-energy excitations (E ∼ 2t ∼ 6J ) that are related to
the incoherent part of the hole Green’s function. This repulsion,
unaccounted in the effective theory, leads to the downward shift
of the magnon frequency that is also proportional to doping.30

More generally one can say that the chiral effective field theory
employed in the present work allows controllable calculations
of effects that are x independent or scale as √

x or x ln(x).
Quantities that scale as the first or as higher than first power
of x are generally beyond the scope of the theory. Therefore
at this stage one can say only that position of the magnon is
approximately the same as that in the parent compound, but
the magnon spectral weight is significantly reduced. Another
point worth noting is the absence of the hourglass dispersion.
The low-energy incoherent part of the Green’s function clearly
pronounced in Fig. 5 is transformed to the coherent hourglass
only at x > x0, beyond the Lifshitz point.29

Quantum fluctuation of the staggered magnetization is
given by the standard formula

〈n2
⊥〉 = −2

∑
q

∫
dω

2πi
G(ω,q) = −2

∑
q

∫
dω

2π
ImG(ω,q).

(13)

The factor 2 comes from two polarizations. This expression
must be renormalized by subtraction of the ultraviolet-
divergent contribution that corresponds to the undoped σ

model. The integral in (13) can be calculated analytically with
logarithmic accuracy:

〈n2
⊥〉 ≈ λβx

4ρs

ln

(
�

pF

)
= λβx

8ρs

ln

(
�2

πβx

)
. (14)

There are two points to note: (i) In spite of the ultraviolet
renormalization (σ -model subtraction), the fluctuation de-
pends on the ultraviolet momentum cutoff � ∼ 1. (ii) The
leading logarithmic term, x ln(�2/x), comes from momenta
pF � q � �.

The logarithm ln(�2/x) is not large, and the logarithmic
accuracy is not sufficient. Fortunately a numerical integration
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FIG. 6. (Color online) Quantum fluctuation 〈n2
⊥〉 versus doping

for two values of the ultraviolet cutoff �.

of (13) is straightforward. The result is presented in Fig. 6,
where 〈n2

⊥〉 is plotted versus doping. The second set of
parameters from (5) is used, and results are presented for
two values of the ultraviolet cutoff �. Reduction of the static
component of the n field is 〈n〉 = 〈

√
1 − n2

⊥〉 ≈ 1 − 1
2 〈n2

⊥〉.
Hence the staggered magnetization is

μ/μB = 0.615
(
1 − 1

2 〈n2
⊥〉). (15)

Here I take into account that the regularization procedure used
corresponds to the normalization of the static component of
the n field to unity at zero doping when the staggered mag-
netization is 0.615μB .25 The plot of the calculated staggered
magnetization μ versus doping together with experimental
data9 is presented in Fig. 1 (top). Dependence of the theo-
retical curve on � is pretty weak; to be specific, the curve
corresponding to � = 1 is presented. Agreement between the
theory and the experiment in the Néel phase is excellent. Thus,
it is understood why quantum fluctuations only slightly reduce
the staggered magnetization.

Note that the presented calculation is valid only in the Néel
phase, x < 0.06. Physics in the spin-spiral phase, x > 0.06,
is very much different because of the appearance of the soft
“hourglass” dispersion and consequently, because of greatly
enhanced quantum fluctuations. The corresponding results will
be published separately.29

IV. TEMPERATURE DEPENDENCE OF THE STAGGERED
MAGNETIZATION IN THE NÉEL PHASE

A. Zero doping

It is well known that due to the Mermin-Wagner theorem the
Néel temperature in a spin-rotationally-invariant 2D system is
exactly zero, TN = 0. Cuprates are layered systems with a very
small Heisenberg interaction, J⊥ � 10−4J , between layers
or bilayers. In spite of its smallness the interaction makes
the system three dimensional, and hence it makes the Néel
temperature finite, TN ∼ J/ ln(J/J⊥). Temperature depen-
dence of the staggered magnetization in layered Heisenberg
antiferromagnets has been intensively studied theoretically
(for a review see Ref. 31). Unfortunately there is no a “small
theoretical parameter” in the problem. Therefore while a
qualitative behavior is absolutely clear, there is no universal
quantitative description—different theoretical approaches give
quite different results.31 In the present section I develop an

094532-5



O. P. SUSHKOV PHYSICAL REVIEW B 84, 094532 (2011)

effective description of the temperature dependence. This
description certainly is not a rigorous solution of the layered
Heisenberg antiferromagnet for all temperatures. This is a sort
of interpolation between the T � TN regime and the T ≈ TN

regime. Importantly, the “interpolation” allows a quantitative
description of an undoped layered Mott insulator, and much
more importantly, it allows movement to the finite doping in
the next subsection.

Let us start from the single-layer case (La2CuO4) and
rewrite Eq. (13) in the Matsubara technique at a finite
temperature:

〈n2
⊥〉 = 2T

χ⊥

∑
q

∑
s

1

ξ 2
s + ω2

q

, (16)

where ωq = cq and ξs = 2sπT , s = 0, ± 1, ± 2,... is the
Matsubara frequency. Hence the equation for nz = 1 − 1

2 〈n2
⊥〉

can be rewritten in the renormalization group (RG) form

dnz

nzd ln(q)
= T

2πρsq

∑
s

ω2
q

ω2
q + ξ 2

s

, (17)

where ρsq = ρs(q) is the q-dependent spin stiffness. Equa-
tion (17) assumes 2D geometry, so it is valid at q > qmin,
where the infrared cutoff qmin ∝ √

J⊥ is due to the Heisenberg
coupling along the third dimension. To solve the RG problem
one needs to add information on how the spin stiffness scales
with the magnetization. Let us write the relation between the
magnetization and the spin stiffness as

dρsq

ρsq

= r
dnz

nz

. (18)

It is known31 that one loop calculation valid at nz ≈ 1 results in
r = 1 that implies ρ ∝ nz. On the other hand, close to the Néel
temperature when nz � 1 one should expect scaling very close
to quadratic, ρ ∝ n2

z (r ≈ 2). This is because the critical index
η of the magnon quasiparticle residue is very small (see, e.g.,
Refs. 32 and 33). For now I keep the power r as a parameter.
Equations (17) and (18) are combined to

dρsq

d ln(q)
= rT

2π

∑
s

ω2
q

ω2
q + ξ 2

s

. (19)

To perform the ultraviolet renormalization let us introduce ρ�,
the spin stiffness at the ultraviolet cutoff. Then due to Eq. (19)
the finite temperature spin stiffness at q = 0 reads

ρsT = ρ� − rT

2π

∫ �

qmin

{∑
s

ω2
q

ω2
q + ξ 2

s

}
dq

q
. (20)

This expression can be renormalized by the condition that
at zero temperature (more accurately, at T � cqmin) the spin
stiffness is equal the standard value ρs0 ≈ 0.175J correspond-
ing to the σ model originating from the spin-1/2 Heisenberg
model. After the renormalization Eq. (20) is transformed to

ρsT = ρs0 − rT

2π

∫ ∞

qmin

{∑
s

ω2
q

ω2
q + ξ 2

s

− ωq

2T

}
dq

q
. (21)

The three-dimensional interaction J⊥ fixes the value of the
infrared cutoff qmin; however, one has to remember the scaling
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FIG. 7. (Color online) Staggered magnetization versus temper-
ature in La2CuO4, left, and YBa2Cu3O6, right. In the left plot red
circles show neutron-scattering data.34 In the right plot red circles
show neutron-scattering data35 and green squares show μSR data.9

Theoretical curves with r = 2 are shown by solid lines, and theoretical
curves with r = 1 are shown by dashed lines.

of the cutoff with the staggered magnetization nz (see Ref. 31):

qmin = qmin0
√

nz, (22)

where, due to (18),

nz =
[
ρsT

ρs0

]1/r

. (23)

Equations (21), (22), and (23) can be easily integrated numeri-
cally. The Néel temperature is determined by zero spin stiffness
(21). The infrared cutoff qmin0 is the only free parameter in
the theory. The value of the parameter has to be tuned up to
reproduce the measured Néel temperature. It has to be clear
that qmin0 originates not only from J⊥. Relativistic anisotropies
such as Dzyaloshinskii-Moria, etc., also contribute to qmin0.
Let us recall that due to the regularization procedure used the
staggered magnetization is μ = 0.615μBnz, where 0.615μB

is the the staggered magnetization in the parent Heisen-
berg model.25 Staggered magnetization versus temperature in
La2CuO4 (LCO) is presented in Fig. 7 (left). Red circles show
neutron scattering data.34 The theoretical curve with r = 2 and
qmin0 = 0.024 is shown by the solid line, and the theoretical
curve with r = 1 and qmin0 = 0.004 is shown by the dashed
line. The curve with r = 1 corresponding to the single-loop
RG describes the data very poorly. This illustrates the known
problem of poor accuracy of the single-loop RG.31 However,
the curve with r = 2 corresponding to the critical scaling of
the spin stiffness describes the data very well.

In the double-layer case (YBCO) the coefficient rT
2π

before
the integral in Eq. (21) has to be replaced by the twice-smaller
one, rT

4π
. The point is that the optic magnon in YBCO has a

gap of 70 meV and therefore it does not contribute to the low-
energy dynamics. Only acoustic magnon is important; hence
the effective number of magnons is twice smaller compared
to LCO. Neutron-scattering data35 for YBa2Cu3O6 are shown
in Fig. 7 (right) by red dots. Green squares show μSR data.9

The theoretical curve with r = 2 and qmin0 = 0.0085 is shown
by the solid line and the theoretical curve with r = 1 and
qmin0 = 0.0004 is shown by the dashed line. Again, the curve
with r = 1 is not consistent with the data. The curve with
r = 2 is quite good.

It is worth noting that for both LCO and YBCO the values
of the infrared cutoff qmin0 for r = 1 are unrealistically small,
reflecting the same difficulty of single-loop RG (see also
Ref. 31). On the other hand, the cutoff values for r = 2 are quite
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reasonable, indicating that the Néel temperature is determined
by spin-wave dynamics at distances up to 1/qmin0 ∼ 100 lattice
spacing along the plane.

All in all, the conclusion is that the effective RG developed
in this section describes undoped compounds pretty well.
To achieve this description one needs to set r = 2, which
corresponds to the critical scaling of the spin stiffness expected
in the vicinity of the Néel temperature, ρ ∝ n2

z . In the next
section the developed description is applied to the nonzero
doping case.

B. Nonzero doping

To extend to the finite doping case, one has to introduce in
Eq. (21) the fermionic polarization operator:

ρsT = ρs0− rT

2π

∫ ∞

qmin

{∑
s

ω2
q

ω2
q + ξ 2

s + P0(iξs,q)
− ωq

2T

}
dq

q
,

(24)

where the polarization operator P0(iξs,q) is calculated at
Matsubara frequencies. The expression for the polarization
operator follows from the Lagrangian (7). One can use vertexes
derived in Ref. 24 for the single-layer case and rescale the
vertexes by a factor of 1/

√
2, which follows from comparison

of (2) and (7). The polarization operator reads

P0(iξ,q) = πλc2βq2Re
∑

γ=±1

∑
p

f
γ
p − f

γ
p+q

ε p − ε p+q + iξ

= 2πλc2βq2Re
∑

γ=±1

∑
p

f
γ
p

ε p − ε p+q + iξ
.

(25)

Here f
γ
p is the Fermi-Dirac distribution function

f γ
p = 1

e(ε p−γ�0/2−μ)/T + 1
, (26)

with chemical potential μ (do not mix it up with magnetic
moment). Note that at T �= 0 the γ = −1 band is also
populated [see Fig. 4 (left)]. This is why the summation in
(25) is performed over both bands, γ = ±1. The chemical
potential is determined by the condition

2x = 2 × 2
∑

γ=±1

∑
p

f γ
p , (27)

which accounts for the double layer, the two pockets, and for
the two pseudospin projections. It is easy to check that at zero
temperature and at q < 2pF the zero-frequency polarization
operator is P0(0,q) = − λ

2 ω2
q , in agreement with the real

frequency analysis at x < x0 in Sec. III.
Numerical evaluation of the polarization operator (25) is

straightforward. Substitution of the polarization operator in the
RG Equation (24) and solution of this equation together with
(22) and (23) gives staggered magnetization at a given doping
and temperature. The RG equation is solved with r = 2 and
qmin0 = 0.0085, as it has been discussed in the previous subsec-
tion. These parameters are relevant to the n field and they are in-
dependent of doping. The fermionic polarization operator (25)
is not very sensitive to the choice of parameters; to be specific,
I present results corresponding to the second set of parameters
in Eq. (5). The band splitting �0 is determined by Eq. (9) which
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FIG. 8. (Color online) Staggered magnetization versus temper-
ature in YBa2Cu3Oy for several values of doping. Theoretical
curves for x = 0,0.1,0.2,0.3,0.4,0.5,0.6 are shown in the top and
middle panels. The top panel is obtained without account of the
lifetime of the hole, � = 0. The mid panel is obtained with
account of the hole lifetime. Experimental curves from Ref. 9
are presented in the bottom panel, and the doping levels are
x = 0.001, 0.002, 0.005, 0.02, 0.029, 0.036, 0.039, 0.049, 0.061,

0.065.

is responsible for the position of the Lifshitz point, x0 = 0.06.
Plots of the staggered magnetization versus temperature for
several values of doping are shown in the top panel in Fig. 8.
Theoretical curves presented in the top panel are in a qualitative
and to some extent quantitative agreement with data from
Ref. 9 shown in Fig. 1 (bottom) and in Fig. 8 (bottom).
The theory clearly demonstrates that while reductions of the
zero-temperature staggered magnetization at x < x0 are pretty
small [Fig. 1 (top)], the reduction of the Néel temperature with
doping is dramatic. There are two reasons for the reduction:
(i) Thermal excitation of the precursor to the hourglass, the
lower incoherent part of the magnetic spectrum shown in
Fig. 5. (ii) Thermal population of the γ = −1 band. Figure 8
(top) indicates also some negative bending of μ(T ) curves, in
qualitative agreement with data presented in Fig. 8 (bottom).

Theoretical curves plotted in Fig. 8 (top) demonstrate even
too steep a decrease of the Néel temperature with doping
compared to experimental data shown in Fig. 1 (bottom).
For example, at x = 0.03 the theoretical Néel temperature
is 140 K [Fig. 8 (top)], while experimentally it is about
300 K [Fig. 1 (bottom)]. To fix this problem one has to
realize that the above consideration of fermions disregards an
important physical effect—the finite lifetime (scattering time)
of a fermion at nonzero temperature. This is the same effect that
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leads to the temperature-dependent resistivity. To understand
the importance of this effect prior to calculations, one has
to recall (see previous section) that the Néel temperature is
formed at very large in-plane distances of up to 100 lattice
spacings. This corresponds to q ∼ 0.01 in Eqs. (24) and (25).
The fermionic polarization operator at very small q (implying
large distances) must depend on the fermion mean-free path.
This explains the crucial importance of the fermion lifetime.
To account for the lifetime effect, Eq. (25) has to be modified
in the following way:

P0(iξ,q) = 2πλc2βq2
∑

γ=±1

∑
p

(ε p − ε p+q)f γ
p

(ε p − ε p+q)2 + ξ 2 + �2

4

.

(28)

Here � is the broadening due to scattering. Let us take the usual
width characteristic for the two-dimensional Fermi liquid,36

� = A
T 2

εF

, (29)

where εF = βp2
F /2 = πβx is the Fermi energy. I disregard the

logarithmic T dependence of the coefficient A; the dependence
is beyond accuracy of the calculation. The coefficient A will
be used as a fitting parameter. Note that generally the width
� depends on both temperature T and Matsubara frequency
ξs . The dominating contribution to Eq. (24) comes from the
zero Matsubara frequency. Therefore the width � is important
in the zero-frequency term, s = 0, and it is completely
negligible in s �= 0 terms. Hence the width (29) corresponds
to the zero Matsubara frequency. Numerical evaluation of the
polarization operator (28) is not more difficult than evaluation
of (25). Solution of the RG equations gives the staggered
magnetization μ(T ,x) with account of the fermion lifetime.
The best fit of the experimental dependence of the Néel
temperature on doping is achieved at

A ≈ 0.7. (30)

The calculated Néel temperature versus doping is shown by
large red dots in Fig. 1 (bottom). The calculated staggered
magnetization versus temperature is plotted in Fig. 8 (mid)
for several values of doping. Experimental curves from Ref. 9
are presented in Fig. 8 (bottom). Overall agreement between
theory and experiment is very good.

It is worth stressing again that the calculation of the
temperature dependence of the magnetization in the layered
system is less reliable than calculations of zero-temperature
properties in Sec. III. The complexity of the finite-temperature
case is due to the very large span of spacial scales involved in
the problem, with the largest scale about 100 lattice spacings.
Only leading effects have been taken into account in the
present calculation. Clearly, there are subleading effects that
also influence the magnetization. For example, usual disorder
(impurities) must influence fermion dynamics at a scale of
∼100 lattice spacings and hence influence magnetization. In
view of this comment, the agreement between theory and
experimental data [see Fig. 1 (bottom) and Fig. 8 (middle)]
is remarkable. Most importantly, the theory explains why
the Néel temperature drops down dramatically with doping,
while the zero-temperature magnetization is almost doping
independent. This “contradictory” behavior is due to the band

splitting and due to different fillings of the split bands. The
different filling is a fingerprint of small hole pockets. At zero
temperature only the lower band is occupied, while temper-
ature populates the upper band as well. The “contradictory”
behavior is closely related to the Lifshitz point at x = x0 and to
the development of the spin spiral at x > x0 when both bands
are occupied at zero temperature.

V. CDW INDUCED BY OXYGEN CHAINS, SMALL HOLE
POCKETS, MECHANISM FOR BAND SPLITTING

The key point of the YBCO phenomenology suggested in
Ref. 16 and applied in the present work is the splitting of hole
bands. There are other key points, like small hole pockets,
spin spirals, etc. However, these other points are not specific
to YBCO, they are generic for all cuprates. The band splitting
is specific to YBCO. The paper16 suggested that the hole band
splitting in YBCO was due to the hole hopping between layers
inside the bilayer, the bonding-antibonding splitting. How-
ever, our recent analysis28 indicates that antiferromagnetic
correlations between the layers forbid the bonding-antibonding
splitting. If the hole hopping matrix element between the layers
is t⊥, then the band splitting in the case of AF correlations
between the layers is ∝ t⊥(cos kx + cos ky) [see Ref. 28]. The
splitting is zero at the nodal points (kx,ky) = (±π/2, ± π/2),
contrary to the assumption (7).

Thus, contrary to the assumption in Ref. 16, the interlayer
hopping cannot contribute to �0. Another mechanism for
splitting is necessary. In this section I argue that the splitting
is due to oxygen chains. Let us first consider the case y = 6.5
when every second chain is fully filled. In this case chains
produce the effective pseudopotential for in-plane holes

Vc(X) = −v0 cos(πX), (31)

where v0 is the amplitude of the potential and X is the
direction perpendicular to chains. (I denote the distance by
capital X to make it different from the doping x.) The hole
dispersion in the antiferromagnetic background is shown in
Fig. 9. The dispersion consists of two full pockets, the pocket a
and the pocket b. There is the perfect nesting condition between
the pockets and the chain potential (31), and therefore the two
split bands are generated:

εp = −v0 + β

2
p2 , ψ+ = |a〉p + |b〉p√

2
∝ cos

(π

2
X

)
ei p·r ,

εp = +v0 + β

2
p2 , ψ− = |a〉p − |b〉p√

2
∝ sin

(π

2
X

)
ei p·r .

(32)

Here p is the momentum with respect to the center of the
pocket. Equations (32) represent exactly the γ = ±1 band
splitting adopted in (7). Due to the exact nesting of small hole
pockets, a tiny pseudopotential v0 ≈ 30 meV is sufficient to
generate the splitting �0 = 2v0 ≈ 65 meV that follows from
the magnetic analysis [see Eq.(9)].

There might be an impression that the splitting (32) is
not quite equivalent to the effective action (7). For example,
the question arises why there is no a spin-wave vertex that
transfers ψ+ to ψ−? The vertex carries a large momentum π ,
and therefore the vertex vanishes after integration over X. In
other words, soft magnons included in the effective action (7)
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FIG. 9. Single-hole dispersion in the AF background.

cannot induce a transition with the large momentum transfer.
Careful analysis shows that the splitting (32) with account of
two layers is completely equivalent to (7).

According to (32), the wave function of the lower γ = +1
band is nonzero at X = 0,2,4,... while the wave function of
the upper γ = −1 band is nonzero at X= 1,3,5,... Due to the
splitting the bands are differently populated, and this results
in the in-plane hole density wave with a period of the two
lattice spacing.19,20 Let us calculate the amplitude of the CDW.
The oxygen content y = 6.5 corresponds to doping x ≈ 0.1
[see Eq. (1)]. This doping is within the spin-spiral phase;
therefore to calculate fillings of bands one has to account the
spin spiral as it is shown in Fig. 4 (right). In the lower γ =
+1 band both pseudospin projections are populated, while
in the upper γ = −1 band only one pseudospin projection
is populated. Populations of different subbands have been
calculated in the analysis of magnetic quantum oscillations
[see Eqs. (4) in Ref. 26]. From these equations one concludes
that populations of the upper and lower bands (γ = ∓1) are

x−1 = 2 − λ

2(3 − 2λ)
(x − x0),

(33)
x+1 = x − x−1.

Naturally, the population of the upper band vanishes at x = x0;
this is the Lifshitz point. For x = 0.1, x0 = 0.06, and λ = 1.23,
one finds x−1 = 0.03 and x+1 = 0.07. Hence the hole density
per cite at every even value of X is 2x+1 = 0.14 and at every
odd value of X it is 2x−1 = 0.06. However, this is not the
amplitude of the CDW yet.

All equations in the present paper are written in terms of
holes dressed by magnetic quantum fluctuations (magnetic
polarons). Hence x±1 are densities of the dressed holes. The
dressed hole has a finite size; therefore, the charge-density
modulation is smaller than that naively given by x±1. It is
known that the quasiparticle residue of the dressed hole is
about Z ≈ 0.4 (see, e.g., Ref. 37). This means that with the
probability Z ≈ 0.4 the hole resides at the same site as the
quasihole, and with the probability (1 − Z)/4 ≈ 0.15 the hole
resides at each of the four nearest Cu sites. Therefore the real
charge densities per site are

ρ+1 = 2

[(
Z + 2

1 − Z

4

)
x+1 + 2

1 − Z

4
x−1

]
≈ 0.12,

ρ−1 = 2

[(
Z + 2

1 − Z

4

)
x−1 + 2

1 − Z

4
x+1

]
≈ 0.08.

(34)

This gives the amplitude of the CDW. The estimate of the
amplitude is basedpurely on magnetic data. It depends mainly
on the position of the Lifshitz point, x0 = 0.06.

NQR was not used in the estimate (34). Nevertheless
the estimate is pretty much consistent with NQR data22

presented in Fig. 3. The NQR frequency shift with respect
to the frequency of the undoped sample,ν0 = 23.3 MHz,23 is
proportional to the local hole concentration21

νQ = 23.3 MHz + Bρ. (35)

The higher frequency NQR line at y = 6.56 is ν2 ≈ 30.3 MHz
(see Fig. 3). According to Eq. (34), the line corresponds
to ρ ≈ 0.12. Hence the constant B in Eq. (35) is B ≈
58 MHz/hole. Interestingly, the value of B is significantly
larger than that in La2−xSrxCuO4, B ≈ 20 MHz/hole,21 and in
HgBa2CuO4+δ , B ≈ 30 MHz/hole.38 Assuming that optimal
doping corresponds to ρ ≈ 0.14 and using Eq. (35), one finds
the optimal doping NQR frequency ν = 31.4 MHz. This value
is pretty close to νopt ≈ 31.6 MHz, which follows from Fig. 3
at y ≈ 7. According to (34) the lower frequency NQR line at
y ≈ 6.5 corresponds to ρ ≈ 0.08. Substituting this value in
Eq. (35), one finds the frequency ν = 27.9 MHz. Again, this
value is pretty close to the lower frequency line ν1 ≈ 27.8 MHz
that is shown in Fig. 3 at y = 6.56. Thus the amplitude of the
CDW determined from the position of the Lifshitz point is
fully consistent with the NQR data.

The simple potential (31) is literally applicable only to
y = 6.5. Obviously, there is no any modulation at y = 7 as the
rightmost Fig. 3 indicates. Away from y = 6.5 more complex
oxygen superstructures can appear.39 An assumption important
for the present work is that at 0 < x < 0.1 (6.20 < y < 6.5)
the superstructure (31) is dominating. NQR data22 for y = 6.4
and y = 6.45 presented in Fig. 3 support this assumption: there
are only two NQR lines that are only slightly broader than the
lines at y = 6.5.

VI. CONCLUSIONS

Small hole pockets and the associated spin spiral state
are generic properties of all cuprates at low doping. The key
point of the YBCO phenomenology additional to the generic
properties is splitting of the hole pockets into the lower band
and the upper band. This splitting together with splitting of
magnon to the acoustic and the optic mode provides stability
of the collinear aniferromagnetic order at doping below the
Lifshitz point at x ≈ 0.06. At doping below the Lifshitz point
only the lower band is populated. At higher doping the upper
band starts to populate and simultaneously the spin spiral starts
to develop.

At doping below the Lifshitz point the doping-induced
spin quantum fluctuations are pretty weak. This explains
why the zero-temperature staggered magnetization is close to
0.6μB , the maximum value allowed by quantum fluctuations
of localized spins. The developed theory perfectly reproduces
the weak decrease of the staggered magnetization with doping
observed experimentally.

While the zero-temperature staggered magnetization is
almost doping independent, the Néel temperature decays very
quickly from TN = 420 K at x = 0 to practically zero at
x ≈ 0.06. This quick decay is a consequence of the closeness
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to the Lifshitz point. Again, the theory reproduces very well
the doping dependence of the Néel temperature as well
as the observed temperature dependence of the staggered
magnetization at a given doping.

The band splitting (the hole pocket splitting) is induced
by the modulation of oxygen chains. The main period of the
modulation is two lattice spacings. Because of the perfect
nesting between the small hole pockets and the period of
the modulation, a small pseudopotential caused by the chains
is sufficient to induce the band splitting at about 60 meV.
The splitting causes the in-plane charge-density wave with a
significant amplitude dependent on doping.
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