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I. INTRODUCTION

The known family of superconducting materials con-
tains such diverse systems as conventional metals and
metallic alloys,1 high-Tc ceramics,2 fullerenes,3 organic
superconductors,4 doped diamond,5 heavy fermion metals,6

He-III (Ref. 7), symmetric nuclear matter,8–10 and very asym-
metric nuclear matter in neutron stars,11 Fermi gases,12 as well
as hypothetical condensates like the color superconductivity
of quarks.13 It is rather surprising how many features of
these systems have been successfully explained within the
mean-field BCS theory and its Green’s-function extension due
to Eliashberg. On the other hand, there is a growing list of
experimental facts which require the employment of more
elaborate theories.

Recent theoretical approaches to superconductivity range
from the trial wave functions of Gutzwiller type,14 to
improved Eliashberg theories,15 renormalization group ap-
proaches within path integrals,16 exact diagonalizations and
quantum Monte Carlo studies17 on simple models having
small size or infinite dimensions,18 and the many-body T -
matrix approximations19–25 and hybrid theories combining
the anomalous functions of Eliashberg type either with the
many-body T matrix26,27 or with the fluctuation-exchange
approximation.28–30

The formulation we present in the following is not of any
of the types mentioned above. We recall Watson’s multiple
scattering theory;31,32 his ideas were used by Fadeev33–35 and
Lovelace36 in their description of few-body systems. In these
small systems it is crucial that each subsequent collision of a
particle be with a different partner; this is because the two-
particle T matrix covers the binary interaction to all orders.37

This obvious physical principle is generally difficult to
implement in diagrammatic expansion methods, since gener-
ically the Feynman rules do not impose any conditions on
subsequent events; a summation obtains over all possible
partners. Similarly, one does not find any corresponding
restriction of partners in the renormalization group approaches.

A nonphysical repetition of collisions with the same partner
does not introduce problems for normal metals, because the

weight of repeated collisions in unrestricted summations scales
with the reciprocal number of particles. This is in contrast to
the case of superconductors, where the condensate breaks this
scaling behavior for pairing interactions and the nonphysical
repetition becomes a serious problem. In Ref. 38 one of the
present authors was able to eliminate the repeated collisions
from the Galtskii-Feynman approximation39 using Soven’s
concept of the effective medium.40 The Soven-type corrections
are negligible in the normal metal but become significant when
the condensate develops. The approach proposed in Ref. 38
applies only to systems with a nonretarded interaction. For
many of the systems listed above, however, the retarded nature
of interaction is an essential ingredient of a theoretical model if
the goal is to achieve quantitative agreement with experiment.
The main focus of the present paper is to derive a T -matrix
approximation engineered for many-fermion systems with
pairing mediated by bosons; that is, with a retarded interaction
of finite range.

It is desirable that the theory be conserving in the
Baym-Kadanoff sense.41 Methods which depend upon the
introduction of anomalous functions face great difficulty in
this respect, as the Baym-Kadanoff symmetry conditions are
very restrictive. It may be pointed out that anomalous functions
themselves generically violate particle-number conservation
on the microscopic scale. It will be seen shortly that in our for-
mulation anomalous functions are not introduced but instead
appear as a consequence of other less disruptive ingredients.
Anomalous functions may be considered an approximation of
the two-particle Green’s function when the T matrix develops
a singular separable term below the critical temperature.
This separable form constitutes a significant simplification,
confirming the vital role of anomalous functions in the theory
of superconductivity.

Theories starting with anomalous functions treat processes
forming the condensate nonperturbatively,42,43 while other
processes are covered by low-order approximations. In a con-
struction free of anomalous functions, all binary interactions
may be described to the same approximation, enabling the
expression of exact conservation laws.
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It is known that the superconducting gap cannot be obtained
in the framework of what is referred to as a self-consistent
Feynman diagrammatic expansion. It is also true that self-
consistency is a requirement of conserving theories. The prob-
lem this poses is parallel to the conserving-gapless dichotomy
in the theory of Bose condensates.26 In the approach of the
present paper, this problem is absent; the Baym-Kadanoff
conditions for conservation are satisfied, but not at the expense
of the superconducting gap.

In fact, Lorentz already in 1869 had some ideas which guide
us on the correct path; the problem with the theory may be
identified as the presence of nonphysical self-interactions, and
the idea is to excise these in a consistent way. Looking at the
issue from a different viewpoint, the issue can be understood
in terms of unphysical repeated collisions; elimination of
these is the major achievement of the Fadeev-Lavelace-
Watson multiple scattering approach, which is also capable
of producing a superconducting gap.38 The first approach is
more intuitive; the second approach supports more rigorous
justification. In this paper we present both before showing that
they are, in fact, equivalent. We refer to the resulting theory as
restricted self-consistent, or RSC.

The paper is organized as follows. In Sec. II we set the
stage by reviewing the T -matrix approaches, comparing the
Galitskii-Feynman39,44 (GF) and the Kadanoff-Martin19 (KM)
approximations. We discuss the issue of self-interactions in
the GF approach and the problem of the Thouless criterion
in the KM approach, thus illustrating the need for a novel
treatment suffering the problems of neither. In Sec. III we
introduce the idea of restricted self-consistency, by which
we intuitively construct a system of equations describing our
new approach while avoiding the complexity of the multiple
scattering theory; the result is the RSC theory. In Sec. IV we
begin to analyze this theory, showing the appearance of the
gap and also the normal-state coincidence with the GF theory.
The separable approximation of the singular part of the T

matrix is shown to lead to the Eliashberg theory. In Sec. V we
prove that the two-particle Green’s function in the RSC theory
satisfies the conditions of Baym and Kadanoff for theories to be
conserving on the microscopic level. Next, in Sec. VI we turn
our attention to a derivation of a T -matrix approximation from
the multiple scattering theory. After this is established, it is
shown that this actually amounts to a more rigorous derivation
of the same RSC theory constructed in Sec. III.

II. DIAGRAMMATIC T -MATRIX APPROACHES
AND PROBLEMS

In this section we begin by reviewing some ideas about
self-consistency and self-interaction and discuss the need for
restricted self-consistency. We proceed to consider the concept
of self-interactions mediated by the condensate, the issue of
repeated collisions, and the problem of mutual exclusivity of
self-consistency and appearance of the gap. The T -matrix
theory can either be constructed via a so-called partly self-
consistent or fully self-consistent diagrammatic expansion. We
conclude this section by discussing both of these and pointing
out why neither approach in fact produces a satisfactory theory,
a problem which we resolve in Sec. III.

A. Lorentz self-consistency

A standard starting point is the search for functionals of the
bare or dressed Green’s functions, �[G0] or �[G]. Actually,
neither G0 nor G is suited to describe a single collision isolated
from the series of collisions a given particle undergoes in the
many-body system. This problem of self-consistency was first
discussed by Lorentz in 1869. As his analysis is based on
the well-understood electric field and allows for a transparent
explanation, we review it here before applying such ideas
to superconductivity. Lorentz theory is covered in detail by
Chapter 13 of Kittel’s textbook.45

Lorentz considered a gas of N particles. The applied electric
field E0 polarizes this gas so that the electric field E inside has
a mean value given by E0 = (1 + χ )〈E〉, where 〈E〉 denotes
the field averaged over particle configurations. We consider a
conceptual correspondence; the applied field corresponds to
the bare line, the mean internal field to the dressed line.

The internal field at point r is a sum of the applied
field and polarization fields of individual particles, E(r) =
E0(r) + ∑N

i=1 Ei(r). The polarization field of particle i is
Ei(r) = Mi(r − ri)E(i)(ri), determined by the field E(i)(ri)
acting on this particle and the tensor Mi describing its
polarizability and propagation of the field.

It is customary to assume that the field acting on a particle
is equal to the internal field, E(i)(ri) ≈ E(ri). Such a step
corresponds to the fully self-consistent approximation; the
internal field is taken as the only physically relevant quantity
in the system. However, the polarization field diverges in
the dipole approximation, E(i)(ri) → ∞. In the very dilute
case one can remove the divergence using the applied field,
E(i)(ri) ≈ E0(ri), and eventually add contributions of two,
three, and more particles. This corresponds to the non-self-
consistent expansion.

The mean field is also free of divergences; therefore, it is
plausible to write E(i)(ri) ≈ 〈E(ri)〉 as a basis of a convergent
fully self-consistent approximation. Such an approximation
amounts to the use of an averaged field as a source in
internal processes and cannot generally be justified. The
correct procedure would be to evaluate the electric field for
each configuration and to perform the average only as a final
step.

The solution proposed by Lorentz is simple and elegant.
Since the particle does not act on itself, it is correct to exclude
its contribution, writing E(i)(ri) = E0(ri) + ∑N

j �=i Ej (ri). To
close the set of equations one needs E(i) as a function of
the mean internal field. To this end surrounding particles
are represented by the effective medium located everywhere
except for the vicinity of the particle i. The field acting on the
particle i is then the field inside a spherical cavity, E(i)(ri) =
〈E(ri)〉(1 + χ )/(1 + 2

3χ ). In this way Lorentz achieves self-
consistency, avoiding the action of a given particle on itself.

One can adapt this Lorentz principle of self-consistency to
the interacting Fermi liquid in two different ways. First, one
can view fermions as Lorentz particles and their interaction as
the internal field. The Lorentz self-consistency then eliminates
self-interaction; this is discussed in Sec. III. The second
approach is slightly more involved. The wave function of a
selected particle plays the role of the electric field propagating
in the medium, and is scattered by all other particles. This
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(a) (b) (c)

FIG. 1. Condensate-mediated self-interaction. Arrows represent
bare fermionic Green’s functions G0 and wavy lines are boson-
mediated interactions. (a) Schematic picture of four interacting
particles of initial momenta k, p, q, and m. Due to the Pauli principle
all particles are in different states, in particular m �= k and q �= k, and
p �= m. (b),(c) Corresponding Feynman diagrams for the Green’s
function of the particle k and for the thermodynamical potential. For
lines closed into loops momenta are summed over with no restriction.

approach, eliminating nonphysical repetition of collisions, is
discussed in Sec. VI.

B. Self-interaction mediated by the condensate

A self-interaction can be of various types; here we focus on
a self-interaction which is mediated by the condensate. Before
we discuss this complex process, it is worthwhile to recall
the simple self-interaction appearing in the familiar context
of the mean field, when the true interaction is approximated
by the scalar potential due to all electrons. In Figs. 1(b) and 1(c)
one can see the lowest order of the mean-field potential given
by the potential line and loop of summation index m.

The relative error due to the mean-field self-interaction
depends on the size of the system. In a single atom, each
electron is bounded by a potential which asymptotically
approaches the Coulomb potential of the remaining ion. In the
mean-field approximation, however, the atom is neutral and
the binding potential asymptotically approaches zero. In the
infinite system with delocalized electrons the self-interaction
is negligible. It becomes essential, however, when the infinite
system contains bound states.

The mean-field self-interaction cancels with a correspond-
ing “self-exchange” of the Fock term. For details, see Ap-
pendix A . Although it is understood that eventually, due to
higher-order diagrams, all self-interactions will compensate
each other and the correct theory will emerge, such a
formulation is not viable for practical approximations. We see
in the next section that it is far more profitable to reconsider
the summation rule itself and to exclude the self-interaction
directly as it is done in the original theory of Hartree.

A self-interaction mediated by the condensate is shown
in Fig. 1. The summation procedure does not respect that
m �= k, yielding the Hartree self-interaction at m = k. Now
let us focus on the two-loop contribution in the upper part,
which contains a more subtle self-interaction. We assume that
p �= k, which is always guaranteed for separable potentials of
BCS type coupling only spin ↑ with spin ↓. Aside from their
mutual interaction, particles p and k also interact with the
other particles in the system. One such background particle is

q, and the sum over q does not respect the condition q �= k,
leading to a self-interaction mediated by particle p. In the
normal metal such mediated processes are negligible, but in
the superconductor the condensate leads to enhancement of
binary interactions with p = −k and q = −p. The weight of
contributions with q = k is thus finite, so that such mediated
processes may no longer be ignored.

We note that the q-loop merely dresses the p line.
Expansions based on dressed Green’s functions do not include
the diagram in Fig. 1(b); its contribution is hidden inside the
self-consistent scheme. In the non-self-consistent expansion
one can eventually avoid this problem by demanding q �= k.
This implies that the Green’s function in the p-loop is not
dressed by all processes; its value does not include interaction
with the state k. It thus becomes manifest that in the self-
consistent expansion we need some concept of restricted
self-consistency.

C. Repeated collisions

Figure 1 includes two sequential interactions of particle
k with particles p and m. Since the T matrix describes the
binary collision between k and p to infinite order, in the
subsequent collision the particle k must actually encounter
a different, new partner. However, expanding the dressed
Green’s function in powers of the self-energy G = G0 +
G0�G0 + G0�G0�G0 + · · ·, one can see that sequential
events are described by successive products of the self-energy
�. By definition, the self-energy includes all processes and
there is no restriction with respect to the previous � factor.

Mediated self-interactions and repeated collisions are
closely connected concepts. Figure 1(c) shows the diagram
for the thermodynamic potential from which one can generate
the diagram of Fig. 1(b). The contribution with p = m can be
classified either as a self-interaction mediated by particle k, or
as a repeated collision along the propagation line of particle
k. Similarly, q = k is either a mediated self-interaction or a
repeated collision on the p line. We shall indeed find that a
restriction of mediated self-interaction is in fact equivalent to
an elimination of repeated nonphysical collisions.

D. Dichotomy of self-consistency and gap

In self-consistent approximations the self-energy �[G]
is a functional of the dressed Green’s function G. The T

matrix T ∼ δ�/δG becomes divergent below the critical
temperature in the pairing channel; this is the element
connecting a particle of energy, momentum, and spin k =
(ω,k, ↑) with its conjugate −k = (−ω, − k, ↓). Keeping
the divergent term only, �(k) ≈ T divG(−k), the Dyson
equation G = G0 + G0�G is easily solved, giving G =
(1 −

√
1 − 4T div/(ω2 − ξ 2

k ))(ω + ξk)/(2T div). This peculiar
dressed Green’s function exhibits no gap. In the bare Green’s
function G−1

0 = ω − ξk we have used a symmetric band
structure ξ−k = ξk = k2/2m − μ for simplicity.

The gap easily emerges in the non-self-consistent approx-
imation �[G0] with the T matrix T0 ∼ δ�/δG0. Keeping
the divergent term, �(k) ≈ T div

0 G0(−k), the Dyson equation
results in the Gor’kov Green’s function G−1 = ω − ξk −
T div

0 /(−ω − ξk) with two poles at ω = ±
√
ξ 2
k − T div

0 . The
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B. ŠOPÍK et al. PHYSICAL REVIEW B 84, 094529 (2011)

divergent element of the T matrix is a separable function which
splits into products of two gap functions T div

0 = −�∗�.
The fundamental problems of the self-consistent

approximation stem from the scale dependence of the
Brillouin-Wigner self-consistent expansion scheme, while
the non-self-consistent perturbative expansion of Rayleigh-
Schrödinger type is size-consistent.46 As already mentioned,
approximations which produce errors for few-body systems
do so also in the superconducting state because of condensate-
assisted processes.

The gap is a necessary part of any theory of superconductiv-
ity. The self-consistency is required only in some situations, for
example, the Thouless criterion of the superconducting transi-
tion, or by the closely related existence of a Goldstone mode.26

What is less well known is that the missing self-consistency
also causes trouble in microscopic studies of nonequilibrium
superconductivity beyond linear response. At some stage
any study reaches the problem of a “non-self-consistent”
distribution which is most commonly circumvented by an
(often implicit) assumption of local equilibrium.

E. Galitskii-Feynman versus Kadanoff-Martin

The GF and the KM approximations are compared in
diagrammatic representation in Fig. 2. Both are based on
the many-body T matrix in the ladder approximation. As
one can see, the KM approximation is nothing more than a
simplified version of the GF approximation, neglecting an
exchange and possessing only a bare line in the closed loop
of self-energy, and in fact the exchange channel contributes
only if the particles have parallel spins. Nevertheless, these

FIG. 2. T -matrix approximations in diagrams. Both approxima-
tions have a self-energy constructed from the many-body T matrix.
The interaction carried by boson propagators, shown by wavy
lines, is included in the ladder approximation. Thick arrows are
self-energy dressed Green’s functions, while thin arrows are bare
Green’s functions.

two approximations are quite different with disjunct fields of
application.

The GF approximation is used in nuclear physics for
both equilibrium47–49 and nonequilibrium50,51 problems, in the
theory of moderately dense gases52 and liquid He-III (Ref. 53),
and in studies of electron-electron correlations in molecules
and solids.54–58 There exist several reasons why the KM
approximation was never adapted to these problems. The most
important one is that the conservation laws are guaranteed only
if the T matrix is symmetric with respect to the interchange of
the upper and the lower line of the intermediate propagators;41

thus, the lack of symmetry in the KM approximation is viewed
as unjustified and unacceptable.

The KM approximation is used exclusively in the theory of
superconductivity.21,23,59–66 It describes the superconducting
gap on the level of mean-field theory and covers the lowest-
order fluctuations. The GF approximation cannot be employed
for superconductors in spite of its superiority in other fields.
Although it becomes unstable at the critical temperature67 and
the T matrix diverges there, the GF self-energy constructed
from the T matrix fails to describe the superconducting
gap.19,68 This is the general problem of self-consistent theories
discussed in the previous section.

The paradox that the worse approximation (KM) yields
the gap while the better one (GF) fails in this regard was
first noticed by Prange69 and confirmed by Wild,68 prior to
the work of Kadanoff and Martin.19 The Prange paradox70

is not common knowledge and some authors (see, e.g.,
Ref. 71) report a superconducting gap obtained within the
GF approximation. Upon closer inspection one finds that in
simplification of some formulas, the bare Green’s function is
used to close loops,22 a step which, in fact, turns the GF into
the KM approximation.

F. Thouless criterion

The connection between formal perturbation theory and
BCS-type theories has been discussed by Thouless.72 It was
found that when the phase transition is approached from above,
the critical temperature can be determined through a criterion
of stability of the normal state; a divergence of the two-particle
T -matrix signals the transition. Thouless evaluated the T ma-
trix from non-self-consistent Green’s functions, but mentioned
that corrections to the single-particle functions are desirable.

The Thouless criterion also follows from Goldstone’s
theorem.26 The superconducting state is degenerate with
respect to the complex phase of the gap. According to
Goldstone’s theorem, there must be a corresponding branch
of collective excitations with energy going to zero in the
long-wavelength limit. The gap appears as a divergence of the
T matrix at the frequency and momentum of this Goldstone
mode. For a constant complex phase, this divergence is at
zero frequency and momentum. At the critical temperature
the divergence gives the Thouless criterion for the nucleation
of superconductivity. The variational nature of this approach
demands that all Green’s functions in the T matrix be self-
consistent.26

True self-consistency is essential. Beach, Gooding, and
Marsiglio compared the self-consistent Thouless criterion with
its non-self-consistent approximation in the attractive Hubbard
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model.22 They report that the non-self-consistent criterion
yields a finite critical temperature while the self-consistent
one predicts a zero-temperature transition. Following recent
common use, by “Thouless criterion” we always mean its fully
self-consistent form.

When formulated via the response to the complex phase
modulation as above, satisfaction of the Thouless criterion
may be considered a transport problem. Any system away
from equilibrium requires self-consistent distributions; the
non-self-consistent functions can be used only under the
assumption of local equilibrium, by which one typically loses
control over neglected terms. As an example we mention the
normal-current contribution to the time-dependent Ginzburg-
Landau equation, derived from the Thouless criterion73 and
shown to contribute already at the level of linear response.74

It seems that neither the fully self-consistent nor the
partly non-self-consistent diagrammatic approach can satisfy
essential theoretical criteria for a fundamental theory of
superconductivity. In the following section we introduce the
RSC theory and begin to show how restricted self-consistency
solves this problem.

III. ELIMINATED SELF-INTERACTIONS

We derive here a complete set of equations describing
superconductivity, which constitute the RSC theory. This is
done via an intuitive approach involving simple removal of
the self-interaction mediated by the condensate, thus allowing
formation of the gap.

A. Restricted self-energy

When two particles interact, their total energy and
momentum Q ≡ (�,Q) is conserved; we may use this
Q to label binary processes. Dressing of a particle of
four-momentum k is given by the self-energy �↑(k), which is
a sum over interacting pairs,

�↑(k) =
∑
Q

(
σQ↑(k) + σ

trp
Q↑(k) + σ

exg
Q↑ (k)

)
. (1)

Here σQ↑(k) is a singlet contribution of single Q and∑
Q · · · ≡ ∑

�

∑
Q · · · denotes sums over bosonic Matsubara

frequencies and discrete momenta in the quantization volume
V . Function σ

trp
Q↑(k) is a triplet contribution and σ

exg
Q↑ (k) is

its exchange counterpart. We assume singlet pairing and
explicitly treat only the singlet term.

The self-energy represents binary interactions averaged
over all possible many-body wave functions. This corresponds
to the susceptibility in the Lorentz problem. Now we focus on
the binary interaction in which the total four-momentum is Q.
All other processes are treated as a background, represented
by a sum,

�Q↑(k) =
∑

Q′ �=Q

σQ′↑(k) +
∑
Q′

(
σ

trp
Q′↑(k) + σ

exg
Q′↑(k)

)
, (2)

over all modes but the Q mode. The corresponding RSC
Green’s function is

GQ↑(k) = G0
↑(k) + G0

↑(k)�Q↑(k)GQ↑(k), (3)

where G0
↑ is the bare Green’s function.

In the spirit of the Lorentz approach we can also express
the restricted self-energy via a “cavity” in the effective
medium:

�Q↑(k) = �↑(k) − σQ↑(k). (4)

Since the dressed Green’s function is given by the Dyson
equation,

G↑(k) = G0
↑(k) + G0

↑(k)�↑(k)G↑(k), (5)

we can express the RSC Green’s function via the dressed
one,

GQ↑(k) = G↑(k) − G↑(k)σQ↑(k)GQ↑(k). (6)

This will allow us to close the self-consistency for the dressed
Green’s function avoiding the self-interaction and problems
with the gap.

For the sake of clarity, we have written equations for only
a selected spin orientation; the complementary equations are
obtained simply by flipping all spins.

B. T matrix

The contribution of the Q mode to the self-energy reads

σQ↑(k) = kBT

V
T↑↓(k,Q − k; k,Q − k)GQ↓(Q − k), (7)

and similarly,

σ
trp
Q↑(k) = kBT

V
T↑↑(k,Q − k; k,Q − k)G↑(Q − k). (8)

The exchange channel reads

σ
exg
Q↑ (k) = kBT

V
T↑↑(k,Q − k; Q − k,k)G↑(Q − k). (9)

We have used the RSC Green’s function GQ↓(Q − k) to close
the loop of the singlet channel (7). In this way we have
eliminated the interaction of the (Q − k; ↓) particle with the
(k; ↑) particle and therefore the mediated self-interaction of
the (k; ↑) particle.

To disallow self-interactions in intermediate processes the
T matrix must be constructed as

T↑↓(k,Q − k; p,Q − p)

= D(k,Q−k; p,Q−p) − kBT

V

∑
k′

D(k,Q−k; k′,Q−k′)

×G↑(k′)GQ↓(Q − k′)T↑↓(k′,Q − k′; p,Q − p), (10)

where D is a bosonic interaction line with interaction vertices
included. The sum runs over momenta and fermionic Matsub-
ara frequencies. We follow the sign convention of Ref. 75,
Sec. 14.2, with D becoming the interaction potential in the
nonretarded limit. The triplet T matrix T↑↑ is analogous, with
both Green’s functions dressed,

T↑↑(k,Q − k; p,Q − p)

= D(k,Q−k; p,Q−p) − kBT

V

∑
k′

D(k,Q−k; k′,Q−k′)

×G↑(k′)G↑(Q − k′)T↑↑(k′,Q − k′; p,Q − p). (11)
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The set of equations is closed by the relation for the density
of particles,

n↑ = kBT

V

∑
k

G↑(k)e−iωη, (12)

with η infinitesimal and positive. This relation determines the
chemical potential; in equilibrium metals the electrons of spin
↑ and ↓ have identical chemical potential, but in transient
systems two different chemical potentials might be defined by
this relation.

The set (1)–(12) constitutes the RSC theory. This is the main
result of the present paper, and provides a complete description
of superconductivity. We will return to its derivation later
in Sec. VI. We take a moment to remind the reader that
while this set of equations describing the RSC theory can
be represented diagrammatically, it must be remembered that
the usual Feynman rules have been modified.

IV. GAP AND SELF-CONSISTENCY

We now endeavor to show that the RSC theory constructed
in the preceding section not only yields the gap, but also
satisfies the Thouless criterion. We then prove that it exhibits
the two-particle symmetries which are the Baym and Kadanoff
criteria for conserving theories.

A. Gap equation

In the superconducting state there is a singlet channel
in which the T matrix becomes singular. In equilibrium
this divergence appears at zero energy, � = 0, and in the
absence of currents it is at zero momentum, Q = 0. This is
the mode Q = 0 ≡ (0,0). Its T matrix is separable44,67 and
diverges proportional to the volume so that this single-mode
contribution to the sum is finite in the limits V → ∞ and
T → 0:

kBT

V
T↑↓(k, − k; p, − p) = −φ∗(k)φ(p). (13)

The zero-mode contribution to the self-energy has a finite
value,

σ0↑(k) = −φ∗(k)G0↑(−k)φ(k). (14)

According to (4), the self-energy is a sum of the zero-mode
contribution and the restricted self-energy,

�↑(k) = −φ∗(k)G0↑(−k)φ(k) + �0↑(k). (15)

The singularity thus does not enter the RSC Green’s function
G0↑. One can consider G0↑ as the Green’s function of the
normal metal.

Using (6), the dressed Green’s function can be expressed
via the RSC propagator

G↑(k) = G0↑(k) − G0↑(k)φ∗(k)G0↓(−k)φ(k)G↑(k). (16)

This equation shows that φ(k) equals the energy- and
momentum-dependent anomalous self-energy, which gives the
superconducting gap.

To connect with the Eliashberg theory we assume the
system to be symmetric in spins, G0

↓(k) = G0
↑(k), and have

no supercurrent so that G0
↑(ω, − k) = G0

↑(ω,k). Splitting the
restricted self-energy into its even and odd parts,

χ (k) = 1

2
(�0↑(k) + �0↓(−k)), (17)

ω(Z(k) − 1) = 1

2
(�0↑(k) − �0↓(−k)), (18)

one can express Eq. (16) as

G−1
↑ (k) = ω − ξk − �0↑(k) + φ∗(k)φ(k)

−ω − ξk − �0↓(−k)

= ωZ(k) − ξk − χ (k) + φ∗(k)φ(k)

−ωZ(k) − ξk − χ (k)
.

(19)

The gap in energy spectrum is sharp for real χ (k), when it has
the renormalization familiar from the Eliashberg theory,1

�(k) = φ(k)

Z(k)
. (20)

The anomalous self-energy itself follows from the equation
for the T matrix (10) and the separability (13),

φ∗(k) = −kBT

V

∑
k′

D(k, − k; k′, − k′)

×G↑(k′)G0↓(−k′)φ∗(k′). (21)

Deriving (21) we have used that D/V → 0 in the thermo-
dynamic limit. This gap equation is a modified Eliashberg
equation for the off-diagonal self-energy.76

At the critical line the gap vanishes and the nucleation
kernel approaches the normal state value, DGG0 → DGG.
Here we thus obtain the T matrix made of fully self-consistent
Green’s functions. We show that the RSC theory coincides
with the GF theory in the normal state of an infinite system.
That it satisfies the Thouless criterion discussed in Sec. II F is
then a direct consequence of this general limit.

In the normal state, the T matrix has a finite value, T ∼
D. According to (7) the single-mode contribution to the self-
energy vanishes in the thermodynamic limit, σQ↑ ∝ 1/V →
0. The RSC Green’s function in this case is equal to the dressed
Green’s function, GQ↑ → G↑, and the RSC theory may be
identified with the GF approximation.

B. Eliashberg equation

The Eliashberg equation is a simple approximation of the
present RSC theory: The reduced self-energy is approximated
by the Migdal self-energy,

�0↓(k) ≈ �M
↓ (k)

= kBT

V

∑
Q

D(k,Q − k; Q − k,k)G↑(Q − k). (22)

The Migdal self-energy is included in the T matrix as its
first-order approximation, T ≈ D, of the exchange channel;
one may compare the summation in (22) with expression (9).
It is easy to inlcude the singlet and direct-triplet channel at
first order since they yield the mean field of Hartree type.
This contribution is usually ignored for the phonon-mediated
interaction, however.
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We see that in the superconducting state the RSC
theory closely parallels the Eliashberg theory, albeit with
some differences. In the RSC theory all processes, whether
they be normal collisions or Cooper pairing, are treated within
the same T -matrix approximation. In the Eliashberg theory the
normal processes are in the Migdal approximation while the
pairing is covered by equations for the φ which is described
by the approximation corresponding to the T matrix.

V. TWO-PARTICLE SYMMETRY AND CONSERVATION
LAWS

In this section we demonstrate that the RSC theory satisfies
symmetry conditions formulated by Baym and Kadanoff41 as
necessary for any theory to be conserving. It is important
to qualify this by noting that these conditions alone are not
sufficient; it cannot thereby be claimed that the theory is
conserving in the Baym-Kadanoff sense, since the symmetries
are actually required to obtain in general, while our RSC theory
is limited to equilibrium.

A. Baym-Kadanoff conditions

Let us rewrite both conditions of Baym and Kadanoff in
the present notation. The first BK condition states that the
self-energy is linked to the two-particle Green’s function G in
two equivalent ways,

�↑(k)G↑(k)

=
(

kBT

V

)2 ∑
Q,p

D(k,Q − k; p,Q − p)[G↑↑(p,Q

−p; k,Q − k) + G↑↓(p,Q − p; k,Q − k)], (23)

G↑(k)�↑(k)

=
(

kBT

V

)2 ∑
Q,p

D(p,Q − p; k,Q − k)[G↑↑(k,Q

− k; p,Q − p) + G↑↓(k,Q − k; p,Q − p)]. (24)

The second BK condition demands that the two-particle
Green’s function be symmetric with respect to the interchange
of the upper and lower lines:

G↑↑(k,Q − k; p,Q − p) = G↑↑(Q − k,k; Q − p,p), (25)

G↑↓(k,Q − k; p,Q − p) = G↓↑(Q − k,k; Q − p,p). (26)

Though conditions (23)–(26) provide in the equilibrium
case only limited indication of the validity of full conservation
laws, it is significant that the RSC theory passes this test; one
can easily show that the other theories we have mentioned fail
to satisfy the BK conditions even in equilibrium. For example,
the KM approximation does not satisfy the Baym-Kadanoff
criterion (26). It should be noted that the precursor of the
present RSC theory in Ref. 38 also fails to satisfy the symmetry
in (26).

B. Two-particle Green’s function

The self-energy can be split into triplet and singlet channels,
and the symmetries for each contribution tested separately. The
GF approximation satisfies both Baym-Kadanoff conditions.41

The triplet channel in our theory is the same as in the GF theory
and therefore satisfies (23), (24), and (25). We thus focus on
the singlet channel in which the RSC theory differs from the
GF approximation.

The condition (23) and (24) links the single-particle Green’s
function G with the two-particle function G. In the present
approximation the two-particle function is related to the T -
matrix through

G↑↓(k,Q − k; p,Q − p)

= G↑(k)GQ↓(Q − k)δ(k − p) − G↑(k)GQ↓(Q − k)

×G↑(p)GQ↓(Q − p)T↑↓(k,Q − k; p,Q − p). (27)

Substituting (27) into (23) and (24) one may check that both
formulas yield the singlet self-energy given by relations (1),
(7), and (10).

C. Two-particle symmetry

Condition (26) is somewhat nontrivial, demanding that the
singlet two-particle function be invariant under interchange of
the upper and lower lines. This symmetry is not obvious from
expression (27).

First we show that the T matrix (10) is symmetric with
respect to the interchange of the upper and lower lines

T↑↓(k,Q − k; p,Q − p) = T↓↑(Q − k,k; Q − p,p), (28)

in spite of the fact that the upper line is constructed from RSC
Green’s functions while the lower line uses dressed Green’s
functions.

The T matrix is a functional of the interaction T [D], which
can be expanded in powers. We prove the symmetry (28) to
a general order n. First, we link powers of the T matrix with
powers of the two-particle Green’s function (27) using

T↑↓ = D − V

kBT

∑
D · G↑↓ · D, (29)

which follows from (10) and (27). The T matrix to order n in
powers of D thus depends on G to the power of n − 2.

To prove the symmetry (28) we use induction. It is apparent
that the symmetry (28) is satisfied for two lowest orders
T (1) = D and T (2) = −DG(0)

↑↓D, where G(0)
↑↓ = G0G0. We

assume that the T matrix is symmetric up to order n − 2 and
show that the order n − 2 two-particle Green’s function is
then also symmetric. According to relation (29), this implies
symmetry (28) to order n.

The Q-mode contribution to the self-energy (7) can be
rearranged as

σQ↑(k)GQ↑(k)

= kBT

V
T↑↓(k,Q − k; k,Q − k)GQ↓(Q − k)GQ↑(k)

= kBT

V
T↓↑(Q − k,k; Q − k,k)GQ↓(Q − k)GQ↑(k)

= GQ↓(Q − k)σQ↓(Q − k). (30)

This relation is based on symmetry (28); therefore, it is justified
to order n − 2.
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Using relation (30) we can rearrange the product of two
single-particle Green’s functions

GQ↑(k)G↓(Q − k)

= G↑(k)[1 − σQ↑(k)GQ↑(k)]

× [1 + G↓(Q − k)σQ↓(Q − k)]GQ↓(Q − k)

= G↑(k)GQ↓(Q − k)[1 − σQ↓(Q − k)GQ↓(Q − k)]

× [1 + G↓(Q − k)σQ↓(Q − k)]

= G↑(k)GQ↓(Q − k). (31)

In the first step we have used (6) for Green’s functions G↓(Q −
k) and GQ↑(k). In the second step we have substituted from
Eq. (30). The last rearrangement follows again from (6).

Using the relation (31) in Eq. (27) one finds that from
the symmetry of the T -matrix T follows the symmetry of the
two-particle Green’s functionG. We have thus proved that from
the symmetry of T up to order n − 2 follows the symmetry of
G to the same order. Finally, using G symmetric up to order
n − 2, from Eq. (29) one finds that the T matrix is symmetric
up to order n. We have thus proved the symmetry (28) to all
orders.

From the symmetry of the T matrix follows the symmetry
(26) of the two-particle Green’s function. In equilibrium,
the RSC theory thus satisfies the conditions of Baym and
Kadanoff.

VI. MULTIPLE SCATTERING APPROACH

In the above derivation we have removed the self-
interaction using the idea of Lorentz regarding the inter-
action potential. The theory can, in fact, be justified quite
systematically using the Fadeev-Lovelace-Watson multiple
scattering expansion31–37 in which the Lorentz idea is applied
to the wave function of a particle. One may note that
while the multiple scattering theory approach in Ref. 38
was limited to nonretarded interactions, the following pre-
sentation is applicable to a general interaction mediated by
bosons.

A. Coherent propagation

In the multiple scattering theory one assumes that it is
possible to identify collisions of a selected particle. In the
system of many identical particles this is obscured by the
presence of exchange processes. Fortunately, we can trace
the single-particle history in coherent propagation, which is
essential for the formation of the gap.

Expanding the dressed Green’s function (5) in pow-
ers of the self-energy, G↑(k) = G0

↑(k) + G0
↑(k)�↑(k)G0

↑(k) +
G0

↑(k)�↑(k)G0
↑(k)�↑(k)G0

↑(k) + · · · one can see that be-
tween interactions an electron returns to its starting state
(k, ↑). The Dyson equation thus describes only coherent
propagation.

In the Feynman expansion one can associate each self-
energy contribution σQ↑(k) with an encounter of a parti-
cle in state (k, ↑) with a particle in state (Q − k, ↓). In
coherent propagation both particles return to their initial
states, as can be seen in the arguments of the T matrix in

(7). Following Landau we call such encounters zero-angle
collisions.

The product G0
↑�↑G0

↑�↑G0
↑ represents two subsequent

zero-angle collisions. In the GF approximation such a product
includes terms G0

↑(k)σQ↑(k)G0
↑(k)σQ↑(k)G0

↑(k) in which the
particle in the (k; ↑) state encounters the particle in the
(Q − k; ↓) state. Since after the first encounter both particles
returned to their initial states, the second self-energy thus
describes an encounter of the same pair of particles. Such
repeated zero-angle collision is, in fact, incompatible with the
T matrix because its ladder approximation already covers the
binary interaction to infinite order. Finite states of a completed
collision given by the T matrix cannot serve as initial states
for the same process again.

B. Effective medium

The repeated zero-angle collision is a double-count equiv-
alent to the molecule polarized by its own radiation in the
Lorentz problem and we can remove it with similar theoretical
tools. Application of the Lorentz idea to fermions was put
forward by Watson,31,32 who formulated the perturbative
expansion in terms of binary T matrices showing that repeated
collision must be avoided. His multiple-scattering approach
was further developed in two directions. Fadeev33–35 and
Lovelace36 have worked with detailed applications to small
systems. Soven40,77,78 has applied the multiple-scattering
approach to scattering of electrons on static random potential
in alloys. We adopt Soven’s concept of self-energy.

In parallel with the susceptibility, the self-energy can be
viewed as an auxiliary complex potential which represents
the mean effect of true collisions. Thus, instead of adding
progressively more diagrams we look for a condition which
determines the self-energy from a physical rather than mathe-
matical viewpoint.

We focus on the (k; ↑) particle making a zero-angle collision
in the Q mode. Briefly, we want to evaluate the self-energy
contribution σQ↑. This process is described in detail by the
T matrix T↑↓(k,Q − k; k,Q − k). All other processes form an
environment in which this one happens and are thus covered
on the level of effective medium. In the spirit of Lorentz cavity
we subtract the contribution σQ↑ from the self-energy. The
effective medium is thus described by the restricted self-energy
�Q↑ for the ↑ component and by the complete self-energy �↓
for the ↓ component.

The T matrix describes an interaction of two particles to
infinite order. Since we focus on the (k; ↑) particle, we have to
average over the probability to find a collision partner in the
(Q − k; ↓) state,

sQ↑(k) = kBT

�
T↑↓(k,Q − k; k,Q − k)G↓(Q − k). (32)

The collision in the Q mode is not to be repeated; therefore,

G↑(k) = GQ↑(k) + GQ↑(k)sQ↑(k)GQ↑(k). (33)

The scattering equation (33) defines the self-energy indirectly.
Comparing (33) with (6) we find that the Q mode contribution
to the self-energy is given by

σQ↑(k)

1 − σQ↑(k)GQ↑(k)
= sQ↑(k). (34)
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Finally we need the many-body T matrix. Since our back-
ground is described by �Q↑ and �↓, the ladder approximation
of the many-body T matrix

T↑↓(k,Q − k; p,Q − p)

= D(k,Q−k; p,Q−p)−kBT

�

∑
k′

D(k,Q − k; k′,Q−k′)

×GQ↑(k′)G↓(Q − k′)T↑↓(k′,Q − k′; p,Q − p) (35)

is constructed from GQ↑ and G↓. The set of equations (1)–(6),
(8)–(9), (11), and (34)–(35) is closed.

C. Relation to the eliminated self-interaction

The set of equations (1)–(6), (8)–(9), (11), and (34)–(35)
is, in fact, equivalent to the set of equations (1)–(11) which
we derived intuitively earlier in the paper and which define the
RSC theory. To see this, we use the symmetry (31) and readily
rewrite (35) to obtain (10). The two definitions of the T matrix
are thus equivalent.

It remains to show that the self-energy is identical. From
Eq. (34) we find

σQ↑(k) = sQ↑(k)(1 − σQ↑(k)GQ↑(k))

= sQ↑(k)(1 − σQ↓(Q − k)GQ↓(Q − k))

= kBT

�
T↑↓(k,Q − k; k,Q − k)

×G↓(Q − k)(1 − σQ↓(Q − k)GQ↓(Q − k))

= kBT

�
T↑↓(k,Q − k; k,Q − k)GQ↓(Q − k); (36)

therefore, the expressions (34) and (7) yield the same self-
energy. In the rearrangement we have used (30) and (32).

D. Comments on choice of restriction

Finally, we want to comment on the relation of the RSC
theory to the derivation in Ref. 38. Here we identify the
mode via energy and momentum Q ≡ (ω,Q). In Ref. 38
the mode was identified only via momentum Q, which
applies only to nonretarded interactions and leads to different
results.

In particular, the identification of a mode via momentum
does not provide a two-particle Green’s function symmetric
with respect to interchange of the upper and lower lines.
The theory in Ref. 38 thus does not satisfy the condition
(26) of Baym and Kadanoff and cannot be converted into a
more convenient form with restricted self-consistent Green’s
functions in the closed loop.

Apparently, one can derive a theory with restricted self-
consistency in the loop and the mode identified via momentum
Q by elimination of mediated self-interactions in a manner
similar to the one employed in Sec. III A. A set of equations
obtained in this way is not identical to the theory in Ref. 38.
Differences are minor, however. The two approaches become
identical in the single-mode approximation leading to the same
equation of BCS type.

The RSC theory is restricted to equilibrium. In contrast,
the theory in Ref. 38 is based exclusively on double-time

functions, which allows one to extend it to nonequilibrium
systems using either Kadanoff-Baym or Keldysh machinery.

Extension of the present RSC theory cannot be achieved by
a straightforward application of the Kadanoff-Baym method.
This is because the Q-mode contribution σQ↑(k), depends on
two four-momenta, bosonic Q ≡ (�,Q) and fermionic k ≡
(ω,k). Functions of two frequencies correspond to three-time
functions which have six analytic parts in the nonequilibrium
extension. This makes the putative nonequilibrium version
prohibitively complicated.

VII. SUMMARY AND CONCLUSION

Self-consistent theories are unviable for superconductivity,
as they cannot yield a superconducting gap. So-called non-
self-consistent approaches produce a gap, but can be shown
to be nonconserving, failing to satisfy the necessary Baym-
Kadanoff conditions. Applying principles of the multiple-
scattering theory to the T -matrix approximation, we have
derived a theory which describes the superconducting gap,
the structure of this theory being similar to a renormalized
KM approximation, but sporting two major improvements.
First, in the normal state the well-tested GF approximation is
recovered. Since the GF T matrix depends on self-consistent
propagators, the RSC theory satisfies the Thouless criterion.
Second, the two-particle propagator is symmetric with respect
to interchange of the two lines in its defining Feynman
diagram. This symmetry allows the RSC theory to satisfy the
Baym-Kadanoff requirements for a conserving theory. Finally,
though the RSC theory may be approximated by the Eliashberg
theory, it may be noted that due to the more elaborate self-
consistency of the RSC theory, superconductivity conditions
in strongly interacting systems are likely to be different from
the Eliashberg theory.
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APPENDIX A: MEAN-FIELD SELF-INTERACTION AND
HARTREE APPROXIMATION

This appendix follows the introductory part of Slater’s
paper79 in which was simplified the Hartree-Fock method,
constructing the basis of the local-density approximation.
Two simplifications are adopted within this section. First,
we assume a ground state of N particles described by a
single many-body wave function. Second, the interaction
potential is of the Coulomb type. The Hamiltonian is
thus a sum of the single-particle part and the interaction,
H = ∑

i H
(1)(xi) + ∑

k<i V (xi − xk).
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A. Hartree equations

The Hartree equations are obtained by minimizing the
energy on the class of separable wave functions of the form

WH =
∫

dx1. . .dx2ψ̄1(x1). . .ψ̄N (xN )HψN (xN ). . .ψ1(x1),

(A1)

where xi are coordinates, and a summation over spins is
understood. Varying the ψ functions in the Hartree energy
(A1) one finds

Eiψi(x)

= H (1)ψi(x) +
[ ∑

k �=i

∫
dx ′ψ̄k(x ′)ψk(x ′)V (x − x ′)

]
ψi(x).

(A2)

Since the particle does not interact with itself, the term with
k = i is excluded from the sum.

The mean potential

φ(x) =
∑

k

∫
dx ′ψ̄k(x ′)ψk(x ′)V (x − x ′) (A3)

includes contributions from all electrons. The Hartree equa-
tions can be written in terms of the mean potential as

Eiψi(x) = H (1)ψi(x) + φ(x)ψi(x)

−
[∫

dx ′ψ̄i(x
′)ψi(x

′)V (x − x ′)
]

ψi(x). (A4)

Briefly, the Hartree approximation is given by the mean
potential corrected by the self-interaction.

B. Hartree-Fock equations

The Hartree-Fock equations are obtained by minimizing the
energy, on the class of antisymmetrized separable functions of
the form

WHF = 1

N !

∫
dx1 . . . dx2

×
∣∣∣∣∣∣
ψ̄N (xN ). . .ψ̄N (x1)

. . . . . .. . .. . . . . .

ψ̄1(xN ). . .ψ̄1(x1)

∣∣∣∣∣∣H
∣∣∣∣∣∣

ψ1(x1). . .ψ1(xN )
. . . . . .. . .. . . . . .

ψN (x1). . .ψN (xN )

∣∣∣∣∣∣ . (A5)

Unlike in Hartree’s case, the ψ functions in in Slater’s
determinant may be assumed to be orthogonal without loss
of generality.

Varying the ψ functions in the energy (A5) one finds

Eiψi(x) = H (1)ψi(x) + φ(x)ψi(x)

−
∑

k

[∫
dx ′ψ̄k(x ′)ψi(x

′)V (x − x ′)
]

ψk(x).

(A6)

The last term is due to the exchange of particles and it is
customary to refer to it as the Fock potential. In this spirit the
mean potential φ is often called the Hartree potential.

Note that the Fock term includes a k = i contribution,
therefore the self-interaction of the mean potential φ cancels
with the self-exchange.

The Fock term corresponds to a single-electron charge. This
can be seen from an effective density,

ni,x(x ′) =
∑

k

ψ̄i(x)ψ̄k(x ′)ψk(x)ψi(x ′)
ψ̄i(x)ψi(x)

, (A7)

in terms of which the Hartree-Fock equations are reminiscent
of the usual single-particle Schrödinger equation:

Eiψi(x) = H (1)ψi(x) + φ(x)ψi(x)

−
[∫

dx ′ni,x(x ′)V (x − x ′)
]

ψi(x). (A8)

The effective density corresponds to a single particle,∫
dx ′ni,x(x ′) = 1, (A9)

as one finds integrating and summing the right-hand side of
(A7). From orthogonality of the ψ functions follows that only
the term with k = i contributes.

APPENDIX B: MODEL OF REDUCED INTERACTION

The BCS wave function

|
BCS〉 =
∏

k

(uk + vkψ
†
p↑ψ

†
−p↓)

∣∣0〉 (B1)

is known to be the exact ground state in the limit of infinite
volume for the reduced interaction

D̂ = − λ

V

∑
k,p

ψ
†
p↑ψ

†
−p↓ζpζkψ−k↓ψk↑; (B2)

that is,

D↑↓(k,Q − k; p,Q − p) = −λ ζkζpδQ,0,
(B3)

D↑↑ = 0.

The ζ factors are form factors; ζ can be either a simple
cutoff, for example, ζk = θ (ωc − |ξk|), or a more involved
function covering nontrivial gap symmetries. We test the
present approximation against this exact result.

1. Anomalous functions

The BCS state implies mean-field approximation of the
self-energy. We discuss all approximations in the time repre-
sentation, in which the Green’s function is the mean value of
time-ordered product of field operators in different times,

G↑(t,k) = −i〈
BCS|Tψk↑(t)ψ†
k↑(0)|
BCS〉

≡ −i
〈
ψk↑ψ

†0
k↑

〉
. (B4)

From G−1
0 = i∂t − ξk follows

G−1
0 G↑ = δ(t) + 〈

[D̂,ψk↑]ψ†0
k↑

〉
= δ(t) + ζk

λ

V

∑
p

ζp
〈
ψ

†
−k↓ψ−p↓ψp↑ψ

†0
k↑

〉
. (B5)

The two-particle Green’s function exactly satisfies the
anomalous decoupling

〈ψ†
−k↓ψ−p↓ψp↑ψ

†0
k↑〉

= 〈ψ†
−k↓ψ−p↓〉〈ψp↑ψ

†0
k↑

〉 + 〈
ψ

†
−k↓ψ

†0
k↑

〉〈ψ−p↓ψp↑〉. (B6)
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This is easily proved using the Bogoliubov-Valutin transfor-
mation ψk↑ = ukγk + vkβ

†
k, and ψ−k↓ = ukβk − vkγ

†
k , where

β and γ are annihilation operators of excitations above
the BCS state, βk|
BCS〉 = 0 and γk|
BCS〉 = 0. Using the
anticommutation relation γkγ

†
p + γ

†
p γk = δk,p between oper-

ators at equal times, one finds that both sides of (B6) equal
−vkukvpup(1 − δk,p)〈γkγ

†0
k 〉.

By decoupling (B6) one readily converts the nonperturba-
tive equation of motion (B5) into the mean-field equation of
Gor’kov type. The mean-field approximation for anomalous
functions thus yields an exact solution for the reduced
interaction (B1).

Now we show that restricted self-consistency also yields
the exact solution. To this end we compare our equation for
the RSC T matrix with Gor’kov equations.

Let us first write down the self-energy following from
the Gor’kov theory. The product of normal mean values
is proportional to δk,p. In the limit of infinite volume the
contribution of this term to the interaction term in (B5)
vanishes as 1/V and only the product of anomalous functions
survives,

G−1
0 G↑ = δ(t) + ζk

λ

V

∑
p

ζp〈ψ−p↓ψp↑〉〈ψ†
−k↓ψ

†0
k↑

〉
. (B7)

We denote the anomalous Green’s function,

F ∗(t ; k) = 〈
ψ

†
−k↓ψ

†0
k↑

〉
, (B8)

and the gap function,

�k = ζk
λ

V

∑
p

ζp〈ψ−p↓ψp↑〉, (B9)

in terms of which Eq. (B7) reads

G−1
0 G↑ = δ(t) + �kF

∗. (B10)

Derivation of the equation for F ∗ is similar to the above
derivation of Eq. (B10). It gives

G̃−1
0 F ∗ = −�∗

kG↑, (B11)

where G̃−1
0 = −i∂t − ξ−k. The singular term δ(t) does not

appear, as creation operators anticommute. The �∗ is obtained
from

�∗
k = ζk

λ

V

∑
p

ζpF
∗
p , (B12)

which is the Hermitian conjugate of Eq. (B9). Substituting the
solution of (B11) in (B10) we find

G−1
0 G↑ = δ(t) − �kG̃

0
↓�∗

kG↑. (B13)

The Fourier transformation of Eq. (B13) in time reads

(ω − ξk) G↑ = 1 − �k (−ω − ξ−k)−1 �∗
kG↑. (B14)

The self-energy defined as G−1
↑ = ω − ξk − �↑ can be ex-

pressed in terms of the gap function as

�↑(k) = −�kG
0
↓(−k)�∗

k, (B15)

where G0
↓(−k) = (−ω − ξ−k)−1. This self-energy yields the

exact Green’s function for the infinite system with reduced
interaction.

Finally, we write down an explicit gap equation. Using
the anomalous Green’s function from (B11) in the gap
equation (B12) one finds

�∗
k = −λζk

kBT

V

∑
p,ω

ζpG
0
↓(−ω, − p)�∗

pG↑(ω,p). (B16)

We have evaluated the equal-time Green’s function F ∗ needed
in the gap equation by summing over Matsubara frequencies.

C. Restricted self-consistent T matrix

We compare the self-energy (B15) and the gap equa-
tion (B16) with their counterparts derived from the restricted
self-consistent T -matrix.

In treating the RSC T -matrix we do not benefit from
anomalous decoupling, but evaluate the resulting self-energy
directly from the above set of Eqs. (1)–(11) with the reduced
interaction (B3).

In Eqs. (10) and (11) we must include the spin dependence
of the interaction line. Substituting D↑↑ for D in (11) we obtain
that the triplet T matrix vanishes; T↑↑ = 0. The triplet and
exchange self-energies (8) and (9) are thus trivial, σ

trp
Q↑(k) = 0

and σ
exg
Q↑ (k) = 0.

With D = D↑↓ the ladder equation (10) yields a nonzero
singlet T matrix only for Q = 0. The self-energy is thus a sum
over only Matsubara frequencies:

�↑(ω,k) = kBT

V

∑
�

T↑↓(ω,k,� − ω, − k; ω,k,� − ω, − k)

×GQ↓(� − ω, − k). (B17)

The restricted self-energy,

�0↑(ω,k) = kBT

V

∑
� �=0

T↑↓(ω,k,� − ω,− k; ω,k,�− ω,− k)

×GQ↓(� − ω, − k), (B18)

has no singularity proportional to the volume and there is no
sum over momenta; therefore, it vanishes in the limit of infinite
volume V → ∞,

�0↑(ω,k) = 0. (B19)

The contribution of the zero Matsubara frequency, Q = 0 ≡
(0,0), is enhanced by singularity of Bose-Einstein statistics at
condensates; therefore,

�↑(k) = kBT

V
T↑↓ (k,−k; k,−k) G0↓(−k). (B20)

Since the restricted self-energy is zero, the restricted self-
consistent Green’s function equals to the bare Green’s function

G0↓(−k) = G0
↓(−k). (B21)

Writing the only nontrivial term as

T↑↓(k,−k; k,−k) = − V

kBT
�∗

k�k, (B22)

one arrives at the Gor’kov self-energy (B15). We have used
χ (k) = 0 and Z(k) = 1 following from (B19) so that φ(k) =
�k.
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B. ŠOPÍK et al. PHYSICAL REVIEW B 84, 094529 (2011)

It remains to prove that �∗
k defined via Eq. (B21) satisfies

the BCS gap equation (B16). This directly follows from the
gap equation (21) which for the potential (B2) reads

�∗(k) = −λ ζk
kBT

V

∑
k′

ζk′G↑(k′)G0↓(−k′)�∗(k′). (B23)

The gap function does not depend on the Matsubara frequency
ω, with k ≡ (ω,k), since the interaction is not retarded so that
χ is independent of ω. Accordingly, �∗(k) = �∗

k. Denoting
k′ ≡ (ω′,k′) and using Eq. (B21) one recovers the BCS gap
equation (B16).

The restricted self-consistent T matrix thus also yields the
exact result for this special model.
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