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Current-voltage characteristic of narrow superconducting wires: Bifurcation phenomena
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The current-voltage characteristics of long and narrow superconducting channels are investigated using the
time-dependent Ginzburg-Landau equations for the complex order parameter. We found out that the steps in the
current-voltage characteristic can be associated with bifurcations of either a steady-state or oscillatory solution.
We revealed typical instabilities which induced the singularities in current-voltage characteristics, and analytically
estimated the period of oscillations and average voltage in the vicinity of the critical currents. Our results show
that these bifurcations can substantially complicate dynamics of the order parameter and eventually lead to the
appearance of such phenomena as multistability and chaos. The discussed bifurcation phenomena sheds a light
on some recent experimental findings.
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I. INTRODUCTION

The problem of the appearance of the resistive state in
narrow superconducting channels when the current j exceeds
the value of the critical current jc was the subject of intensive
debates in the past.1 The voltage between two parts of
the superconducting wire appears when the superconducting
order parameter (OP) is strongly suppressed near the phase
slip center (PSC). The phase of the OP becomes a very
steep function across the PSC and finally demonstrates a
2π jump exactly when the OP reaches 0.1,2 This process
appears periodically in time leading to the oscillation of the
OP and nonlinear current-voltage characteristic (CVC) with
well-pronounced steps of voltage when j reaches certain
critical values.3,4

The PSC has been extensively investigated theoretically
and experimentally in the past (see Ref. 1 and references
therein). It is well established that if j > j2 ∼ jcl

2
E/ξ 2 the

normal state is absolutely stable; here lE is the penetration
depth of the electric field into the superconductor and ξ is
the superconducting coherence length. Therefore if lE � ξ

there is a wide interval of currents jc < j < j2 where the
superconducting state coexists with the normal state leading
to the oscillating type of behavior.5,6

The steps in the CVC are usually interpreted as points where
new PSC penetrates to the wire.1,3,4 It was also demonstrated
that the time average of the voltage V and the frequency of
oscillations ω satisfy the relation similar to the Josephson
relation V ∝ ω.1 The theoretical interpretation of the CVC is
usually based on the statical model of the resistive state3,7 or
a very similar dynamical theory of the resistive state.1,8 All
these models are based on the approximate time averaging
of the time-dependent Ginzburg-Landau equations (TDGLEs)
over a period. Therefore the complex behavior of the order
parameter during one cycle is lost in these theories. An
important step forward in the analysis of the TDGLEs has been
made recently.9,10 It has been found that the dynamic of the
order parameter in the PSC is governed by the ratio between the
relaxation times of the TDGLEs.2,9,10 It has been established
that the CVC exhibits an S shape in the regime of the fixed
voltage. Besides, it has been shown that in the limit of the
strong pair breaking effect due to interaction with phonons the

CVC demonstrates strong hysteresis in the regime of constant
current.9 This behavior appears because two different solutions
may coexist at the same value of the current. All these results
(see also Refs. 11 and 12) demonstrate that different periodic
and quasiperiodic in time solutions emerge with the changing
of the voltage and current.13 However, some of the properties of
these solutions are still not understood. In particular, the types
of instabilities, as a result of which one solution is replaced
by another one, are not identified. The theory still lacks an
accurate analytical description of the CVC and well-defined
and experimentally verifiable predictions. In this paper we
present a detailed study of the CVC in the resistive state of
superconductors with different lengths.

We reveal the types of instabilities (bifurcations) corre-
sponding to the discontinuities on the CVC and derive an
analytical expression for CVC when j → jc. We predict
the appearance of the frequency in the spectrum of the
electromagnetic radiation generated by the current after the
period doubling bifurcation. This frequency equals exactly half
of the one before the bifurcation point. Besides, we identify the
positions of the PSCs in the wire and prove that our predictions
on the basis of TDGLEs are in excellent agreement with the
recent experimental results of Sivakov et al.14

Recent experimental studies have detected the spatial
positions of PSCs in the different parts of the CVC.4,14 With the
help of low-temperature laser scanning microscopy technique
it was demonstrated that each quasilinear part of the CVC has
a different number of the PSCs. When the current becomes
larger then jc the first PSC appears in the middle of the wire.
Further increase of the current leads to the second step in
voltage. Two PSCs appear symmetrically with respect to the
center of the wire. Further increase of the current leads to the
appearance of the third step in voltage and the third PSC is
created in the center of the wire (see Fig. 2 of Ref. 14).

Another important effect was observed recently on the CVC
of submicron BSCCO bridges.15 When the temperature of the
bridge is reduced bellow Tc, characteristic steps on the CVC
appear with clearly observed hysteresis. The measurement
of the voltage as a function of time at high temperatures
and at the fixed current has demonstrated sharp switching
between two metastable states. The voltage randomly jumps
between two values (random telegraph noise).15 The average
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frequency of the switching is a very strong function of
temperature: Decreasing of temperature by 1 K leads to the
decrease of the frequency of switching by several orders of
magnitude. Therefore the activation energy that corresponds to
the switching is more then 104 K,15 indicating the macroscopic
nature of the barrier between metastable states.

In our work, which involves numerical and analytical
analysis of TDGLEs, we show that each step of the CVC
is associated with transitions between different dynamical
regimes, which are caused by the instabilities developed in
the system. At j = jc the steady-state solution is changed
by periodic oscillations (a limit cycle in the phase space),
constituting the transition known in literature as the saddle-
node homoclinic bifurcation.16 With the further increase of
j this periodic oscillations eventually lose their stability, and
new oscillations with doubled period occur in the system,
thus evidencing the period-doubling bifurcation. These two
transitions are universal and do not depend on the length L.
On the contrary, the next bifurcation point is not universal and
depends on L. With the further increase of L we observe the
effect of multistability, when two or more different periodic
regimes can be realized at the same value of the current. In
this case, several limit cycles coexist in the phase space of the
system, and realization of the particular regime depends on
initial conditions.

II. MAIN EQUATIONS

The first TDGLE in dimensionless units has the form,

u

(
∂ψ

∂t
+ iφψ

)
= ∂2ψ

∂x2
+ ψ − ψ |ψ |2. (1)

The second equation defines the stationary current through
one-dimensional (1D) wire:

j = −∂φ

∂x
+ 1

2i

(
ψ∗ ∂ψ

∂x
− ψ

∂ψ∗

∂x

)
. (2)

Here ψ is the dimensionless complex OP, the distance is
measured in units of the coherence length ξ and time is
measured in units of the phase relaxation time τθ = 4πλ2σn

c2 ,
λ is the penetration depth, σn is the normal state conductivity,
and c is the speed of light. The parameter u = τψ

τθ
is a

material-dependent parameter, where τψ is the relaxation time
of the amplitude of the OP. The electrostatic potential φ is
measured in the units of φ0/2πcτθ , where φ0 = πh̄c/e is the
flux quantum, e is the electronic charge, and h̄ is the Planck
constant; the dimensionless current density j is defined in
the units of φ0c/8π2λ2ξ . Nonequilibrium superconductors
are characterized by an additional length scale lE which
describes the penetration of the electric field. From Eqs. (1)
and (2) it follows that lE = ξ/u1/2. The time-dependent
Ginzburg-Landau equations for the complex order parameter
were derived for T < Tc in the late 60th.17,18 The simplified
version of the TDGLEs used in this work corresponds to
the so-called gapless case with a large concentration of
magnetic impurities τsTc � 1, where τs is the relaxation time
on magnetic impurities.19 In that case parameter u is 12.
More realistic generalized TDGLEs are derived in the dirty
limit τimTc � 1, where τim is impurity scattering time. These
equations take into account inelastic scattering by phonons.

In that case parameter u is 5.79. The penetration depth of
the electric field lE is substantially enhanced if the inelastic
scattering time is large enough. The enhancement of lE may
be approximated in the case of gapless superconductivity
if we assume that the phenomenological parameter u is
small (u < 1).8 This approximation is widely accepted in the
literature and leads to qualitatively and often quantitatively
correct results above and below Tc. Note that the generalized
TDGLEs have an additional time derivative term which may
lead to different dynamics at j > jc.19 However, as it is pointed
out in Ref. 20 [Eq. (196) and Fig. 8, p. 499], the effect
of this term becomes very small at large currents, while in
the vicinity of the critical current the influence of this term
has quantitative character without changing the qualitative
behavior. The instability at j = jc is governed by the behavior
of the Lyapunov exponents close to the instability point. Since
the behavior of the Lyapunov exponents is similar for both
types of equations we believe that the dynamics described
by both equations are qualitatively the same in the whole
region of currents j > jc. Therefore, Eqs. (1) and (2) should
describe qualitatively well the gapless superconductors with
large concentrations of magnetic impurities as well as ordinary
superconductors in the dirty limit (τimTc � 1). Since most of
our results are qualitative we believe that they are quite general
and applicable to many experimental cases.

Here we consider the superconducting wire of a length
L with the following boundary conditions: ρ(−L/2) =
ρ(L/2) = 1 and dφ(−L/2)/dx = dφ(L/2)/dx = 0, where
we define phase θ and modulus ρ of the order parameter
according to the relation ψ = ρ exp (iθ ). The absence of the
electric field at the end of the wire determines the gradient of
phase dθ (−L/2)/dx = dθ (L/2)/dx = j .

III. RESULTS AND DISCUSSIONS

We start with the analysis of the steady-state solutions
of the TDGLEs (1) and (2), which are defined as ψ =
(1 − k2)1/2 exp (ikx). The equation for k has the form j =
(1 − k2)k, and for j < jc = 2/3

√
3 it yields two roots k1 < k2.

The first solution corresponding to k1 is stable and the second
(k2) is unstable.

When the current reaches its critical value j = jc these
steady-state solutions collide with each other (k1 = k2) and
disappear, thus suggesting a saddle-node bifurcation. Indeed,
the stability analysis of the steady-state solution performed in
Ref. 2 shows that only one Lyapunov exponent crosses 0 when
j = jc. Additionally, our numerical calculation revealed that at
the moment of this bifurcation, a periodic solution (limit cycle)
with a very large period arises in the phase space of the system
in the very close vicinity of the disappeared steady states. As
j grows, the period of the limit cycle quickly decreases. All
those facts evidence that at j = jc the systems undergo the
saddle-node homoclinic bifurcation.16

Note that the value of jc = 2/3
√

3 is obtained for the wire
of the infinite length. The boundary conditions for Eqs. (1)
and (2) defined above lead to the slightly different value of
the critical current. Therefore the value of jc(L) should be
determined from the solution of stationary equations [Eqs. (1)
and (2)] with the same boundary conditions.
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According to the theory of dynamical systems, the behavior
of a system in the vicinity of the saddle-node homoclinic
bifurcation can be described by the normal form,16

ẏ = β + a(0)y2, (3)

where y is a representative phase variable, β = −23/2u(j −
jc)/3(u + 2)jc, and a(0) = −23/2u/(u + 2). To derive the
normal form we have to follow the standard recipe.16 It is
convenient to rewrite the TDGLEs (1) and (2) in the limit
of L → ∞ in terms of ρ and the gauge invariant scalar
� = φ + ∂θ/∂t and vector Q = ∂θ/∂x potentials.

u∂ρ/∂t = ∂2ρ/∂x2 + ρ(1 − ρ2 − Q2),

uρ2� = ∂(ρ2Q)/∂x,

j = −∂�/∂x + ∂Q/∂t + ρ2Q. (4)

These equations have the steady-state solution ρ = ρ0 =√
2/3, � = 0, Q = 1/

√
3, j = jc, which becomes unstable

and has one Lyapunov exponent λ0 which crosses 0 at j = jc.
Expanding Eq. (4) up to the second order in deviations from
the steady-state solution, rescaling the time t/u → t and
projecting this equation on the direction of the eigenvector
corresponding to λ0 we obtain Eq. (3). The normal form (3) al-
lows one to predict the period T of the periodic solution which
corresponds to the limit cycle. Following to Eqs. (32) and (23)
of Ref. 21 we integrate Eq. (3) over y between ±y1 where
y1 is of the order of 1. T = 2 tan−1 (y1

√
a(0)/β)/

√
a(0)β.

Therefore, when (j − jc)/jc � 1 the period of oscillations is
determined by the formula:

T = π/
√

a(0)β = π
√

3(u + 2)

23/2u
[(j − jc)/jc]−1/2. (5)

To verify theoretical prediction we have performed ex-
tensive numerical simulations of Eqs. (1) and (2), using the
fourth-order Runge-Kutta method. The spatial derivatives are
evaluated using a finite difference scheme of the second
and fourth order. The calculations were performed for the
superconducting wire of three different length L = L0, 2L0,
and 4L0 (L0/ξ = 10.88) and for u = 1/2. The different length
leads to a slightly different value of the critical current caused
by the boundary conditions. The calculated critical currents
are jc(L)/jc = 1.016, 1.002, and 1.00019, respectively. Some
properties of the solution are universal and do not depend on
the length L. On the other hand, there are some features of the
solution and the CVC which are not universal and depend on
the length L.

The first universal property of the solution is the dependence
of the period of the oscillation on (j − jc(L))/jc(L) in the
range of currents jc(L) < j < jc1(L), where jc1(L) is the
first critical current where the limit cycle looses its stability.
According to Eq. (5) T ≈ 9.62[(j − jc(L))/jc(L)]−1/2 for
u = 1/2. The results of calculations of the period for the
oscillatory solution are plotted in Fig. 1 for all three lengths L

together with the analytical estimate, given by Eq.(5). There
is very good agreement of numerical results with Eq.(5) over
more then four orders of magnitude in (j − jc(L))/jc(L). Since
Eq. (5) describes the asymptotic behavior of the period T in
the limit (j − jc(L))/jc(L) → 0 the agreement becomes better
when the current is closer to its critical value.

FIG. 1. The period of the solution as a function of current for
three different lengths of the wire: L = L0(triangles), 2L0(circles),
4L0(stars). The solid line represents the results of Eq. (5). Arrows
indicate the period-doubling bifurcation point jc1(L). Insets represent
projection of the limit cycle trajectory to the [ρ(0),E(0)] plane before
(a) and after (b) bifurcation point jc1(L). Here E(0) is the electric field
in the center of the wire.

The divergence of the period implies that the CVC near
jc(L) should have the nonlinear form V ∝ T −1 ∝ [(j −
jc(L))/jc(L)]1/2 (Fig. 2). This type of dependence is due to
the quantization rule, derived in Ref. 22, that connects the
averaged electric field and the period of oscillations. Indeed, as
it is clearly seen from Fig. 2, the voltage V shows the universal
dependence in accordance with Eq. (5). Note that similar
CVCs have been reported earlier.9 However, the authors did
not recognize the type of bifurcation and did not derive the
normal form for this bifurcation. As a result they were unable

FIG. 2. (Color online) The CVC of the channel with L = 4L0.
Open circles represent the more complex limit cycles, which coexist
with the main periodic solution (multistability). Insets (a)–(d) show
the space-time arrangements of the PSCs in different regions of the
CVC. The inset (c) corresponds to open circles. Inset (e) shows the
CVC for j < jc1(L) in comparison with the analytical formula (see
the text).
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to get an analytical expression for CVC in the vicinity of jc. An
accurate solution of dynamical Eqs. (1) and (2) and asymptotic,
predicted by Eq. (5), does not confirm an approximate result
V ∝ −1/ ln ((j − jc)/jc), derived in Ref. 1. The square root
behavior of the CVC, however, is in agreement with the earlier
result of Aslamazov and Larkin,23 who had considered the
CVC of the short (L � ξ ) superconducting bridge.

For relatively small currents jc(L) < j < jc1(L) the phase
slip center appears periodically in time in the center of the wire
(Fig. 2) in the agreement with the experimental results.14 This
oscillating behavior of the OP leads to the oscillating behavior
of the voltage and emission of an electromagnetic radiation
with the frequency ω1 ∝ T −1.

Further increase of the current leads to instability of the limit
cycle. At j = jc1(L) the periodic solution becomes unstable
and a new limit cycle emerges as the result of period-doubling
bifurcation. This is clearly seen from Fig. 1 where a sudden
increase of the period is observed at j = jc1(L). It appears
that this instability is universal and does not depend on the
length L.

The period-doubling bifurcation could be easily recog-
nized if we plot the cycle trajectories below and above
jc1(L). It is important to plot trajectories only for the gauge
invariant quantities to avoid unphysical effects. Therefore,
in the insets to Fig. 1 we present the periodic solution in
coordinates ρ(x = 0) and electric field E(x = 0) = −dφ(x =
0)/dx. As clearly seen from this figure, the period-doubling
bifurcation manifests itself in the transition from a single-
loop (period-1) limit cycle to a double-loop (period-2) limit
cycle.24

This bifurcation also leads to the singular behavior of the
CVC. This singularity is more prominent for longer wires
L = 4L0 where the jump of voltage is well pronounced, while
for L = L0 it manifests itself only by the change of the slope
[Fig. 3(a)]. The arrangement of the PSCs in space and time is
plotted in Fig. 2. As it follows from Fig. 2, at j = jc1(L) the
position of one PSC is shifted up with respect to the center
and the position of the next PSC is shifted down. Therefore,
the period of a new limit cycle is twice the period of the limit
cycle before the bifurcation point. Each period includes now
two PSCs; one is slightly above and another is slightly below
the center of the wire, which is well agreed with experimental
observations.14 As a result of period doubling, a new frequency
ω2 = ω1/2 appears in the spectrum of the electromagnetic
radiation generated by the current. It should be pointed out
that the period-doubling bifurcation in the superconducting
channel with fixed voltage was reported earlier.13 Nevertheless
there is substantial geometric difference between these two
cases. In Ref. 13 the PSCs were always detected in the center
of the wire, in contrast with our results.

Note that the critical current for period-doubling bifurcation
jc1(L) is not universal and strongly depends on the length
of the channel L. According to Fig. 3 (jc1(L) − jc)/jc =
0.125,0.012,0.0006 for L = L0,2L0, and 4L0, respectively.
Indeed it demonstrates the exponential dependence on the
length L, as it was proposed in Ref. 25.

The next bifurcation which is common for all studied cases
is the destruction of the periodic cycle. For all studied cases
there exists the second critical current jc2(L)/jc = 1.44,1.027,
and 1.001 for L = L0,2L0, and 4L0, respectively, where the

FIG. 3. The CVC of the wire (a) L = L0 and (b) L = 2L0. Arrows
indicate different bifurcation points.

periodic solution loses its stability. This transition does not
show any clear singularity on the CVC. In all studied cases
instead of the periodic solution we have found an oscillating,
but nonperiodic, solution. The Fourier transform of the voltage
contains broad features instead of the δ function like spectrum
before the transition. The solution in the vicinity of jc2(L) is
characterized by long intervals of time where the solution is
almost periodic and topologically similar to the solution before
the bifurcation point j < jc2(L). Then the instability develops
and the solution moves far away from the periodic cycle.
After few periods the solution is coming back again to a very
similar oscillating trajectory and performs regular oscillations
for many periods. To demonstrate this behavior we calculate a
Poincaré map for jc2 < j < jc5 and L = 2L0. The projection
of the phase trajectory to the plane [ρ(−L/4),E(−L/4)] never
crosses the space near the center of the trajectory. Therefore
we chose the Poincaré section as a plane which crosses the
center of this trajectory E(−L/4) = 0.04 for j/jc = 1.0278.
In Fig. 4 we plot the projection of the Poincaré map to ρ(0) and

FIG. 4. (a) The projection of the Poincaré map on ρ(0) (solid line)
and E(0) (dashed line) as a function of time. (b) The averaged period
of the laminar phase as a function of current (squares). The solid line
shows analytical prediction (see the text).
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E(0) as a function of discrete time, when trajectory crosses the
Poincaré section. The long horizontal lines represent an almost
periodic solution. The time during which solution stays near
the periodic laminar orbit becomes larger and larger when
j → jc2(L) + 0, as demonstrated in the inset of Fig. 4.21,24

According to Eqs. (32) and (23) of Ref. 21 the time that the
trajectory stays near the regular limit cycle is proportional
to τ ∝ (j − jc2(L))−1/2. The inset in Fig. 4 demonstrates
that τ indeed increases as (j − jc2(L))−1/2 indicating that
we deal with chaotic solution which is developing via the
intermittence.24

Further increase of the current for the case of L = 2L0

leads to an additional step of voltage [jc3(L)/jc = 1.058] in
the CVC. In that case two remote PSCs located symmetrically
with respect to the center of the channel are accompanied
by the third one, which appears in the middle of the wire
[Fig. 2(d)]. This does not destroy chaos, although it changes
apparently its topological properties. The CVC in this region
of currents has some nonregular behavior [Fig. 3(b)], which
might be associated with the appearance and disappearance
of the so-called “periodic windows,” areas of the parameter
values, where limit cycles with a relatively large period become
stable.24

The next step in voltage at jc4(L)/jc = 1.084 is associated
with the creation of a new PSC, again without the change
of the chaotic character of the solution. And finally, the
nonperiodic orbit disappears and a limit cycle becomes
stable in the relatively large window of currents [jc5(L)/jc =
1.098 < j/jc < 1.114]. This bifurcation produces a voltage
step on the CVC, and in contrast to all previous cases, the
voltage decreases at the bifurcation point [Fig. 3(b)]. The
corresponding limit cycle has four PSCs, each of which has
different positions in the channel. Remarkably, such behavior
of the PSC was previously observed in experiments.14

The situation for the longer channel L = 4L0 is slightly
different. First, we have found that for j > jc1(L) there are
few ranges of the current where other limit cycles coexist with
the main periodic solution, similarly to the earlier report.9

Therefore, at the same value of the current we observe
different stable periodic solutions with their own attracting
phase spaces. The multistability is found only in the case of
the long channel (L = 4L0). In the case of L = L0 and 2L0

we were unable to find any manifestation of multistability.
The region where chaos is developed via the intermittence
for the long channel L = 4L0 is much more narrow then in
the case of L = 2L0. The chaotic oscillations become very
quickly unstable and a new stable limit cycle with three PSCs

appears at j/jc > jc3(L)/jc = 1.0011 in contrast with the
former case, where this solution has also an irregular chaotic
behavior. This bifurcation manifests itself by the step in voltage
on the CVC and is consistent with the observation made in
Ref. 14.

The effect of multistability revealed in our calculations may
be related to the effects of switching between two metastable
states, discussed in Ref. 15. Indeed the existence of two differ-
ent limit cycles with the different topology of phase trajectories
and different averaged voltage implies that relatively large
thermodynamic fluctuations may switch from one trajectory
to another. If the switching is fast and the averaged time
between switchings is large in comparison with the period
of the limit cycle, the measured voltage will be averaged over
many periods. The switching requires overcoming the energy
barrier between two limit cycles therefore the time between
two switchings is an exponential function of temperature. In
the case of wide bridges the activation energy is macroscopic
and depends on the width of the sample. Therefore, in the case
when the time of measurements is larger than the period of the
cycle and shorter than the average time between the switchings,
the fluctuations of the voltage look like a telegraph noise and
are similar to that observed in Ref. 15.

IV. CONCLUSIONS

In conclusion, we have analyzed the current-voltage char-
acteristics of the superconducting channel of a different
length. We have proven that the steady-state solution loses its
stability as a result of the saddle-node homoclinic bifurcation,
which leads to a limit cycle of the diverging period. This
unambiguously leads to the singular V ∝ (j − jc)1/2 CVC.
We have demonstrated that the second anomaly in the CVC
is caused by the period-doubling bifurcation. The main
consequence of this bifurcation is the appearance of the
new frequency in the spectrum of electromagnetic radiation
which equals exactly half of the frequency before bifurcation.
The appearance of the third PSC is not universal. In short
channels this bifurcation appears when the solution has chaotic
character. Increasing the channel’s length L stabilizes a
periodic solution with three PSCs. In the intermediate range of
currents the periodic solution becomes unstable leading to the
chaos, which is developed via the intermittence. The effect of
multistability in the presence of thermodynamic fluctuations
may be responsible for the switching between two periodic
solutions and random jumps of voltage between two averaged
values.
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