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We study conductance spectroscopy of a two-dimensional junction between a normal metal and a strongly
correlated superconductor (SC) in an applied magnetic field in the Pauli limit. Depending on the field strength,
the SC is either in the Bardeen-Cooper-Schrieffer (BCS) or in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state of the Fulde-Ferrell type. The strong correlations are accounted for by means of the Gutzwiller method,
which naturally leads to the emergence of the spin-dependent masses of quasiparticles when the system is spin
polarized. The case without strong correlations (with the spin-independent masses) is analyzed for comparison.
We consider both the s-wave and the d-wave symmetries of the SC gap and concentrate on the parallel orientation
of the Cooper-pair momentum Q with respect to the junction interface. The junction conductance is presented for
selected barrier strengths (i.e., in the contact, the intermediate, and the tunneling limits). The conductance spectra
in the cases with and without strong correlations differ essentially. Thus, our analysis provides an experimentally
accessible test for the presence of strong correlations in the SC state. Namely, correlations alter the distance
between the conductance peaks (or related conductance features) for carriers with spin up and spin down. In the
uncorrelated case, this distance is twice the Zeeman energy. In the correlated case, the corresponding distance is
about 30%–50% smaller, but other models may provide even stronger differences, depending on the details of
the system’s electronic structure. It turns out that the strong correlations manifest themselves most clearly in the
case of the junction with the BCS, rather than the FFLO SC, what should make the experimental verification of
the present results simpler.
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I. INTRODUCTION

The search for evidence of strong electron correlations in
condensed matter has concentrated in recent years on the
superconducting (SC) state in unconventional materials and
its coexistence with magnetism. One such example is the
search for experimental evidence for the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) SC state. The FFLO state was proposed
theoretically in the 1960s.1,2 In this unconventional SC state,
the Fermi wave-vector difference for the electrons with spin
up and spin down due to the presence of the Zeeman term
makes it favorable for the Cooper pair to acquire a nonzero
total momentum Q = 2q. Consequently, the phase of the SC
gap parameter oscillates spatially with the wave vector Q. By
forming such a condensate of moving Cooper pairs, the SC
state persists for magnetic fields remarkably higher than the
Pauli Hc2 limit. Recently, the FFLO state suddenly gained re-
newed interest (for a review, see Ref. 3) because of its possible
detection in the heavy-fermion SC CeCoIn5,4–7 although the
nature of the high-field low-temperature phase observed in this
system is still under intensive debate after antiferromagnetism
was observed in the vicinity of this phase.8–12 The FFLO state
has also been proposed for κ-(BEDT-TTF)2Cu(NCS)2,13,14

β ′′-(ET)2SF5CH2CF2SO3,15 and other layered organic SCs
(see references in Ref. 14). Also, the existence of the FFLO
state has been indicated in other heavy-fermion systems:
PuRhGa5,16 Ce2PdI8,17 (see Ref. 18, Sec. VB1 for a more
detailed account), as well as in the pnictide SC LiFeAs.19 The

FFLO state has also been investigated in high-density quark
and nuclear matter20 as well as in optical lattices.21–23

All systems considered so far to be a host to the FFLO
phase have a reduced dimensionality, which is crucial for
the FFLO phase stability because then the orbital effects
are suppressed and the Pauli effect (Zeeman splitting) may
become the dominant factor. Another obvious feature, which
suppresses the orbital effects, is the heavy quasiparticle mass.
These characteristics of possible FFLO hosts indicate that
these systems are likely to have strong electron (fermion)
correlations and, thus, also possess specific features resulting
from them.

The role of strong correlations in the most likely can-
didate for the FFLO state CeCoIn5 is essential not only
because this system is a heavy-fermion SC with very narrow
bands originating from 4f electrons hybridized with 5d-6s

states, but also, what is equally important is that the spin-
dependent effective masses (SDMs) of quasiparticles have
been observed directly in this system24 by means of the de
Haas–van Alphen oscillations in a strong applied magnetic
field. SDMs are one of the hallmarks of strong correlations,
as they appear naturally in theories incorporating correla-
tions (Gutzwiller,25 slave bosons,26,27 dynamical mean-field
theory,28 and fluctuation-exchange approximation29), when
the system is spin polarized.30

Because of the above reasons, it is important to study the
effect of correlations on the FFLO phase. Such analysis has
already been performed in a few cases,31–35 and it indicates,
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among other things, that the interelectronic correlations play
an important role in forming and stabilizing the FFLO phase.

In the present paper, we concentrate on providing
experimentally accessible concrete characteristics of a
SC state with strong correlations. Namely, we study the
conductance of a normal-metal-SC junction (NSJ) with
the strongly correlated SC in either the Fulde-Ferrell (FF)
type of the FFLO state or the Bardeen-Cooper-Schrieffer
(BCS) state (the latter is stable in lower fields). Conductance
spectroscopy of such a junction is an experiment sensitive
to both the phase and the amplitude modulations of the SC
order parameter, and therefore, it is a candidate technique
for providing direct evidence for the presence of the FFLO
phase. In that situation, a crucial role is played by the Andreev
reflection (AR) processes.36 In the simplest view of the AR,
an incident electron entering from the normal metal into the
SC is converted at the NSJ interface into a hole moving in the
opposite direction (to the incident particle) and Cooper pair
inside the SC. Such processes increase the conductance of the
junction (in an ideal case by a factor of 2), which is analyzed
in the framework provided by Blonder et al.37

The conductance characteristics for a NSJ with a SC in
the FFLO state has already been investigated for both the
cases of the FF [with �(r) = �QeiQr]38–40 and the Larkin-
Ovchinnikov (LO) [�(r) = �Q cos(Qr)]41 types of FFLO
states as well as for the case of the SC with a supercurrent42,43

(i.e., the situation similar to ours from a formal point of view).
See also Refs. 44–47 for the case of a NSJ with a BCS state
of the d-wave symmetry. None of the above papers have taken
strong electron correlations into account.

Here, we consider both the cases of s-wave and d-wave
strongly correlated SCs in a magnetic field and in the Pauli
limiting situation (i.e., we neglect the orbital effects, as
the Maki parameter48 in the systems of interest, is quite
high5). The strong correlations are taken into account by
assuming dispersion relations with SDMs of quasiparticles
and with the correlation field, as given, e.g., by the Gutzwiller
approximation25 or slave-boson theory.26 The case without
strong correlations [with spin-independent masses (SIMs)] is
analyzed for comparison. In low magnetic fields, the SC is
in the BCS state, and in higher magnetic fields, a transition
to the FFLO state takes place. We only consider the simpler
FF type of FFLO state as we intend to single out features
of the situation with strong correlations in the simplest case
(the analysis of the LO state is much more complex41). Our
paper already leads to interesting results in this simplest
situation. We set the direction of the Cooper-pair momentum
Q as either perpendicular or parallel to the junction interface,
with more attention paid to the latter situation. The analysis
is performed in a fully self-consistent manner. Namely, we
select Cooper-pair momentum Q minimizing the free energy
of the system, and we determine the chemical potential μ in
each phase separately so that the particle number n is kept
constant. Such an adjustment of μ is required even for the
BCS state for the narrow-band case. Also, such a careful
examination of the SC properties is important, and non-self-
consistent calculations may lead to important alterations of the
conductance spectrum.39

As we deal with heavy quasiparticles on the SC side of
the NSJ, in principle, we should take the Fermi-velocity-

mismatch effects into account. Under those circumstances, the
AR processes would be limited severely by a high effective
barrier strength Z. On the other hand, AR is clearly observed
in junctions with heavy-fermion superconductors,49,50 and
theoretical efforts have been made to understand why this is
the case.51–53 Based on these studies, we disregard the Fermi-
velocity mismatch by assuming equal chemical potentials
and equal average masses of quasiparticles on both sides
of the junction. Namely, we choose masses on the normal
side as mav , and on the superconductor side, we have that
(m↑ + m↓)/2 = mav , with mav = 100 m0 (where m0 is the
electron mass in vacuum), which roughly corresponds to the
band of heaviest quasiparticles for CeCoIn5.24 This assumption
is, in our view, a justifiable simplification, as we would like to
single out the features of the NSJ conductance in their clearest
form. Note also, that we consider a model situation with its
parameters taken from the experiment for CeCoIn5.

In brief, we study the conductance of the NSJ with the SC
exhibiting strong electron correlations (SDM case). To single
out specific features of such a situation, we also study the
uncorrelated case (SIM) and compare those results.

The paper is organized as follows. In Sec. II, we discuss
the SC state of quasiparticles with SDMs and SIMs for a
two-dimensional electron gas. In Sec. III, we present the
theory concerning the conductance of a normal-metal strongly
correlated SC junction. In Sec. IV, we show conductance
spectra for the cases with SDMs and SIMs. In Sec. V, we
discuss the relation of our results to experiments and suggest
their possible experimental verification. Finally, in Sec. VI, we
provide a brief summary.

II. FF SC STATE BASIC CHARACTERISTICS:
MODEL AND METHOD

As said above, here we consider a two-dimensional system
of paired quasiparticles in the situations with SDMs and SIMs.
The system of self-consistent equations describing such a SC
state has already been presented in detail in Refs. 31 and 32.
For the sake of completeness, here, we provide a brief summary
of our procedure. We start with the Hamiltonian,

Ĥ =
∑
kσ

ξkσ a
†
kσ akσ + 1

N

∑
kk′q

Vk,k′a
†
k+q↑a

†
−k+q↓a−k′+q↓ak′+q↑

+ N

n
mhcor, (1)

where Q = 2q is the wave vector of the Cooper-pair center
of mass, n ≡ n↑ + n↓ is the band filling, m ≡ n↑ − n↓ is the
spin polarization of the system, and N is the total number of
particles. The dispersion relation for the cases with SDMs and
SIMs is chosen, respectively, as

ξkσ = h̄2k2

2mσ

− σ (h + hcor) − μ, (2)

ξ
(SIM)
kσ = h̄2k2

2mav

− σh − μ, (3)

where h ≡ gμBH/2, with H being the applied magnetic field.
The quantity hcor is the correlation field that appears naturally
in both the slave-boson theory (it is equivalent to −β of Ref. 26)
and the Gutzwiller approximation if this approximation is
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performed with care.54–56 Justification of a Hamiltonian
with both the pairing part and the SDM can be found in
Ref. 33 (Appendix A) and in Ref. 57. The spin-dependent
quasiparticle mass is equal to mσ ≡ mB/qσ (n,m), where mB is
the bare-band mass and qσ (n,m) is the band-narrowing factor.
Explicitly (in the Hubbard U → ∞ limit), the quasiparticle
masses are given by25,26

mσ

mB

= 1 − nσ

1 − n
= 1 − n/2

1 − n
− σ

m

2(1 − n)

≡ 1

mB

(mav − σ �m/2), (4)

with �m ≡ m↓ − m↑ (note that σ =↑ labels the spin-majority
subband). Next, as in the BCS theory, we take the pairing
potential in a separable form and assume it is nonzero in a small
region around the Fermi surface (for details, see Refs. 31, 32,
and 58),

Vk,k′ = −V0ηkηk′ , (5)

where ηk ≡ cos (a0kx) − cos (a0ky) for the d-wave case [with
a0 = 4.62 Å being the lattice constant for CeCoIn5 (Ref. 59)]
and ηk ≡ 1 for the s-wave case. Under such assumptions, the
SC gap can be factorized as

�k,Q = �Qηk. (6)

Following the standard mean-field approach to Hamiltonian
(1), we obtain the generalized free-energy functional F and
the system of self-consistent equations as follows31,32:

F = −kBT
∑
kσ

ln(1 + e−βEkσ ) +
∑

k

(
ξ

(s)
k − Ek

) + N
�2

Q

V0

+μN + N

n
mhcor, (7)

hcor = − n

N

∑
kσ

f (Ekσ )
∂Ekσ

∂m
+ n

N

∑
k

∂ξ
(s)
k

∂m

(
1 − ξ

(s)
k

Ek

)
,

(8)

m = n

N

∑
kσ

σf (Ekσ ), (9)

�Q = V0

N

∑
k

η2
k

1 − f (Ek↑) − f (Ek↓)

2Ek
�Q, (10)

n = n↑ + n↓ = n

N

∑
kσ

{
u2

kf (Ekσ ) + v2
k[1 − f (Ek,−σ )]

}
,

(11)

where F(T ,H,μ; m,hcor,�Q,n) is the system free-energy
functional for the case of a fixed number of particles23 (we
fix the band filling at the value n = 0.97), V0 is the interaction
potential, uk, vk are the Bogoliubov coherence coefficients,
f (Ekσ ) is the Fermi distribution, and nσ is the spin-sub-band
filling. The physical solution is the one with a particular Q
that minimizes the free energy F , which, in turn, is obtained
from F by evaluating the latter at the values of parameters,
which are the solution to Eqs. (8)–(11). The state with Q = 0
is called the BCS state, and that with Q �= 0 is called the FF
state.

TABLE I. Equilibrium values of mean-field variables and related
quantities for the s-wave solution with H = 10.01 T and T = 0.02 K.

Variable Value Variable Value

m 0.012 9431 �m (m0) 2.513 22
hcor (K) −3.082 30 hcor NS (K) −3.265 46

�Q (K) 1.389 22 |Q| (Å
−1

) 0.009 47
μ (K) 126.287 |Q|/�kF 1.08
F (K) 61.182 002 88 �F (K) ≡ FNS − F −0.001 113 51

The quasiparticle spectrum in the paired state is character-
ized by the energies (cf. also Ref. 60),

Ekσ ≡ Ek + σξ
(a)
k , Ek ≡

√
ξ

(s)2
k + |�k,Q|2, (12)

ξ
(s)
k ≡ 1

2 (ξk+q↑ + ξ−k+q↓), ξ
(a)
k ≡ 1

2 (ξk+q↑ − ξ−k+q↓).

(13)

Equations (8)–(11) are solved by numerical integration over
the reciprocal space. We use procedures from the GNU
Scientific Library61 as solvers. For the SIM case, hcor = 0,
and we only solve Eqs. (9)–(11). The numerical procedure has
been elaborated in detail elsewhere.58 Here, for completeness,
in Tables I and II, we also provide the numerical values of
selected parameters for the situations with the s-wave and the
d-wave symmetries of the SC gap, respectively. The quantity
FNS is the free energy of the normal state (NS), and there-
fore, �F is the condensation energy. Also, �m ≡ m2 − m1

is the mass difference and hcor NS is the correlation field value
in the NS. The free energies are calculated per elementary cell.
The numerical accuracy is not smaller than on the level of the
last digit specified.

The input parameters in our method have the following
values: the band filling n = 0.97, the lattice constant a0 =
4.62 Å, the interaction potential strength V0/n = 90 K (d
wave) and V0/n = 110 K (s wave), the interaction potential
width (cutoff) h̄ωC = 17 K, and the quasiparticle average
mass mav = 100 m0. The other parameters (in particular,
m, hcor, �Q, μ, Q, and θQ) are determined from the solution
procedure.

Exemplary phase diagrams obtained on the applied field H

and temperature T plane are exhibited in Figs. 1 and 2 for
the s-wave and the d-wave cases, respectively. The angle θQ
is the angle between the maximum-gap (antinodal) direction
and the Cooper-pair momentum Q. Note that, in both situa-
tions, the FF state is more robust (i.e., the FF state fills a wider
field-temperature range on the phase diagram) in the SDM
case than in the SIM case. The mechanism of the FF-state

TABLE II. Equilibrium values of mean-field variables and related
quantities for the d-wave solution with H = 20.01 T and T = 0.1 K.

Variable Value Variable Value

m 0.026 8690 �m (m0) 5.217 29
hcor (K) −6.408 70 hcor NS (K) −6.531 33

�Q (K) 1.274 55 |Q| (Å
−1

) 0.0183
μ (K) 126.416 |Q|/�kF 1.15
F (K) 61.043 421 25 �F (K) ≡ FNS − F −0.001 424 36
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Phase diagram: SDM, s wave Momentum (1/Å)
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Phase diagram: SIM, s wave Momentum (1/Å)
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FIG. 1. (Color online) Phase diagram for the s-wave gap sym-
metry in the (a) SDM and (b) SIM cases. Light (yellow) region
corresponds to Q = 0 (BCS phase), the darker region corresponds to
the state with Q �= 0 (FF phase), and the white region corresponds
to the NS. Note the greater difference between SDM and SIM cases
than for d-wave gap symmetry (see Fig. 2).

stabilization by strong correlations has been analyzed in detail
in Refs. 31–33. For the sake of completeness, let us mention
that this mechanism is based on a smaller Fermi-wave-vector
splitting (�kF ≡ kF↑ − kF↓) in the SDM situation. In such
a case, the system can resist the destabilizing influence of
the applied magnetic field (hence, higher critical fields in the
SDM case) more efficiently. Also, it turns out that the FF
state can benefit to a greater extent than the BCS state from
the smaller �kF , as the FF state has higher spin polarization,
which is necessary for the appearance of SDMs (for details,
see Refs. 31, 32, and 58).

For further analysis of the AR, we take the parameters
obtained along the T = 0.02 K ≈ 0 line in Figs. 1 and 2.
Therefore, the results will have, strictly speaking, practical
relevance for T 
 Tsc, with the SC transition temperature
Tsc ≈ 2 to 3 K, as can be seen from Figs. 1 and 2.

III. JUNCTION CONDUCTANCE: THEORETICAL
ANALYSIS

For the analysis of the NSJ conductance, we take the
SC state parameters obtained self-consistently (from the
procedure presented above). Here, we consider only two-
dimensional NSJ for simplicity. Kinematics of the reflection

Phase diagram: SDM, d wave
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FIG. 2. (Color online) Phase diagram for the d-wave gap sym-
metry for the cases with (a) SDM and (b) SIM. Light (yellow) region
corresponds to Q = 0 (BCS phase), the darker (blue, red) region
corresponds to the states with Q �= 0 (FF phases), and the white
region corresponds to the NS. The topmost (red) region [and FF1
region in (a)] corresponds to the Cooper-pair momentum Q in the
maximum-gap (antinodal) direction (θQ = 0), whereas, the middle
one (blue) corresponds to the momentum along the nodal direction
(θQ = π/4). Note that this anisotropy results solely from the d-wave
gap symmetry, as the unpaired gas is isotropic. The dashed line marks
the BCS critical field Hc2 in the Pauli limit, and the dot-dashed line
marks Hc2 for the solution with θQ = 0.

may be analyzed by means of the Bogoliubov–de Gennes
(BdG) equations,62

Euσ (x) = Ĥ0uσ (x) +
∫

dx′�(s,r)vσ (x′), (14)

Evσ (x) = −Ĥ0vσ (x) +
∫

dx′�∗(s,r)uσ (x′), (15)

where s = x − x′, r = (x + x′)/2, and σ = ±1 is the spin
quantum number of the incoming quasiparticle and uσ (x) and
vσ (x) are the particle and hole wave-function components. The
one-particle Hamiltonian is given by

Ĥ0(r) = −∇ h̄2

2 m(r)
∇ − σh − σhcor(r) − μ + V (r), (16)
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where we have used the effective-mass approximation63,64

to express the kinetic part as ∇ h̄2

2 m(x)∇ with m(r) ≡ m(x) =
mav�(−x) + mσ�(x), similar to Refs. 64–67. The correlation
field is nonzero only on the SC side of the junction [hcor(r) =
hcor�(x)]. Also, r = (x,y), and the interface scattering poten-
tial is chosen as a δ function of strength H̃ , i.e., V (r) = H̃ δ(x).
The gap function can be Fourier transformed as follows:

�(s,r) =
∫

dk eiks�̃(k,r) =
∫

dk eiks�k,QeiQr �(x),

(17)

with �k,Q as in Eq. (6) but with the original set of coordinates
rotated by α (cf. Fig. 3). Explicitly, the SC gap we use from
now on has the form (in the new coordinates)

�k,Q = �Q[cos (a0kx cos α − a0ky sin α)

− cos (a0ky cos α + a0kx sin α)]. (18)

We neglect the proximity effects by assuming a steplike gap
function. To solve the BdG equations, we make the plane-wave
ansatz. Namely, we assume that the two-component pair wave
function has the form

ψ(r,σ ) ≡
[
uσ (r)|σ 〉
vσ (r)|σ 〉

]
= eikr

[
ũeiqr|σ 〉
ṽe−iqr|σ 〉

]
, (19)

with ũ and ṽ as constants and with σ ≡ −σ (we have also
dropped the σ indices of ũ and ṽ). We also remind the reader
that q = Q/2. By substituting Eqs. (17) and (19) into BdG

equations (14) and (15) and after some algebra, we obtain the
following matrix equation:(−E + ξk+q,σ �k,Q

�∗
−k,Q −E − ξk−q,σ

)(
ũ|σ 〉
ṽ|σ 〉

)
= 0, (20)

where unpaired quasiparticle energies ξkσ are given by Eq. (2)
or (3). Equation (20) gives the dispersion relations for
quasiparticles and quasiholes in the SC,

E = Ek± =
⎧⎨
⎩ξ

(a)
k ±

√
ξ

(s)2
k + �k,Q�∗

−k,Q for σ =↑ ,

−ξ
(a)
−k ±

√
ξ

(s)2
−k + �k,Q�∗

−k,Q for σ =↓ ,

(21)

where ξ
(s,a)
k have been defined in Eq. (13). One may check

that the above equation is in accordance with Eq. (12), as
Ek+ = Ek↑ (quasiparticle) and Ek− = −Ek↓ (quasihole) for
an incoming particle with spin σ =↑ as well as Ek+ = E−k↓
(quasiparticle) and Ek− = −E−k↑ (quasihole) for an incoming
particle with spin σ =↓. This holds as long as �∗

−k,Q = �∗
k,Q,

which is true for any real k.
As already mentioned, we study the FF type of the FFLO

SC state in which �(r) = �Qei2qr and set the direction of
the Cooper-pair momentum Q = 2q as either perpendicular
[Q = (Q,0)] or parallel [Q = (0,Q)] to the junction interface.
The perpendicular configuration [Q = (Q,0)] may lead to an
accumulation of charge at the NSJ interface due to normal
and/or supercurrents present in the FF state. Therefore, we
pay principal attention to the parallel configuration. Parenthet-
ically, the accumulation processes are very slow for the case
of heavy quasiparticles.

Normal metal, mav SC, m
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FIG. 3. (Color online) (a) Junction geometry for an incoming particle of spin σ =↑. Normal metal and SC regions are marked. The interface
lies at the x = 0 line. The SC gap is also presented: α is the angle between the kx axis and the maximum-gap direction. The full circles mark
quasiparticles, and the empty ones mark quasiholes. The momentum of each of them is marked with a boldface letter, and the amplitude is
marked with an italic letter. Namely, the incoming particle has momentum k and amplitude 1, the reflected hole has momentum p and amplitude
a, the reflected quasiparticle has momentum k′ and amplitude b, the transmitted quasiparticle has momentum k+

2 and amplitude c, and the
transmitted quasihole has momentum k+

1 and amplitude d. Note that the velocities of (quasi)holes are in the opposite direction to their momenta.
The angle of incidence is equal to θ and to the angle of reflection, but other angles (of reflection of the hole and those of transmissions) may
differ (cf. also Fig. 4). In (b) and (c), we explicitly show the two d-wave configurations of the SC gap for the FF phase studied in the following:
(b) corresponds to Fig. 7, and (c) corresponds to Fig. 8.
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As we consider an electron injected from the conductor side
of the junction (junction geometry is presented in Fig. 3), the
corresponding wave functions can be expressed as (we have
omitted the spin part for clarity)

ψ<(r) =
(

1

0

)
eikr + a

(
0

1

)
eipr + b

(
1

0

)
eik′r, (22)

ψ>(r) = d

(
u1e

iqxx

v1e
−iqxx

)
eik+

1 r + c

(
u2e

iqxx

v2e
−iqxx

)
eik+

2 r, (23)

where ψ<(r) and ψ>(r) describe the wave function on the
normal-metal and SC sides, respectively. The quasimomenta
k+

1 (for the quasihole) and k+
2 (for the quasiparticle) are

solutions of Eq. (21) for a given incident energy E propagating
in the positive x direction. From the translational symmetry of
the junction along the y direction comes conservation of the
y-momentum component. Namely, ky = k′

y = py = k+
1y =

k+
2y . All the wave vectors are presented in Fig. 4.

We use boundary conditions with the appropriate masses68

and the interface potential jump H̃ ; they are as follows:

ψ<(r)|x=0 = ψ>(r)|x=0, (24)

1

mav

∂ψ<(r)

∂x

∣∣∣∣
x=0

= 1

mσ

∂ψ>(r)

∂x

∣∣∣∣
x=0

− 2H̃

h̄2 ψ<(r)

∣∣∣∣
x=0

.

(25)

Those conditions lead to the following set of four equations69

for the amplitudes (a,b,c,d),

1 + b − cu2 − du1 = 0, (26)

a − cv2 − dv1 = 0, (27)

ikx(1 − b)

mav

− cu2i(qx + k+
2x)

mσ

− du1i(qx + k+
1x)

mσ

+ 2H̃

h̄2 (1 + b) = 0, (28)

k+
1 k+

2

Q

k =E E =Ek+
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kx

0.4

0.2

0.2

0.4

ky

0.6 0.4 0.2 0.2 0.4 0.6
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ky
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kx

0.6
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ky

(a)

E =E
k+

E =Ek-

k =-E

k =E

k'

k'
k

p

NS

p
k k+

2k+
1

Q=0

k =-E

NS FF SC, SIM
(b)

0.4 0.2 0.2 0.4
kx

0.4

0.2

0.2

0.4

ky

FF SC, SDM, h hc2

Q

E =Ek+

k+
1

k+
2

BCS SC

FIG. 4. (Color online) The junction geometry in reciprocal space. All relevant vectors are marked. It can be seen that only the incident and
reflection angles are equal to θ . At this point, it can be anticipated that changing θ for the BCS state does not lead to drastic changes in the
transmission/reflection probabilities, whereas, for the FF state, the situation is quite different, since Q �= 0 induces anisotropy in the reciprocal
space. The energy E value has been chosen as 10 K for all graphs except (b) FF SC for which E = 0.01 K ≈ 0 (for E > 0.5 K, there would
be no E = Ek− regions in this case). The dashed lines are guides to eye and illustrate the conservation of the y-momentum component.
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μ

σ 
σ 

σ σ 
σ
σ

μ

A

No

FIG. 5. (Color online) Conductance spectra for the case of s-wave
FF states for (a) SIM and (b) SDM cases. The Q vector is oriented
perpendicular to the junction, and the intermediate barrier strength
Z = 0.5 is taken. The value of the gap is (a) �Q = 0.11 K; (b) �Q =
0.36, 0.70, 1.09, and 1.53 K for the decreasing magnetic field. The
distance between the peaks is twice the Zeeman energy 2h = gμBH

only for the SIM case. In the SDM case, the correlations compensate
the Zeeman splitting (by means of hcor and mσ ), and the peaks are
closer than gμBH .

aipx

mav

− cv2i(k
+
2x − qx)

mσ

− dv1i(k
+
1x − qx)

mσ

+ 2H̃

h̄2 a = 0,

(29)

which are similar to those in, e.g., Ref. 64, except in our case,
vectors are replaced by their x components, e.g., k ↔ kx, p ↔
px , and SDMs are properly accounted for (obviously, in the
SIM case, we have that m↑ = m↓ = mav). From the solution
of Eqs. (26)–(29), one can obtain probabilities of the hole

Δ

Δ

Δ

σ
σ

σ 

μ

σ
σ

Δ

Δ

Δ

σ 

σ μ

FIG. 6. (Color online) Conductance spectra for the case of the
s-wave FF state for (a)–(c) SIMs and (d)–(f) SDMs, the Q vector
oriented parallel to the junction, and selected Z values. Also, in (b)
and (d), the spin-resolved signals Gσ are presented. The distance
between the characteristic features is shown in (a) and (d). In (a) and
(e), we provide the values of the gap �Q [they are identical in (a)–(c)
and (d)–(f)]. In the SDM case, for H � 12 T, there are no features
of the spin-up signal because the junction is transparent for incoming
electrons with spin σ =↑ (for an explanation, see the main text).

reflection pσ
rh = |a|2 Re[px ]

kx
, the particle reflection pσ

re = |b|2,
the quasiparticle transmission,

pσ
te = |c|2mav

( |u2|2
mσ

− |v2|2
mσ

)
Re[k+

2x] + ( |u2|2
mσ

+ |v2|2
mσ

)
qx

kx

,

(30)

and the quasihole transmission,

pσ
th = |d|2mav

( |u1|2
mσ

− |v1|2
mσ

)
Re[k+

1x] + ( |u1|2
mσ

+ |v1|2
mσ

)
qx

kx

,

(31)

where the σ superscript indicates the spin of the incoming
electron. In the following, we use the dimensionless barrier
strength Z ≡ 2mavH̃/(kFh̄2), where we define the Fermi wave
vector kF using the zero-field value kF = 1

h̄

√
2mavμ. Note
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Δ

Δ

σ
σ

FIG. 7. (Color online) Conductance spectra for the case of the d-wave FF state for selected Z values for the SIM and SDM cases. The
Cooper-pair momentum is oriented along the maximum-gap (antinodal) direction [i.e., θQ = 0 and α = 0; cf. Figs. 2(a) and 3(b)]. In (b), we
provide the values of the gap �Q, and in (a), we also plot the spin-up conductance. The magnetic field is close to Hc2. There is no clear distinct
feature, which differentiates between the SIM and the SDM situations for this configuration.

also that we do not use the assumption k = k′ = p = k+
1 =

k+
2 ≈ kF utilized at this point in a majority of the papers on

AR spectroscopy because we deal with heavy quasiparticles
for which μ is on the order of 100 K. Therefore, the usual
assumption μ � E is not, strictly speaking, applicable in the
present situation.

IV. RESULTS AND PHYSICAL DISCUSSION

Differential conductance (G ≡ dI/dV ) can be obtained
from the reflection and transmission probabilities37,70 in a
straightforward manner,

Gσ
ns = 1

2

∫ π/2

−π/2
dθ cos θ

[
1 − pσ

re(E,θ ) + pσ
rh(E,θ )

]
. (32)

The final result of our calculation is the total conductance
G averaged over spin and normalized with respect to the
conductance Gσ

nn of the junction with � = 0 but still with the
same other parameters (mσ ,μ,hcor), as the superconducting
state. Namely,

G = G
↑
ns + G

↓
ns

G
↑
nn + G

↓
nn

. (33)

This quantity is exhibited in the following figures, some-
times with the spin-resolved conductance Gσ ≡ Gσ

ns/Gσ
nn. We

assume the barrier strength equal to Z = 0 (contact limit),
Z = 0.5 (intermediate limit), and Z = 5 (tunneling limit). The
case of Z = 5 reflects not only the situation for planar NSJ with
a thick insulating layer, but also that encountered in scanning
tunneling spectroscopy (STS) experiments.71

Our goal in the following is to identify generic, model-
independent features of the strongly correlated situation (i.e.,
with SDM). Namely, those features should not depend on the
assumed dispersion relation or the pairing-potential strength.

A. s-wave pairing symmetry

In Fig. 5, the conductance for the s-wave gap symmetry and
Q vector oriented perpendicular to the junction, is presented. It
can be seen that there are peaks in the conductance originating

from AR processes of quasiparticles having different spins,
which take place when the energy E of the incoming electron
fits into the so-called Andreev window (AW), see Refs. 39
(Fig. 3), 40, and 58 (Chap. 5, Figs. 5.1d and 5.4b) for more
details. These peaks are separated by a distance equal to twice
the Zeeman energy (2h = gμBH ) only in the case without
strong correlations (SIM). For the SDM case, the correlations
compensate the Zeeman splitting (by means of hcor and mσ ,
cf. Refs. 31 and 32), and as result, the conductance peaks are
closer than twice the Zeeman energy. We identify this feature
as a hallmark of strong correlations in the SC state. Another
interesting feature differentiating the SIM and SDM cases is
the absence of the σ =↑ peak for the SDMs when the magnetic
field H � 12 T. For such fields, the junction is transparent for
incoming particles with σ =↑ because the AW39,40 falls below
E = 0. In other words, the quasiparticle energy Ek+ within
the FF SC is below zero around the whole Fermi surface. This
leads to breaking of Cooper pairs and produces a NS region
filling the whole angular space around the Fermi surface [see
Fig. 4(b), SDM case]. Since there are normal particles with
σ =↑ within the FF SC, the incoming σ =↑ quasiparticle does
not feel the SC gap presence, and the junction is transparent,
which yields G↑ ≈ 1.

In all the following figures, the parallel orientation of the
Q vector with respect to the NSJ interface has been assumed.
In Fig. 6, the NSJ conductance for the s-wave gap symmetry
has been presented. Again, at high magnetic fields H � 12 T,
the junction is transparent for incoming quasiparticles with
σ =↑. In the present case, it is difficult to discern characteristic
features of the conductance from the spin-up and spin-down
channels in such a manner that the splitting of the peaks could
be measured. For this purpose, the spin-resolved signals Gσ

would have to be singled out, as shown in Figs. 6(b) and
6(d) because the spin-specific features of the total conductance
are subtle and could be smeared out at finite temperatures
or due to other effects (e.g., inelastic scattering). Again, the
characteristic features of spin-up and spin-down signals are
separated by a distance equal to twice the Zeeman energy for
SIMs [Fig. 6(a)] and are closer for SDMs [Fig. 6(d)].
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B. d-wave pairing symmetry

In Fig. 7, the conductance in the case of the FF state
with θQ = 0 is presented. Such a phase is stable in the
high-field regime (see Figs. 1 and 2). Note that, by fixing
the direction of Q with respect to the NSJ interface, we
fix also angle α (see Fig. 3), as θQ is determined from the
results presented in Sec. II. Namely, the parallel vector Q
orientation with respect to the junction interface implies that
α = 0 for θQ = 0 [cf. Fig. 3(b)] and α = π/4 for θQ = π/4
[cf. Fig. 3(c)]. In the case with θQ = 0, no remarkable
model-independent differences between the SDM and the SIM
cases appear, as all peaks present in Fig. 7 come from σ =↓
electrons [see Fig. 7(a), where the σ =↑ signal has been
plotted].

The conductance spectra for the d-wave FF phase with
θQ = π/4 (with α = π/4) have been presented in Fig. 8. As
in the s-wave case, and for the same reasons, at high magnetic
fields, the junction is transparent for spin-up quasiparticles
in the SDM case. Only at H � 14.4 T, were we able to
discern characteristic spin-specific features of the spectra [see
Figs. 8(a) and 8(d) for the spin-resolved spectra]. Again, these
features are split by twice the Zeeman energy for the SIMs and
are closer for the SDMs. To identify the spin-specific features,
spin-resolved spectra have to be analyzed, as before in the
s-wave case.

Finally, in Fig. 9, we show the conductance spectra for
the d-wave BCS state with the (100) contact (α = 0). In this
case, in the tunneling limit (Z = 5), the peaks originating
from the AR of quasiparticles with different spins, are most
clearly visible. As previously, these peaks are split by twice
the Zeeman energy for the SIMs and are closer for the SDMs.
We identify this case as the most promising for experimental
verification, as discussed in the following.

V. RELATION TO EXPERIMENT

Our results imply that the splitting between the spin-up and
the spin-down features of the conductance spectra is equal
to twice the Zeeman energy only in the noncorrelated case
(SIM). In the strongly correlated case, due to the presence
of SDMs mσ and correlation field hcor, the separation of
the spin-up and the spin-down features differs essentially.
In the present case of a two-dimensional correlated elec-
tron gas, this separation is smaller (because mσ and hcor

compensate the Zeeman term; typically hcor ≈ 0.5 × (−h),
cf. Refs. 31 and 32), but, in general, it may be larger. For
example, in the two-dimensional Hubbard model, our recent
calculations54 typically yield hcor ≈ 5 × h, and therefore, in
that model, correlations enhance splitting of the conductance
peaks.

In principle, it should be possible to measure the
conductance-peaks splitting experimentally. Especially, the
BCS case with the (100) contact and high barrier strength
Z [Figs. 9(c) and 9(f)] looks promising, as the peaks are
clearly visible, and the BCS state exists in lower magnetic
fields than the FFLO state, which should make the whole
analysis simpler (the orbital effects,72 which may be essential
especially on the normal-metal side, are less important in that
regime).

Another feature differentiating the SIM case from the SDM
situation is the absence of the spin-up features of conductance
spectra for high magnetic fields and for the FF state. It
is difficult to say if this feature is model independent or
characteristic to the model with the dispersion relation of a
free-electron gas with renormalized masses.

AR spectroscopy in magnetic fields has already been re-
ported in a few compounds.73–77 For example, in Mo3Sb7, point
contact AR spectroscopy leads to identification of this com-
pound as an unconventional SC.77 Such measurements have
also been performed on Cd-doped CeCoIn5.75,76 CeCoIn5, as a
heavy-fermion SC and possibly a host to the FFLO phase, is a
natural candidate for verification of the present results. Spectra
presented in Fig. 4 of Ref. 75 resemble our Fig. 9(e), with
splitting between the spin-up and the spin-down features on the
order of 8 T in fields of approximately 2 T. This might indicate
that hcor ↑↑ h (hcor enhances h), but in CeCoIn5, the one-band
model, assumed in our calculations, may not be sufficient,78

and therefore, our interpretation is only a speculation.79On the
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Δ

Δ
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FIG. 8. (Color online) Conductance spectra for the d-wave FF
state with θQ = π/4 [Q along the nodal direction, α = π/4; cf.
Figs. 2(a) and 3(c)] for selected barrier strengths for the (a)–(c) SIM
and the (d)–(f) SDM cases. In (b) and (e), we provide the values of
the gap �Q. Also, in (a) and (d), the spin-resolved conductance Gσ

has been presented to identify spectra features for both spin channels.
These features are separated by twice the Zeeman energy for the SIMs
and again, are closer for the SDM case.
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FIG. 9. (Color online) Conductance spectra for the d-wave BCS
state with the (100) contact (α = 0) for selected barrier strengths
for the (a)–(c) SIM and the (d)–(f) SDM cases. In (a) and (d), we
provide the values of the gap �Q. In (c) and (f), in the tunneling
regime (Z = 5), conductance peaks from spin-up and spin-down
channels already are clearly visible in the total conductance G (i.e.,
there is no need to analyze the spin-resolved spectra Gσ ). These
peaks are separated by twice the Zeeman energy for (c) SIMs and
are closer for (f) SDMs.

other hand, for a two-band model with strong correlations,
the hcor terms are also present (for both bands), and our
conclusions should also hold.

Let us note that, in view of the present results, the AR
spectra for the case of the BCS state with the (100) contact
and in the tunneling limit (high Z) would be most helpful
in detecting the effect of strong correlations in SCs. Such a
configuration can be studied by both AR spectroscopy of a
planar junction as well as by the STS technique.

VI. CONCLUSIONS

In this paper, we have provided a detailed analysis of the
conductance spectra of a normal-metal strongly correlated SC
junction. The splitting of conductance peaks in the strongly
correlated case differs from that in the uncorrelated case. It is
equal to twice the Zeeman energy only in the latter case, and in
the correlated case, it may be smaller or larger depending on the
details of the electronic structure. We identify this feature as
one of the hallmarks of strong correlations in the SC phase, as
it should hold true for other models with different dispersion
relations. It is most clearly visible in the case of the BCS
SC with the (100) contact and in the tunneling regime (high
Z). In other cases, it also is present, but the spin-resolved
conductances must be analyzed in order to identify the splitting
unambiguously.

It would be interesting to examine other spectroscopic
methods, such as the Josephson tunneling in the SC quantum
interference device geometry for the systems with strong
correlations (and specific features resulting from them: the
spin-dependent masses and the correlation field). Such analysis
should be carried out separately as it may lead to a decisively
distinct interference pattern in an applied magnetic field.
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110403 (2006).
23T. K. Koponen, T. Paananen, J.-P. Martikainen, M. R. Bakhtiari,
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