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Strong pinning and elastic to plastic vortex crossover in Na-doped CaFe2As2 single crystals
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We study the vortex dynamics of NaxCa1−xFe2As2 single crystals with x = 0.5 (underdoped) and x = 0.75
(optimally doped), having Tc ≈ 19.4 and 33.4 K, respectively, by performing magnetization measurements of
the critical current density Jc and flux creep rate S. We find that the Jc versus temperature, T, dependence
is consistent with δTc pinning, indicating strong pinning associated with randomly distributed defects larger
than the coherence length ξ . The temperature dependence of S shows a crossover between glassy (elastic) and
plastic creep regimes. The boundary Tcr (H) between both creep regimes coincides with the upper limit of the
regime of strong pinning by nanoparticles. The glassy exponent μ in the optimally doped crystal is consistent
with the thermal collective creep theory previously applied to cuprate superconductors, but in the underdoped
sample the plateau in S(T) indicates that μ ≈ 3–3.3, a value larger than the existing theoretical predictions. We
discuss the quantum creep contributions in both samples.
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I. INTRODUCTION

One of the most fascinating dynamics phenomena of
complex systems is the thermally activated flux creep in
high-temperature superconductors (HTS). The discovery of
superconductivity in layered iron arsenides opens the possibil-
ity to extend the study of vortex dynamics to superconductor
materials with intermediate properties between conventional
low-temperature superconductors and cuprates. Iron arsenide
superconductors of the type AFe2As2 (122 system), where A is
an alkaline-earth element, show intermediate superconducting
transition temperatures Tc between conventional and cuprate
superconductors, low anisotropy (γ ≈ 2), as well as high upper
critical fields Hc2 due to the concomitant small coherence
lengths ξ .1 High flux creep rates and a transition from collec-
tive to plastic creep have been reported in Co-doped BaFe2As2;
the transition between the two regimes was associated with a
second peak in the magnetization (SPM)2,3 similar to what was
previously found in YBa2Cu3O7−x single crystals.4 However,
we showed that in Na-doped CaFe2As2 single crystals the
SPM does not appear,5 indicating that the origin of the
pinning is different from that found in Co-doped BaFe2As2.
We also found that over large regions of the temperature-field
phase diagram the pinning in our crystals is dominated by a
sparse random distribution of nanoparticles.5 On the other
hand, Nakajima et al.6 showed that, as in YBa2Cu3O7−x

single crystals,7 it is possible to improve the critical currents
Jc in Co-doped BaFe2As2 by the introduction of columnar
defects.

Although in principle the ideas of glassy vortex dynamics
and the collective creep theory are general and not restricted
to a particular type of superconductor, in reality they were
originally developed for HTS cuprates8 where, due to the
short ξ and large γ , the pinning energy U0 is very small and
the creep rate is high. In contrast, low-Tc superconductors
(LTS) typically have much smaller creep rates and the
differences between the classical Anderson-Kim and the glassy
descriptions are hard to observe.8,9 Thus, the similarity in
the vortex dynamics of pnictides and cuprates2,4 makes the

iron-arsenide-based materials ideal to deepen and generalize
our understanding of vortex matter.

In this work we analyze the vortex pinning and dynamics
by magnetization M as a function of magnetic field H, tem-
perature T, and time t (flux creep measurements) on Na-doped
NaxCa1−xFe2As2 single crystals with x = 0.5 (underdoped)
and x = 0.75 (optimally doped), having Tc ≈ 19.4 and 33.4 K,
respectively. The results obtained in both single crystals show
that the temperature dependence of the flux creep rate S shows a
crossover between collective elastic and plastic creep regimes.
In both cases the elastic creep is consistent with strong pinning
given by a small density of nanoparticles, but the glassy
exponent μ for the elastic collective creep is very different in
the two samples. For the optimally doped crystal μ ≈ 0.7–1,
a value frequently observed in YBa2Cu3O7 and consistent
with expectations for collective creep regimes, while for the
underdoped crystal μ ≈ 3–3.3, which is above the highest μ

predicted by collective creep models.
The activation energy as a function of current density J in

a glassy vortex phase is

U (J ) =
(

U0

μ

) [(
Jc

J

)u

− 1

]
, (1)

where μ > 0 is the glassy exponent and U0 is the charac-
teristic pinning energy. The time decay of J is given by the
interpolation between the classical Anderson-Kim model and
the nonlinear logarithmic time and the current density:

J = Jc

[
1 + μT

U0
ln(t/t0)

]−1/μ

, (2)

where t0 is a characteristic time and T is the temperature. The
normalized relaxation rate is

S = −d(ln J )

d(ln t)
= T

U0 + μT ln(t/t0)
= T

U0

(
J

Jc

)μ

. (3)

The condition μ > 0 implies a diverging activation energy
as J → 0 in Eq. (1), which is a consequence of the elasticity of
the vortex matter, so this is also called elastic creep. The glassy
exponent μ is regime dependent. For instance, for random
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FIG. 1. (Color online) Magnetic field (H) dependence of the critical current density (Jc) at different temperatures. (a), (b) x = 0.5;
(c), (d) x = 0.75. Black arrows indicate the start and the end of the power-law regime Jc ∝ H−α .

point disorder the collective creep model predicts μ = 1/7
for single vortex creep, 3/2 or 5/2 for small bundles, and
7/9 for large bundles, while different μ values are expected
for correlated disorder in various single-vortex and collective
regimes. Experimentally, a large number of μ values have been
reported.2

If we define the vortex creep energy U ∗ = U0 + μT

ln(t/t0) we obtain

U ∗ = T

S
= Ue

0

(
Jc

J

)μ

. (4)

The same expressions can be used to describe a plastic creep
(nondiverging U for J → 0) by taking μ < 0. In particular,
μ = −1 corresponds to the classical Anderson-Kim model.
The plastic exponent is commonly called p; thus in the plastic
regime we have

U ∗ = T

S
= U

p

0

(
Jc

J

)p

. (5)

By the analysis of U ∗ versus 1
J

it is possible to estimate the
crossover between different creep regimes and the pinning
energy.10 It is also well known that a logarithmic current
dependence, U(J ) = U0 ln( Jc

J
),11 which formally corresponds

to μ → 0, is often a very good description of experimental
data, and in this case U ∗ = U0.

II. EXPERIMENTAL DETAILS

Single crystals of NaxCa1−xFe2As2 with x = 0.5 and x =
0.75 have been grown by a self-flux technique. Both samples

are superconducting with Tc of 19.4 and 33.4 K, respectively.
These values agree with those previously reported for similar
chemical composition.12,13 The details of the sample prepa-
ration and characterization were presented elsewhere.5 In all
cases a 100% superconducting volume fraction was observed,
as was previously discussed.5

The irreversible magnetization M(H,T) was measured in
a commercial superconducting quantum interference device
magnetometer, and used to calculate Jc(H,T) according to
the Bean critical-state model.14 The time relaxation of the
irreversible magnetization M(t), which is proportional to Jc(t),
was measured (typically for 1 h) to determine the flux creep
rates. For each T and H the initial critical state was generated
by reducing the field to the measuring value H from H + �H
with �H ≈ 4H ∗, where H ∗ is the first magnetic field for full
flux penetration. 9

III. RESULTS

Figure 1 shows Jc(H) for H‖c at several T for both single
crystals (SCs) in log-log scale. These data were previously
shown and discussed in Ref. 5. In contrast to previous reports
on 122 single crystals with different composition,2,3 we do
not observe a second peak in the critical current density.
However, x = 0.75 shows a region where Jc(H) ≈ constant, as
was previously discussed.5 In order to understand the vortex
dynamics in these samples we performed magnetic relaxation
measurements. For a clearer presentation, the measurements
in each one of the SCs will be shown separately.
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FIG. 2. (Color online) Temperature dependence of the creep rates
(S) at different applied magnetic fields (H) in x = 0.75. The arrows
indicate Tcr (H).

A. Optimally doped sample (Na0.25Ca0.75Fe2As2)

Figure 2 shows S(T) in x = 0.75, obtained from isothermal
magnetization relaxation using Eq. (3). The main features in
S(T) are (i) The high vortex creep rates (0.02 < S < 0.04) are
in the same range as those previously reported in YBCO.8,9

(ii) S(T) at low H shows a peak, with the maximum at a
temperature that decreases when H is increased. The S value
at the maximum is always the same (∼0.04). (iii) This peak
disappears above μ0H ≈ 1 T, and S(T) shows a plateau in
agreement with collective vortex theory (glassy relaxation).8,9

Also, for μ0H < 1 T the S(T) values above the peak tend to
be ∼0.03, which is the value at the plateau. (iv) For all fields
S(T) shows a sudden increase at a field-dependent temperature
Tcr (H), indicated by arrows in Fig. 2. At low H this crossover
to fast creep appears at T ≈ 30 K (∼0.95Tc).

Figure 3 shows the U ∗ versus 1
J

dependence for x = 0.75 at
μ0H = 1 T, which is the H value where the peak in S(T) disap-
pears. Using Eqs. (4) and (5), we obtain μ ≈ 0.7 and p ≈ −0.5
(red dashed lines) as is expected for collective creep by large
bundles and plastic creep, respectively.8,15 On the other hand,
if we consider that in the plateau S = [μ ln(t/t0)]−1 ≈ 0.03,
where ln(t/t0) ≈ 30, we get μ ≈ 1. The normalized vortex
creep energy at the crossover between both regimes is ∼900 K.

The pinning in type II superconductors may originate in
disorder in Tc (δTc) and/or from the spatial variation in the
free path l near a lattice defect (δl).8 In the single vortex
regime Jc can be expressed as a function of the temperature
as Jc ∝ [1 − ( T

Tc
)2]n, where the exponent n indicates the

type of pinning, being 7/6 and 5/2 for δTc and δl pinning,
respectively.16 Figure 4 shows Jc versus 1 − ( T

Tc
)2 at μ0H =

0; 0.3 and 1 T for x = 0.75. The data fit with n = 1.4, which

FIG. 3. (Color online) U ∗ versus 1/J obtained using the relax-
ation creep data for μ0H = 1 T shown in Fig. 2 (x = 0.75). The creep
crossover appears at ∼27 K. The red dashed straight lines are fits to
Eqs. (4) and (5). In the elastic collective creep μ ∼ 0.7 is obtained,
whereas in the plastic regime p ≈ −0.5 is obtained.

is close to the expectation for δTc pinning.17 The δTc pinning
remains dominant up to temperatures close to Tc, similar to the
case of YBCO films with strong pinning by nanoparticles.18

B. Underdoped sample (Na0.5Ca0.5Fe2As2)

Figure 5(a) shows the S(T) dependence at μ0H = 0.3 T
for x = 0.5. The results show a plateau between 4 and 10 K
(S ∼ 0.01); above T ≈ 10 K the S values start to increase.
Figure 5(b) shows S(H) at several T; it is clear that the
plateau with S ≈ 0.01 remains independent of H. However, the
crossover to fast creep occurs at progressively lower T when
H is increased. Figure 6 shows the U ∗ versus 1

J
dependence

[see Eqs. (4) and (5)] for the data presented in Fig. 5(a). The
results indicate a crossover from collective to plastic creep; the
value of μ ≈ 3 indicates a glassy behavior with a value higher
than the predictions of the collective creep theory, whereas
p ≈ −0.4 is the value expected for plastic creep of dislocation
bundles.15 From the plateau S = [μ ln(t/t0)]−1 ≈ 0.01, where

FIG. 4. (Color online) Log-log plot of Jc versus 1 − ( T

Tc
)2 at

different H values in x = 0.75. Straight lines correspond to the best
fits to obtain the n value.
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FIG. 5. (Color online) Temperature dependence of the creep rate
(S) at μ0H = 0.3 T in x = 0.5 (left). S(H) dependence at different
temperatures in x = 0.5 (right). The arrows indicate Tcr (H). Inset:
expanded view of S(T ) of the low temperature range.

ln(t/t0) ≈ 30, we get a similar estimate, μ ≈ 3.3. Finally, the
S(T) extrapolation to T = 0 K, which corresponds to quantum
creep SQ, gives S(0) ≈ 0.075, indicating a nonnegligible
quantum contribution at low temperatures (see inset Fig. 5).

Figure 7 shows the Jc versus 1 − ( T
Tc

)2 dependence at
different H. The linear fits at low T (in the elastic regime)
correspond to n = 1.2, as expected for δTc pinning due to the
presence of small precipitates.16–18 As T increases we observe
a crossover to a larger slope n in Fig. 7 [faster decay of Jc(T)].
The crossover temperature is ∼11 K (T ≈ 0.6Tc) at self-field
and decreases as H increases. It is important to remark that
also at temperatures above ∼11 K the power law Jc ∝ H−α

disappears [see Figs. 2(a) and 2(b)]. This suggests that the
nanoparticles or strong pinning centers that are effective at
low temperatures become less effective above ∼11 K. This
scenario is consistent with our previous analysis of the pinning
force, where a change in the pinning mechanism was observed
around 10 K.5

FIG. 6. (Color online) U ∗ versus 1/J from the relaxation data for
μ0H = 0.3 T shown in Fig. 5. The creep crossover appears at 10 K.
The red dashed straight lines are fits to Eqs. (4) and (5). In the elastic
collective creep μ ≈ 3 is obtained, whereas in the plastic regime p ≈
0.4 is obtained.

FIG. 7. (Color online) Log-log plot of Jc versus 1 − ( T

Tc
)2 at

different H in x = 0.5. Straight lines correspond to the best fit in
both regimes.

IV. DISCUSSION

Our study shows that both single crystals present a
crossover between collective elastic and plastic (fast) creep
at a field-dependent temperature Tcr (H) as shown in the phase
diagrams in Fig. 8. The Tcr/Tc ratio is very different in the two
materials; for instance at self-field it is ∼0.6Tc and ∼0.95Tc

for x = 0.5 and x = 0.75, respectively. In both crystals there
is a clear coincidence between Tcr (H) and the location of the
upper end of the power-law regime Jc ∝ H−α with α ≈ 0.55,
indicated by arrows in Fig. 1 and also included in Fig. 8. We had

(a)

(b)

FIG. 8. (Color online) The vortex phase diagrams for both single
crystals: (a) x = 0.5; (b) x = 0.75. Blue diamond: creep crossover.
Black triangle: end of the power-law regime in Jc(H). In figure
(a) (open green triangle) the temperature crossover obtained from
Fig. 7 is also included. Hc2 and Hirr were taken from Ref. 5.
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previously shown that the Jc ∝ H−α regime is associated with
pinning by randomly distributed nanoparticles. Also, as shown
in Figs. 4 and 7, in both crystals the Jc(T) dependence below
the Tcr (H) crossover is characterized by n values consistent
with δTc pinning, a mechanism usually associated with the
presence of defects larger than the coherence length ξ .16,17

In the underdoped crystal (see Fig. 7) we can also track the
H dependence of the crossover from n ∼ 1.2 at low T to a
faster Jc decay at higher T. That boundary is also included in
the phase diagram [Fig. 8(a)] and again coincides remarkably
well with Tcr (H). In the optimally doped crystal this crossover
in Jc(T) occurs too close to Tc to be satisfactorily determined.
As we have previously shown that neither of the two crystals
has significant pinning arising from correlated disorder,5 the
coincidence of the various features in the phase diagrams of
Figs. 8(a) and 8(b) demonstrate that the elastic creep regime
below Tcr (H) corresponds to strong pinning associated with
the presence of a random distribution of nanoparticles.19,20 The
identification of the nanoparticles in our crystals will require
careful microstructural studies.

We now discuss the nature of the crossover at Tcr (H). If
vortex pinning below Tcr (H) arises from nanoparticles with
radius rd of a few nanometers, then the vortex dynamics
can be analyzed in analogy with columnar defects.8,19 A
crossover from a strong pinning regime at low T to weaker
pinning at high T is expected when

√
2ξ (T ) = rd , where

ξ (T) = ξ (0)(1−T /Tc)1/2 is the temperature-dependent coher-
ence length, at a temperature Tcr defined by Tcr

Tc
= 1 − 2ξ 2(0)

r2
d

.8

If we assume ξ (0) = 3.68 nm for x = 0.5 and ξ (0) = 2.1 nm
for x = 0.75,5 in the case of x = 0.5 using Tcr = 11 K
we get rd ≈ 5 nm. In the case of x = 0.75, on the other
hand, nanoparticles of the same size would produce strong
pinning up to temperatures very close to Tc, similar to the
situation frequently observed in YBCO films.18 Thus, the
different Tcr/Tc ratios in our two crystals is a manifestation
of the general rule that defects of size smaller than the vortex
core are weak pinning centers. Again by analogy with the
case for columnar defects, the field dependence of Tcr (H) can
be associated with an accommodation field. Following these
considerations, the creep rate will be fast above Tcr (H), when
only a fraction of vortices are strongly pinned, whereas the rest
are only retained by the shear force within the lattice.8 This
also initiates a change in the vortex dynamics, with an increase
in the creep rate and a crossover from elastic to plastic creep.

In the elastic creep regime, both crystals show a plateau in
S(T) over a wide T-H range. This is a clear fingerprint of a
glassy relaxation regime defined by a single μ value. To our
knowledge, there are no theoretical predictions for the glassy
exponents expected for strong pinning by randomly distributed
nanoparticles. In x = 0.75 the glassy exponent μ ≈ 0.7–1 is
within the range typically observed in YBCO, and consistent
with the expectations for collective creep of large bundles in
the case of random point disorder. The plateau starts at T ≈
5 K, indicating that the pinning energy U0 ≈ μT ln(t/t0) ≈
100−150 K.

As we showed previously, in x = 0.75 the S(T) dependence
at low fields (μ0H � 0.3 T) shows a peak (see Fig. 2). In
cuprate superconductors like YBCO single crystals and films,
a peak in S(T) associated with double kink and superkink

FIG. 9. (Color online) Temperature dependence of the S(T)
maximum value (see Fig. 2), and the self-field estimated as H ∗ =
J H=0

c × thickness and as the H where the Jc (H) power-law regime
starts (see Fig. 1), in crystal x = 0.75.

depinning excitations is observed in the presence of correlated
disorder (columnar defects).21 In x = 0.75 the anisotropic
scaling of the irreversibility line and the Jc(H) dependence
for H tilted with respect to the c axis indicates the absence
(or negligible influence) of correlated disorder.5 Also, the
peak in x = 0.75 shows clear differences from the peak
produced by columnar defects in YBCO. Whereas in the
S(T) peak associated with columnar defects the value of S
at the maximum decreases when H is increased (due to a
filling effect) and the temperature of the maximum is weakly
affected, in the x = 0.75 the S value at the maximum is
always the same (∼0.04) and the T where the maximum
occurs decreases strongly when H is increased. Considering
these differences, the interpretation for this peak should be
different. According to Taen et al.22 a suppression of the
S values at low temperatures occurs when the applied H
is smaller than the maximum self-field in the sample, this
suppression being a consequence of the “Meissner hole” that
appears close to the edges of the sample.23 In order to analyze
this possibility, in Fig. 9 we compared the T dependence
of the self-field, estimated both as H ∗ = JH=0

c × thickness,
and from the start field of the power-law regime [see arrows
in Figs. 1(c) and 1(d)], with the temperature where the
maximum in S occurs for each applied H. Clearly we get
a very good agreement, indicating that the vortex dynamics
at μ0H < μ0H

∗ are strongly affected by the magnetic field
inhomogeneity associated with self-field effects.

In contrast to x = 0.75, in the case of x = 0.5 the obtained
μ ≈ 3–3.3 is larger than the expectations of the collective creep
scenario as well as the predictions for correlated disorder.8 If
only thermal creep were present, the fact that the plateau in S(T)
extends to T as low as ∼3.5 K would indicate a pinning energy
U0 ≈ μT ln(t/t0) ≈ 300 K. However, this estimate should be
taken with caution due to the significant quantum creep
contribution, as we discuss later. We find that x = 0.5 does
not show a peak in the S(T) dependence. The probable reason
is that the self-field is smaller than in x = 0.75, being μ0H

∗ ≈
0.09 T at 5 K and μ0H

∗ ≈ 0.05 T at 10 K (see Fig. 9).
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Finally, we are going to discuss the presence of quantum
creep in both samples [see Figs. 2(a) and (5)].8 At low
temperatures where the quantum creep dominates, S is given by

SQ ∼= e2

h̄

ρn

ξ

(
Jc

J0

)1/2

,

where ρn is the resistance in the normal state, J0 is the de-
pairing critical current density, and h̄

e2 = 4108 �. Using ρn of
140 μ� cm and 110 μ� cm, obtained from ρ(T) measurements
in our crystals,5 we estimate S = 0.006 and S = 0.008, for x =
0.5 and x = 0.75, respectively, in good agreement with the
experimental results. In x = 0.5, the plateau in S that is H inde-
pendent at low temperatures (S ∼ 0.01) is very close to the ex-
trapolated quantum creep value (S ∼ 0.075), and suggests that
the creep below 10 K could have an important quantum contri-
bution. The quantum tunneling probability of a vortex segment
without environmental interaction ∝exp−U/h̄ω0 is bigger than
the chance of thermal activation ∝exp−U/kBT , whereas h̄ω0 �
kBT , where ω0 is the depinning frequency.24 In particular, for
YBCO the quantum creep contributes below 10 K.24

By combining these results we obtain a remarkably consis-
tent characterization of the vortex pinning and dynamics in our
crystals, as shown in the phase diagrams in Fig. 8. Both samples
show qualitatively similar behavior, with elastic collective
creep at low T and H and a crossover to plastic (fast) creep
regime above a Tcr (H) boundary. This boundary coincides with
the upper end of the power-law regime Jc ∝ H−α originating in
the strong pinning by sparse random nanoparticles. As within
the power-law regime the vortices are interacting, thus the
creep mechanism must be associated with depinning of vortex
bundles. However, the glassy exponent μ is quite dissimilar in
the two single crystals, indicating that even though the pinning
landscape is similar in both crystals the creep regimes are
different. An important difference between both samples is
the size of the vortex core. As discussed previously, the low
Tcr (H = 0) ≈ 0.6Tc in x = 0.5 is consistent with a regime
crossover at

√
2ξ (T ) = rd , not observed in x = 0.75 due to

its smaller ξ 0. Nakajima et al.6 showed that in Co-doped
BaFe2As2 single crystals the introduction of defects by heavy
ion irradiation improves Jc and also increases the magnetic
field crossover between creep regimes at 15 K. This is
consistent with an increase in Tcr due to larger defects.

Although the smaller creep rate in x = 0.5 as compared to
x = 0.75 can be expected by the simple consideration that it

has lower Tc and smaller Ginzburg number Gi, the nontrivial
observation is that it exhibits a glassy relaxation with a μ larger
than predicted and observed in cuprates. The largest μ values
predicted by the models are associated with small bundles;
however, from the Jc/J0 ratios in x = 0.5 large rather than
small bundles should be expected, with μ values around 1
or smaller. More generally, larger μ indicates more interactive
vortices. Our results point to the need to explore more examples
of vortex matter in systems where the influence of thermal
fluctuations is intermediate between the case of conventional
and HTS. Finally, the crossover from elastic to plastic creep
has been observed in several Fe-As 122 compounds as well
as in cuprates, and associated with different pinning regime
crossovers. Our results highlight the importance of the ratio of
defect and vortex core sizes, but a general picture must clearly
include other variables such as defect density and shape.

V. CONCLUSION

In summary, we have studied the vortex dynamics in
Na-doped CaFe2As2 single crystals by magnetization mea-
surements of the critical current density and its time relaxation.
We observed a crossover from collective elastic to plastic
creep in both crystals. In the underdoped crystal the crossover
temperature is Tcr ≈ 0.6Tc, whereas in the optimally doped
crystal the crossover is close to Tc (∼0.95Tc). The Tcr could
be associated with the ratio of defect size to ξ (T). The glassy
exponent for the elastic creep is very different in each sample,
μ ≈ 0.7 and μ ≈ 3 for optimally doped and underdoped,
respectively. While the first one is consistent with theoretical
models for the collective creep of large bundles, the second
one is larger than those predictions and points to the presence
of an alternative type of depinning excitations, where quantum
creep may play a significant role.
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