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Strong pinning and vortex energy distributions in single-crystalline Ba(Fe1−xCox)2As2
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The interrelation between heterogeneity and flux pinning is studied in Ba(Fe1−xCox)2As2 single crystals with
widely varying Co content x. Magnetic Bitter decoration of the superconducting vortex ensemble in crystals with
x = 0.075 and x = 0.1 reveals highly disordered vortex structures. The width of the Meissner belt observed at
the edges of the crystals, and above the surface steps formed by cleaving, as well as the width of the intervortex
distance distribution, indicate that the observed vortex ensemble is established at a temperature just below the
critical temperature Tc. The vortex interaction energy and pinning force distributions extracted from the images
strongly suggest that the vortex lattice disorder is attributable to strong pinning due to spatial fluctuations of Tc

and of the superfluid density. Correlating the results with the critical current density yields a typical length scale
of the relevant disorder of 40–60 nm.
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I. INTRODUCTION

Recent vortex imaging studies of iron-based superconduc-
tors have unveiled highly disordered vortex structures that
challenge the use of traditional analysis procedures based
on the characterization of positional and orientational lattice
correlations.1–7 For example, the combination of small-angle
neutron scattering experiments with Bitter decoration1,2 and
magnetic force microscopy3 revealed a “vitreous” phase in
Ba(Fe1−xCox)2As2 single crystals. The latter work shows that
the vortex structure of the overdoped material (x = 0.19)
presents, at best, short-range hexagonal order in the field range
of 10−3 to 9 T. Disordered vortex structures were also observed
by means of Bitter decoration in single crystals of other iron-
based pnictide superconductors including Ba1−xKxFe2As2,
Sr1−xKxFe2As2, and SmAsO1−xFx .4 Regardless of material,
doping, and synthesis method, the disordered vortex structures
are attributed to a strong pinning the nature of which was not
discussed.

The only reported ordering effect on the orientation of
the vortex ensemble is that induced by twin boundaries
in Ba(Fe0.949Co0.051)2As2.5 This scanning superconducting
quantum interference device (scanning SQUID) microscopy
study shows that vortices avoid twin boundaries acting as a
barrier for vortex motion.5 These results echo earlier work on
the doping dependence of the critical current density jc, which
suggests that structural domain walls may act as effective
pinning centers in the underdoped material.8

Concerning the nature of the strong pinning ubiquitous to
iron-based superconductors, inhomogeneities in the dopant-
ion distribution was suggested to be at the origin of a dense
vortex pinning nanostructure in the case of Ba(Fe1−xCox)2As2

(x = 0.1).9 The same study shows that since thermal fluc-
tuations are weak, the finite width of the superconducting
transition can only be ascribed to an inhomogeneous Tc

distribution due to local compositional variations.9 Further-
more, scanning tunneling spectroscopy studies in different
iron-based pnictides reveal nanoscale variations of the local
superconducting gap.10–12 In Ba(Fe1−xCox)2As2, the length
scale on which the deviations from the average gap value occur
is comparable to the average distance between dopant ions.11

Nevertheless, no correlation between the vortex positions and
the superconducting-gap inhomogeneities or other defects has,
as yet, been found.7

Hence, all techniques agree on the absence of an ordered
vortex structure in iron-based superconductors. However, there
is no clear consensus on the origin of the disorder in the vortex
ensemble and the pinning causing it. The aim of this paper
is the characterization of this strong pinning by means of a
quantitative analysis of the spatial distributions of pinning
energy and pinning force. We found that the key to understand
the disordered vortex configurations is that these are frozen
at T ∼ Tc, in crystals with important spatial variations of the
superconducting parameters. The correlation of the extracted
pinning forces and energies with measurements of jc indicates
that spatial variations of the superfluid density and of Tc, on
the scale of several to several dozen nm, are the most relevant
for pinning.

II. EXPERIMENTAL DETAILS

Single crystals of Ba(Fe1−xCox)2As2 were grown using the
self-flux method.13 Starting reagents of high-purity Ba, FeAs,
and CoAs were mixed in the molar ratio 1 : (4 − x) : x, loaded
in alumina crucibles, and then sealed in evacuated quartz tubes.
For each doping level, chemical analysis by an electron probe
was performed on several crystals yielding the Co content
within 0.5% absolute accuracy. For this work we studied six
doping levels.
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The penetration of magnetic flux into selected crystals
of thickness 30 μm was visualized by the magneto-optical
imaging (MOI) method.15 A ferrimagnetic garnet indicator
film with in-plane anisotropy is placed on top of the sample
and a polarized light microscope is used to observe it. The
Faraday rotation of the indicator allows the detection of regions
with nonzero perpendicular component of the magnetic flux
density B⊥, revealed as bright when observed through an
analyzing polarizer. Dark regions correspond to B⊥ ≈ 0. In
order to characterize the inhomogeneity of the crystals in
the vicinity of the critical temperature we use the differential
magneto-optical method (DMO).16 Images acquired at applied
fields Ha + �Ha and Ha are subtracted, and the differen-
tial images averaged by repeating the procedure 50 times.
In the present experiments μ0�Ha = 0.1 mT (with μ0 ≡
4π × 10−7 H m−1).

The field dependence of the global critical current density
of selected crystals was obtained from magnetization-loop
measurements conducted using a Quantum Design SQUID
magnetometer. The critical current densities were extracted
using the Bean critical state model. As discussed below, the
assumption of this model is justified by the way flux penetrates
into the crystals. Within the Bean model, jc = 3M/V a, where
M is the magnetic moment, V is the sample volume, and 2a

is the sample width.14

For the Bitter decoration experiments,17 rectangles of
dimension 200 × 300 μm were cut from larger crystals using
a 20 μm wire saw and 1 μm SiC grit. Bitter decorations
were only performed on crystals with x = 0.055, x = 0.075,
and x = 0.1. The sample surfaces were freshly cleaved before
the experiments [Figs. 1(a) and 1(b)]. The experiments were
carried out at liquid-helium temperature (4.2 K) and He-
exchange gas at pressures of the order of 200 mTorr. The
images shown here are the result of field-cooling experiments
at a field μ0Ha = 1 mT applied parallel to the c axis of the
crystals. The decorated vortex arrangement was observed by
scanning electron microscopy at room temperature.

III. RESULTS

A. Magneto-optical imaging and jc measurements

Figure 1(c) shows examples of magneto-optical images,
here obtained at T = 15 K on single crystal 2 of the
composition with x = 0.075. The images reveal a globally
homogeneous penetration of the magnetic flux into the sample
obeying the Bean critical state.18,19 We obtain the local value
of the critical current density from jc ∼ 6∂B⊥/∂x (the factor
6 is estimated from Ref. 14 for a crystal aspect ratio of 0.1).
The DMO images in Fig. 1(d) reveal the same Bean-like flux
penetration with an inhomogeneous jc arising from the spatial
variation of Tc.

This inhomogeneity can be quantified using a plot of
the local transmissivity, defined as the ratio TH = [I (r,T ) −
I (r,T � Tc)]/[I (r,T � Tc) − I (r,T � Tc)] of the relative
local luminous intensities I (r,T ) in the DMO images. The
temperature dependence of TH measured on different regions
of crystals 2 and 1 is depicted in Figs. 1(e) and 1(f). The local
variation of Tc values within a given crystal is of the order
of 0.5–1 K. In addition, regions of lower Tc give rise to a

FIG. 1. (Color online) (a) Photograph of Ba(Fe0.925Co0.075)2As2

crystal 2. (b) Scanning electron micrograph of the decorated sample
2.1 cut from the larger crystal 2. (c) Magneto-optical images of
Ba(Fe0.925Co0.075)2As2 crystal 2 at T = 15 K and indicated values of
the applied magnetic field. (d) Differential magneto-optical (DMO)
images in the vicinity of Tc for μ0�Ha = 0.1 mT. (e) DMO image
of Ba(Fe0.9Co0.1)2As2 crystal 1 at full screening (T = 17.5 K) and
(f) at midtransition (T = 19.25 K). The arrows indicate regions
of paramagnetic transmissivity at the superconducting transition.
(g) Local transmissivity TH measured on the three regions of
Ba(Fe0.925Co0.075)2As2 crystal 2. (h) TH measured on the three regions
of Ba(Fe0.9Co0.1)2As2 crystal 1 indicated in (e). Scale bars correspond
to a length of 100 μm unless indicated otherwise.

paramagnetic signal at the transition due to flux concentration
by the surrounding superconducting parts of the crystal.

Figure 2(a) summarizes the width of the Tc distribution
for a large number of Ba(Fe1−xCox)2As2 single crystals of
different doping levels. Figure 2(b) shows the Co doping
level dependence of jc for the same series of single crystals
at a reduced temperature of T/Tc = 0.47. A rather large
sample-to-sample variation of the low-field (B⊥ = 30 mT)
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FIG. 2. (Color online) (a) Transition temperature Tc versus Co
doping level. The error bars denote the local spread of Tc values
within a given crystal. For each doping level, 1, 2, and 3 denote
different crystals. For x = 0.075 and 0.1, the numbering denotes that
of the decorated crystals. (b) Co doping level dependence of the
critical current density jc measured by MOI at B = 30 mT and a
reduced temperature of T/Tc = 0.47.

jc is observed. Certainly, no clear doping-dependent trend
appears, as proposed in Ref. 8. The obtained critical current
values are comparable to those reported in the literature for
the same material.20

B. Vortex imaging

The Bitter decoration technique17 was used to observe
vortex structures on three of the crystals used to compile Fig. 2,
more precisely, on crystal 1 of the composition with x = 0.1,
crystal 2 with x = 0.075, and crystal 2 with x = 0.055. The
decoration of crystal 2 with x = 0.055 was unsuccessful,
presumably due to the large value of the penetration depth at
low doping. The decorated patterns reveal highly disordered
vortex structures as in Refs. 1,3–6. Figures 3(a) and 3(b) reveal

FIG. 3. Bitter decoration images of Ba(Fe1−xCox)2As2 single
crystals (a) 2.1 with x = 0.075 and (b) 1 with x = 0.1. The graph
above panel (a) shows a profilometer measurement upon crossing the
step that traverses the image from top to bottom; full vertical scale
is 2.5 μm. The width u of the Meissner belt behind the step is also
indicated in (a).

regions of high and low vortex density, as well as the formation
of vortex-free zones near the crystals edges and surface steps,
due to the circulating Meissner current. These images are
representative of those obtained on other regions of the crystal
surfaces after different cleavage runs, and on other crystals.
From the images, we extract the average value of the magnetic
induction as Bint = nv�0, where nv is the vortex density and
�0 = h/2e is the flux quantum. For all images we obtain an
average induction Bint ≈ 0.8 mT, 20% smaller than the applied
field μ0Ha = 1 mT.

Figures 4(a) and 4(b) present the Delaunay triangulations of
the images in Fig. 3 for x = 0.075 and x = 0.1, respectively.
Here, the blue dots represent vortices with sixfold coordination
while the red dots represent vortices which have a different
coordination number. The insets to Figs. 4(a) and 4(b) show
the Fourier transforms of the vortex positions which once again
demonstrate the absence of any order in the vortex structure.

C. Vortex configurations near surface steps

The correct determination of the distribution of vortex
pinning energies in the crystal and its interpretation requires
knowledge of the temperature at which the vortex ensemble
was frozen in the observed configuration. To determine this,
we analyze the vortex distribution near the ubiquitous steps
seen on the surfaces of the crystals. Such steps result from
the repeated crystal cleavage performed during the Bitter
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FIG. 4. (Color online) Delaunay triangulation of the vortex
structure of Ba(Fe1−xCox)2As2 single crystals (a) 2.1 with x =
0.075 and (b) 2 with x = 0.1. The blue dots represent vortices
with 6 nearest neighbors while red ones represent vortices with a
different coordination number. The insets show the respective Fourier
transforms of the vortex positions.

decoration experiments. In zero field cooled experiments, steps
act as obstacles for vortex entry into the sample; they were
described in Ref. 21 as “vortex diodes.”

However, the present decoration experiments are in field-
cooled conditions and hence vortices nucleate in the sample
at the same temperature at which the mixed state is stable. As
one cools down, the Meissner screening current running along
the crystal edges, but also along the surface steps, increases as
the penetration depth λab for currents running in the ab plane
decreases (see Fig. 5). Thus, while cooling, vortices on the high
side of the step are progressively repelled by the increasing
Meissner current density jM ∼ Ha/λab. At the same time, the
proximity of the step surface results in an attractive force that
can be described by an image vortex segment. Finally, the
vortex lattice elasticity tends to restore a homogeneous flux

u h 

jM 

a 

u u

H

FIG. 5. Representation of vortex lines near a surface step under
field-cooled conditions.

distribution near the step. The situation is therefore similar to
vortex entry or exit over a surface barrier.

At the low fields of interest, the single vortex part of the
tilt modulus dominates vortex elasticity,22 so that the force
balance is

Bint

λab

[
Hae

−υ − Bint

μ0
e−2υ − ε2

λε0

�0
ln

(
Bc2

2Bint

)
uλab

h2

]
=

Bint

λab

[
Hae

−υ − Bint

μ0
e−2υ − ε2

λ�0υ

4πμ0h2
ln

(
Bc2

2Bint

)]
= 0.

(1)

Here, ε1 = ε2
λε0 is the vortex line tension, ε0 = �2

0/4πμ0λ
2
ab

is the vortex line energy, ελ = λab/λc is the penetration
depth anisotropy, and υ ≡ u/λab represents the width of the
vortex-free zone behind the step, u, normalized to λab. The
step running through Fig. 3(a) has a height h = 1.5 μm while
the vortex-free region behind it has a width u = 1.8 μm.
Estimating the penetration depth anisotropy ελ ≈ 0.16 from
Refs. 23 and 24, and with all other parameters known,
Eq. (1) can be solved graphically to yield υ ∼ 1.5; that is,
λab ∼ 0.6u ∼ 1.2 μm. Combining λab data from Refs. 6 and
23, we conclude that the observed vortex pattern is frozen at
Tf ≈ 0.9Tc.

D. Pinning energies

The intervortex interaction energy is calculated from the
vortex positions obtained from the decoration images. We
calculate the interaction energy

E i
int =

∑
j

2ε0K0

( |rij |
λab

)
(2)

per unit length along the vortices’ direction. K0(x) is the
lowest-order modified Bessel function, and the vortex line
energy ε0 ∝ λ−2

ab is proportional to the superfluid density.
We take into account all vortices j situated at a distance
smaller than 10λab from vortex i. This cutoff radius was
chosen after verifying that the interaction energy does not
change significantly if greater values of j are considered. For
the determination of the energy distribution histograms, we
only take into account vortices situated away from the edges
of images, at a distance larger than 4λab.25 We used in this
calculation the penetration-depth value at the temperature at
which the vortex structure was frozen, λab(T/Tc = 0.9) (see
Sec. III C).

A similar procedure yields maps of the pinning force per
unit length acting on an individual vortex i

fi =
∑

j

2ε0

λab

rij

|rij |K1

( |rij |
λab

)
, (3)

with K1(x) the first-order modified Bessel function. Since
the system is stationary, Newton’s third law requires that the
repulsive force exerted by neighbor vortices be balanced by
the pinning force. A map of the modulus |fi | thus represents a
map of the minimum pinning force acting on each vortex. In
the case of a perfect lattice resulting from negligible effect of
pinning, the sum (3) vanishes.
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FIG. 6. (Color online) Left-hand panels: Normalized color-coded
maps of the vortex interaction energy calculated from the images
of Fig. 3 in Ba(Fe1−xCox)2As2 single crystals with (a) x = 0.075
and (b) x = 0.1. Right-hand panels: Histograms of the normalized
interaction-energy for (c) x = 0.075 and (d) x = 0.1.

We present our results by color-coded maps spanning the
decoration images of Figs. 3(a) and 3(b), and by histograms
of the interaction energy distribution. The interaction energy
maps, with the energy-scale normalized by ε0, are shown in
Figs. 6(a) and 6(b). A granular structure of denser regions with
larger interaction energy, and dilute regions with smaller Eint, is
clearly visible. This granularity is translated into broad vortex
interaction-energy histograms as shown in Figs. 6(c) and
6(d). The histograms are reasonably well fitted by a Gaussian
distribution. The standard deviations of these histograms are
of the order of 23%, in contrast with 50% for the rather
regular vortex structures26 of the same density imaged in
the high-Tc material Bi2Sr2CaCu2O8+δ . However, as a result
of the high reduced temperature Tf /Tc at which the vortex
ensemble is frozen, the mean interaction energy (normalized
by ε0) is ten times larger in Ba(Fe1−xCox)2As2 than in
Bi2Sr2CaCu2O8+δ .27

The reduced temperature Tf /Tc at which the vortex
ensemble is frozen not only affects the deduced interaction
energies, but also has a profound effect on the (orientational)
order observed in the decorated vortex ensemble.28 Pardo et al.
reported28 that in optimally doped Tl2Ba2CuO6−δ with a broad
magnetically reversible phase, and concomitantly low Tf /Tc,
Bitter decoration yields a regular triangular lattice, while deco-
rated vortex ensembles in the overdoped material with a narrow
reversible temperature range (and high Tf /Tc) are amorphous.
At the origin of this effect is the high mobility of vortices just
above Tf in materials with a wide reversible regime, such as
Bi2Sr2CaCu2O8+δ or optimally doped Tl2Ba2CuO6−δ . On the
other hand, the low mobility of the vortices just above Tf

due to strong pinning in the vortex liquid phase in materials
[such as, apparently, Ba(Fe1−xCox)2As2] that have a narrow
reversible regime yields an amorphous vortex ensemble.

FIG. 7. (Color online) Color-coded maps of the modulus of the
individual vortex pinning force per unit length, calculated from the
images in Fig. 3 for Ba(Fe1−xCox)2As2 single crystals with (a)
x = 0.075 and (b) x = 0.1. (c) and (d) represent the pinning force
distribution for x = 0.075 and x = 0.1, respectively.

Figure 7 shows maps of the modulus of the pinning force
of individual vortices per unit length of the vortex lines. The
pinning energy shows some correlation with the interaction
energy at the local scale: Regions of large (small) Eint generally
correspond to regions of large (small) |fi |. There is noticeable
inhomogeneity on scales smaller than the apparent grain
size. The juxtaposition of a region with homogeneous large
superfluid density (i.e., ε0) with a region of homogeneous small
ε0 would give rise to a larger pinning force at the interface only.
In the images, fluctuations of the pinning force within grains
of similar Eint are observable. Therefore, inhomogeneity of the
superconducting parameters exists not only on the μm scale
of the images, but also on smaller length scales.

It is interesting to note that the rendered pinning forces
are simply related to a metastable current density ji , running
through each vortex, as fi = (�0/|B|)B × ji . The average
pinning force per unit length of 5 × 10−6 N/m, with local
maxima of up to 6 × 10−5 N/m, implies local currents of the
order of 2.5 × 109 A m−2. Maximum currents are of the order
of 3 × 1010 A m−2, comparable to the low-temperature value
of the critical current density.

IV. DISCUSSION

Since the vortex locations result from the balance between
intervortex repulsion and the interaction Ep of individual
vortices with the pinning impurities, one has, at Tf , Eint = Ep.
The position of the maximum and the width of the interaction-
energy distributions [see Fig. 6(c) and 6(d)] are therefore de-
termined by, respectively, the mean and the standard deviation
of the pinning energies, at Tf , of the individual vortices in a
given image. In particular, the displacement of the maximum
of the distribution with respect to the position of the δ-peak
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energy distribution of a perfect vortex lattice of the same
density is a measure of the mean pinning energy. As far as the
vortex densities of Fig. 6 are concerned, the average Bint = 0.8
mT yields a δ-peak maximum at Eint = 2.5ε0. By comparison,
the maxima of the distributions for both investigated crystals
in Figs. 6(a) and 6(b) occur at Eint ≈ 3.2ε0. The average
pinning energy per unit length is therefore Ep ∼ 0.7ε0, while
the variance in pinning energy is given by the width of
the distribution, (〈E2

p〉 − 〈Ep〉2)1/2 ∼ 0.5ε0. Note that 3.2ε0

corresponds to the interaction energy of a triangular vortex
lattice with �0nv = 1 mT, i.e., the external field applied
during the experiments. This means that the average interaction
energy is determined by vortex-rich areas, with �0nv � 1 mT.
However, the vortex density also presents vortex-poor areas so
that the average Bint = 0.8 mT.

The large absolute values of the inferred pinning energies
can be understood if one combines the notion that the crystals
show local variations both of the critical temperature Tc =
Tc(r) and of the line energy ε0 = ε0(r,T ), and that Tf /Tc � 1.
As the crystal is cooled below Tc, vortices will avoid regions of
higher Tc and ε0, and accumulate in regions with lower values
of these parameters. They will remain trapped in such regions
as the temperature is lowered below Tf . The large absolute
values and variances of the pinning energies revealed by the
decoration experiment are caused by the local variations of
Tc(r), which manifest themselves through the temperature de-
pendence of the line energy, ε0(r,T ) = ε0(r,0)[1 − T/Tc(r)].
More specifically, the width of the inferred pinning-energy
distribution (Fig. 6) should correspond to the width �ε0(Tf )
of the line-energy distribution,

0.5ε0(0)(1 − Tf /Tc) ∼ �ε0(Tf ). (4)

Near to the critical temperature, �ε0(T ) = ε0(0)T �Tc/T 2
c is

determined mainly by the width �Tc of the distribution of local
Tc(r). Solving Eq. (4) then yields Tf = Tc/[1 + �Tc/0.5Tc].
Taking Tc = 24 K, and estimating �Tc ≈ 0.8 K from the
DMO data of Fig. 1, one obtains a freezing temperature
Tf = 0.94Tc for x = 0.075; the same exercise with Tc = 19
K and δTc = 0.5 K yields and Tf = 0.95Tc for the crystal
with x = 0.1. Thus, the analysis of the inhomogeneous and
disordered vortex distribution, as well as the vortex distribution
near steps and edges, is fully consistent with the observed
patterns having been frozen between T = 0.9Tc and 0.95Tc.
We can draw the same conclusion from the local variations of
the vortex density. For example, for crystal 2 with x = 0.075,
the largest local vortex gradient corresponds to 0.15 mT/μm or
1 × 108 A m−2. This value is consistent with the critical current
density of Ba(Fe0.925Co0.075)2As2 crystal 2 at 23 K.

At low temperatures, the spatial variations of the magnitude
of the line energy ε0(r,0) are dominant. These correspond
to the variations in space of the superfluid density5 and are
responsible for the nonzero low-T pinning force arising from
spatial inhomogeneity. A spatially homogeneous superfluid
density would imply a vanishing (or logarithmically weak)
pinning energy at low T , at odds with the existence of a large
critical current density (see, e.g., Fig. 8). As in all charge-doped
single-crystalline iron-based superconductors, the critical cur-
rent of Ba(Fe1−xCox)2As2 is composed of a contribution from
strong, extrinsic pins, and from a contribution from pinning
by atomic sized point pins. The latter dominates at high fields
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FIG. 8. (Color online) Critical-current densities in our
Ba(Fe0.925Co0.075)2As2 crystals. (a) Temperature dependence of the
low-field jc of crystals 1 (x = 0.1) and 2.1 (x = 0.075), as obtained
from MOI. Error bars represent the dispersion of jc within a given
crystal. (b) Field dependence of jc for crystal 2.1, obtained from
magnetic hysteresis measurements using a SQUID magnetometer.
Straight lines indicate fits with Eq. (6); see Sec. IV.

[here, above 1 T at 5 K, and above 0.2 T at 17.5 K; see
Fig. 8(b)],29 while the former contribution manifests itself as
a low-field plateau,16,30

jc = π1/2 fp

�0ελ

(
Upni

ε̄0

)1/2

(B � B∗), (5)

followed by a power law in the flux density B,16,30

jc(B) = fp

�0ελ

(
Upni

ε0

) (
�0

B

)1/2

(B � B∗). (6)

The crossover field B∗ is that above which the number
of effective pins per vortex is limited by the intervortex
repulsion, fp is the maximum pinning force exerted by a
single strong pin, ni is the pin density, and Up/[J] is the
pinning energy gained by a vortex line traversing such a
pin. The measurement of the low-field critical current density
jc(0) and the slope ∂jc(B)/∂B−1/2 allows one to eliminate
ni and to obtain fp = π�

3/2
0 ελ{j 2

c (0)/[∂jc(B)/∂B−1/2]} from
experimental data without further assumptions. We find that, at
5 K, fp ≈ 3 × 10−13 N for both Ba(Fe0.925Co0.075)2As2 crystal
2.1 and Ba(Fe0.9Co0.1)2As2 crystal 1.

The identification of the strong pins with regions of lower
ε0(T ) means that fp should be interpreted in terms of the local
maxima of the position-dependent force f (r) = ∫

δz
∇ε0(r)dz

experienced by vortices as they move through the sample. Here
δz is the maximum extent of a region of low ε0(T ) along the
field direction. We approximate

fp ∼ �ε0

(
δz

δ


)
, (7)

where δ
 is the length scale characterizing the disorder in the
direction perpendicular to the field, and �ε0 is the standard
deviation of the ε0(r) distribution in the crystal. The pinning
energy Up ∼ fpδ
. A comparison of Eq. (7) with the value of
fp obtained from jc yields �ε0 ∼ 3 × 10−13 J m−1 for a unit
aspect ratio δz/δ
.

In a next step, we evaluate the ratio of fp/ ¯|fi | to obtain
the average distance between effective pins, L̄ = 60 nm.
Using Eq. (17) of Ref. 30, which has L̄ = (ε1/πniUp)1/2,
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one finds (niδz)−1/2 ∼ 60 nm. With all parameters known,
the low-field value of the critical current density is
reproduced as

jc ≈ π1/2 �ε0

�0ελ

√
niδz

δz

δ


√
�ε0

ε̄0
= 8 × 109 A m−2, (8)

in fair agreement with the data of Fig. 8(a). The investigated
features of vortex pinning in Ba(Fe1−xCox)2As2, including
the disordered vortex patterns and the critical current density,
are therefore consistently described by the presence of spatial
variations of the superfluid density on the scale of several
dozen nanometers, in agreement with the conjecture of Ref. 9.

Note that the observed spatial structures at the macroscopic
(Fig. 1) and mesoscopic (Fig. 3) levels are not those responsible
for the critical current. The random vortex positions observed
in the decoration experiments are determined by the underlying
nanoscale disorder, an observation consistent with the fact that
disordered vortex structures have been observed up to high
fields.1,3

One may speculate about the possible link between the
existence of nm-sized regions of reduced superfluid density,
the local variation of the dopant atom density, and the effect
of the overall doping level. For instance, one would expect
the fluctuations of the Co density to be more important at
lower doping levels, yielding larger local fluctuations of ε0.
However, given the much larger values of the penetration depth
at low doping, we have not been successful in performing
Bitter decorations on the relevant crystals. Recent STS studies
have reported substantial variations of the value of the
superconducting gap on a scale of 10 to 20 nm.7,11 These
local variations of the gap magnitude should correspond to
the variations of the critical temperature and therefore lead to
vortex pinning. Although it is tempting to relate our results
to the nanoscale disorder observed in the STS gap maps, it
should be remarked that the spatial scale of the variations
in the gap maps is a factor of 3–6 smaller than that found
from the analysis of the data presented here. This would

correspond to a concomitantly larger jc in the samples used in
Refs. 7,11.

V. CONCLUSION

Bitter-decoration imaging of the disordered vortex distri-
bution in superconducting Ba(Fe1−xCox)2As2 single crystals
with x = 0.075 and x = 0.1 reveals a substantial local varia-
tion of pinning energies and pinning forces. The magnitude
of these fluctuations is suggested to stem from nanoscale
spatial variations of Tc and/or the superfluid density due to an
inhomogeneous distribution of dopant atoms. The spatial scale
of the variations is inferred from the correlation of the features
of the vortex distributions with global and local critical current
density measurements. The macroscopic spatial variations
of the critical temperature observed using magneto-optical
imaging give an idea of the magnitude of the Tc variations
in the crystals, but are unrelated to the measured pinning
properties. The same can be said for mesoscopic disorder
structures observed by single-vortex imaging. An important
corollary of our work is the fact that the observed vortex
distributions are frozen, at a length scale of the lattice spacing,
at a high temperature close to Tc.
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