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Microscopic theory of type-1.5 superconductivity in multiband systems
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I. INTRODUCTION

The usual classification of superconductors characterizes
materials by the Ginzburg-Landau (GL) parameter κ (which
is the ratio of the characteristic length scale of the order
parameter variation ξ and the magnetic field penetration length
λ).1 The remarkable property is that, within the GL theory of
single-component superconductivity, κ determines the major
features of the phase diagram of the system in magnetic field.
In type-I superconductor κ < 1/

√
2 (i.e., order parameter is

the slowest varying field), vortex excitations have attractive
interaction and are thermodynamically unstable in applied
magnetic field. Thus, in an applied field, a type-I system
forms macroscopically large normal domains.2 For κ > 1/

√
2

(type-II superconductivity), vortices are thermodynamically
stable and interact repulsively yielding a new phase in
strong magnetic fields: a lattice of quantized vortices.2,3

In the Bogomolnyi limit (κ = 1/
√

2), the vortices do not
interact in the Ginzburg-Landau theory. However, indeed it
should be remarked that, going to a deeper microscopic
level, there are always “next-to-leading-order” microscopic
corrections. These corrections, although unimportant, even
slightly away from this limit, provide weak nonuniversal
intervortex interactions when κ is very close to 1/

√
2 (see,

e.g., Refs. 4 and 5). Apparently, a counterpart of this limit
is also possible in multicomponent systems. However, in
this case, the Bogomolnyi limit could appear only via quite
extreme fine tuning of parameters and, therefore, is not of
much physical relevance. In this paper, we are interested only
in the entirely different physics of intervortex interactions
and magnetic response of multicomponent systems originating
from the different fundamental length scales very far from any
counterparts of Bogomolnyi limit.

A question that attracted much attention recently is whether
the type-I and type-II classification is sufficient for character-
izing the rapidly growing family of multicomponent systems
of physical interest.6 A clear-cut example of the system
where type-I and type-II dichotomy does not hold is the
projected coexistent electronic and protonic (or deuteronic)
superconductivity7 in hydrogen isotopes, their mixtures and
hydrogen-rich alloys at ultrahigh compression, as well as
the coexisting protonic and �−-hyperonic superconductivity
in neutron stars. These systems have U(1) × U(1) or higher
symmetries and thus several fundamental length scales asso-
ciated with independently conserved fields. Consequently, the
system can not be characterized by a single dimensionless
parameter κ . In an applied field, the only thermodynamically

stable vortex solutions are “composite” vortices where both
condensates have 2π phase windings. Consequently, such
vortices have cores in both components.7,8 Importantly, it also
acquires a new regime6 for which the term “type-1.5” was
coined recently.9 In that regime, like in a type-I case, the
characteristic core size of one of the components is larger than
the flux-carrying area. The overlap of these cores produces
attractive intervortex interaction. However, in contrast to the
type-I case, these vortices have repulsive interaction at short
ranges.6,10–12 This kind of nonmonotonic vortex interaction
results in the appearance of the additional “semi-Meissner”
phase in low magnetic fields. In that phase, vortices form
clusters where because of overlaps of cores the slowest
varying density component is suppressed. Moreover, these
vortex clusters coexist with the domains of the two-component
Meissner state.

The recent experimental works proposed that two-band13

electronic material MgB2 belongs to the type-1.5 case.9,14

The principal difference with the discussed above U(1) × U(1)
theory is that interband coupling breaks the symmetry down
to U(1) (for a recent discussion of microscopic details see e.g.,
Refs. 15 and 16). Therefore, there is a single superconducting
phase transition at a single Tc. However, at the same time,
the system has two gaps and two superfluid densities, which,
in general vary at distinct characteristic length scales at any
finite distance from Tc. Therefore, the type-1.5 magnetic
response can arise even infinitesimally far away from Tc from
the interplay of two density modes that originate from the
underlying two-gap physics. This behavior was demonstrated
in the framework of phenomenological two-component U(1)
GL models.10,11

Here, we develop a theory of type-1.5 superconductivity
based on a microscopic theory without involving a GL
expansion. That is, in this work, we use the Eilenberger
formalism and demonstrate the existence as well as describe
basic properties of type-1.5 superconductivity in multiband
materials.

II. MICROSCOPIC DESCRIPTION OF VORTEX STATE
IN MULTIBAND SUPERCONDUCTOR

A. Eilenberger formalism

We consider a superconductor with two overlapping bands
at the Fermi level.13 The corresponding two sheets of the Fermi
surface are assumed to be cylindrical. Within quasiclassical
approximation, the band parameters characterizing the two
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different sheets of the Fermi surface are the Fermi velocities
VFj and the partial densities of states (DOS) νj , labeled by the
band index j = 1,2. We normalize the energies to the critical
temperature Tc and length to r0 = h̄VF1/Tc. The system of
Eilenberger equations for two bands is

vFj np (∇ + iA) fj + 2ωnfj − 2	jgj = 0,
(1)

vFj np (∇ − iA) f +
j − 2ωnf

+
j + 2	∗

j gj = 0.

Here, ωn = (2n + 1)πT are Matsubara frequencies and vFj =
VFj/VF1. The vector np = (cos θp, sin θp) parametrizes the
position on two-dimensional (2D) cylindrical Fermi surfaces.
The quasiclassical Green’s functions in each band obeys
normalization condition g2

j + fjf
+
j = 1. The self-consistency

equation for the gaps is

	i = T

Nd∑
n=0

∫ 2π

0
λijfjdθp. (2)

The coupling matrix λij satisfies the symmetry relations
n1λ12 = n2λ21, where ni are the partial DOS normalized so
that n1 + n2 = 1. We consider λ11 > λ22 and therefore refer
to the first band as “strong” and to the second as “weak.” The
vector potential satisfies the Maxwell equation

∇ × ∇ × A = j, (3)

where the current is

j = −T
∑
j=1,2

σj

Nd∑
n=0

Im

∫ 2π

0
npgjdθp. (4)

The parameters σj are given by

σj = π

(
4e

c

)2

(r0VF1)2νjvFj .

B. Multiple masses of the � fields

First, we focus on the structure of an isolated axially sym-
metric vortex characterized by the nontrivial phase winding of
the gap functions 	1,2 = |	1,2|(r)eiϕ . We begin by finding
the asymptotics of the gap function modules |	1,2|(r) at
distances far from the vortex core. In this case, the Eilenberger
equations (1) can be linearized by generalizing the methods
used for single-band superconductors.17 The details of the
asymptotics derivation are given in Appendix A. We rewrite
Eqs. (1) in terms of the deviations from the vacuum-state
values 	̄j = 	j0 − |	j | and f̄j = fj0 − fj , f̄ +

j = f +
j0 − f +

j

keeping on the left side the first-order terms. Then, we take the
real part of Eqs. (1) to obtain the following system:

vFj np∇f̄ r
�j + 2ωnf̄

r
dj = Xr

�j ,
(5)

vFj np∇f̄ r
dj + 2

2
n

ωn

f̄ r
�j − 4ωn

nj

	̄j = Xr
dj ,

where nj =
√
ω2

n + 	2
0j , f̄ r

�j = Re[f̄j + f̄ +
j ], and f̄ r

dj =
Re[f̄j − f̄ +

j ]. In Eqs. (5), the higher-order terms in 	̄j , f̄ ,
and f̄ + are incorporated in the right-hand-side (r.h.s) source
functions X�(d)j = X�(d)j (np,ωn,r).

The solution of Eqs. (5) can be found in the momen-
tum representation f r

�(d)j (k) = ∫
f r

�(d)j (r) exp(−ikr)d2r.
After substituting it to the self-consistency equation, we get
the expression for the gap functions

	̄i(k) = R̂−1
ij Nj (k). (6)

The elements of the matrix R̂ = R̂(k) are Rii = (λiiSi − 1)
and Rij = λijSj , where

Sj (k) = 4πT

Nd∑
n=0

ω2
n

2
nj

[
42

nj + (vFjk)2
]−1/2

. (7)

The source functions Nj (k) come from the r.h.s of Eqs. (5). The
strict definition of source functions is given in Appendix A.

The real-space asymptotic of the gap functions (6) is
determined by the contributions of the singularities of the
response function R̂−1(k), which are poles at the zeros of
the determinant DR(k) = Det[R̂(k)] and branch points at
k = 2inj /vFj . Similarly to Ref. 17, we assume the branch
cuts to lie along the imaginary axis from k = 2inj /vFj to
k = i∞. To find the asymptotics of the gaps 	̄i(r), we need
only to take into account the poles of R̂−1(k) lying in the
upper complex half plane below all the branch cuts. In this
case, all the zeros of the function DR(k) are purely imaginary
k = iμn. Each of them can be associated with the particular
mass μn of the composite mode formed by a superposition of
gap functions in two superconducting bands. The composite
character of the modes arises in our case because the two
bands are directly coupled. The inverse of the mass controls
the characteristic length scale at which this superposition of
the gap fields varies. Therefore, the lightest mass determines
very-long-distance decay of both 	̄1 and 	̄2. The contribution
from the branch cut contains all the length scales, which are
smaller than the threshold ones given by position of the lowest
branch point k = iqbp, where qbp = 2 min(02/vF2,01/vF1).

Equation (6) results in the asymptotical expression for the
gap functions

	̄i(r) =
∫ r

0
dr1Gij (r,r1)Nj (r1).

Here, Nj (r) is the Fourier-Bessel image of the source function
in Eq. (6) and

Ĝ(r,r1) =
∑

n

ÂnK0(qnr)I0(qnr1)

+ 2

π

∫ ∞

qbp

ds sK0(sr)I0(sr1)[R̂−1]k=is , (8)

where K0 and I0 are MacDonald and modified Bessel
functions. The matrices Ân determining the contributions of
the pole terms are

Ân = 2ik

[
dDR

dk

]−1 (
R22 −R12

−R21 R11

)
|k=iqn

, (9)

and the branch-cut contribution is determined by the the jump
of the response function

[R̂−1]k=is = R̂−1(k = is + 0) − R̂−1(k = is − 0). (10)

Under rather general conditions, the response function in
Eq. (6) has two poles given by zeros of the determinant

094515-2



MICROSCOPIC THEORY OF TYPE-1.5 . . . PHYSICAL REVIEW B 84, 094515 (2011)

DR(k) = 0, which lie below the branch cuts. Thus, in this case
the asymptotical behavior of the gap functions is principally
different from the single-band superconductor, despite the
fact that they share the same U(1) symmetry of the order
parameter. The two poles determine the two inverse length
scales or, equivalently, the two masses of composite gap
functions fields, which we denote as “heavy” 1/ξH = μH

and “light” 1/ξL = μL (i.e., μH > μL). The corresponding
composite gap function modes are parametrized by the two
“mixing angles” θL,θH as follows:(

	̃L

	̃H

)
=

(
cos θL sin θL

− sin θH cos θH

) (
	̄1

	̄2

)
. (11)

Note that, in the two-band GL theory without interband impu-
rity scattering terms, one has θL = θH .10,11 Below, we recover
this behavior at elevated temperatures without using GL-type
expansion, thereby verifying predictions of phenomenological
GL models. However, outside the range of validity of the GL
theory, we find that θL �= θH .

Let us now consider in detail an example of the system with
λ11 = 0.25, λ22 = 0.213, n1 = n2 = 0.5, and various values of
the interband coupling λJ = λ12 = λ21. We focus on the two
different regimes, determined by the band parameter γF =
vF2/vF1, namely, (i) γF > 1 and (ii) γF < 1.

(i) Some of the basic properties of this regime are captured
by the particular case when γF = 1. The examples of the
temperature dependencies of the masses μL,H (T ) are shown

FIG. 1. (Color online) Masses μL,H of the composite gap function
fields for (a) γF = 1 and λJ = 0.005, (b) γF = 0.5 and λJ = 0.0025.
The position of branch cut is shown by black dashed line. The
mixing angles θL,H are shown by blue dashed and dashed-dotted lines
correspondingly. (c) Temperature dependence of the mass μL(T )
(black thick curves) and the corresponding mixing angle θL deter-
mined by Eq. (11) (red thin curves) for γF = 1, 2, 5 (solid, dashed,
and dashed-dotted curves). The coupling parameters are λ11 = 0.25,
λ22 = 0.213, and λJ = 0.005. (d) Temperature dependence of the
mass μL(T ) for different values of coupling constant λ22.

FIG. 2. (Color online) Masses μL and μH (red solid lines) of the
composite gap function fields for the different values of interband
Josephson coupling λJ and γF = 1. In the sequence of plots (a)–(d),
the transformation of masses is shown for λJ increasing from the
small values λJ � λ11,λ22 to the values comparable to intraband
coupling λJ ∼ λ11,λ22. The particular values of coupling constants
are λ11 = 0.25, λ22 = 0.213, and λJ = 0.0005, 0.0025, 0.025; λ22

for plots (a)–(d) correspondingly. The branch cuts are shown by black
dashed lines. In (a), with blue dashed-dotted lines, the masses of
modes are shown for the case of λJ = 0. Note that, at λJ = 0, the
two masses go to zero at two different temperatures. Because 1/μL,H

are related to the coherence lengths, this reflects the fact that, for
U(1) × U(1) theory, there are two independently diverging coherence
lengths. Note that, for finite values of interband coupling, only one
mass μL goes to zero at one Tc.

in Fig. 1(a). The two massive modes coexist at the temperature
interval T ∗

1 < T < Tc, where the temperature T ∗
1 is determined

by the branch-cut position, shown in Fig. 1(a) by black dashed
line. For temperatures T < T ∗

1 , there exists only one massive
mode. At very low temperatures, the mass μL is very close
to the branch cut. As the interband coupling parameter is
increased, the temperature T ∗

1 rises and becomes equal to
Tc at some critical value of λJ = λJc. For the particular
case of γF = 1, we found an exact condition λJc = λ22. The
evolution of the masses μL,H is shown in the sequence of
plots in Figs. 2(a)–2(d) for λJ increasing from the small values
λJ � λ11,λ22 to the values comparable to intraband coupling
λJ ∼ λ11,λ22.

(ii) In the case if γF < γth (where γth is a characteristic
value determined by the system parameters), the two massive
modes coexist at some temperature interval T ∗

2 < T < T ∗
1

where T ∗
1 � Tc. For the particular case when γF = 0.5, the

temperature dependencies of μL,H (T ) are shown in Fig. 1(b).
In Figs. 1(a) and 1(b), the mixing angles θL and θH given

by Eq. (11) are shown by blue dashed and dashed-dotted lines,
correspondingly. In the case (i) near the critical temperature,
the angles are approximately equal, which provides for this
regime a microscopic verification for of the results obtained
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using phenomenological GL theories.10,11 At lower temper-
atures, the discrepancy is considerable and grows with the
increasing interband coupling.

Large deviations of the mixing angle from 0 and π/2 signal
strong mixing of the gap fields. It occurs near the avoided
crossing points of μL(T ) and μH (T ). In case (i) shown in
Fig. 1(a), there is one avoided crossing point and in the case
(ii), there can be two of them, as shown in Fig. 1(b).

The above-discussed existence of two modes associated
with mixed gap functions can, under certain conditions,
result in the type-1.5 behavior as it was demonstrated in
the framework of GL approach.10,11 However, importantly,
the microscopic formalism we use here allows us to describe
type-1.5 superconductivity beyond the validity of GL models.
The type-1.5 behavior requires a density mode with low mass
μL to mediate intervortex attraction at large separations, which
should coexist with short-range repulsion.

We find that the temperature dependence of μL(T ) is
characterized by an anomalous behavior, which is in strong
contrast to temperature dependence of the mass of the gap
mode in single-band theories. As shown on Fig. 1(c), the
function μL(T ) is nonmonotonic with the minimum at the
temperature Tmin. The minimum is close to the crossover
temperature where the second superconducting band becomes
active. The maximum is located at the temperature Tmin <

Tmax < Tc.
The structure of the composite gap function mode [shown

in Fig. 1(c)] 	̃L is characterized by the mixing angle θL given
by Eq. (11). At the temperature interval T < Tmax, the mixing
angle is θL ≈ π/2. Therefore, in this temperature regime, the
mode with lightest mass consists primarily of the weak band
gap 	̄2(r) with a tiny admixture of 	̄1(r). Note that, in this
regime, the overall behavior of |	1|(r) outside the long-range
asymptotic tail has relatively weak dependence on interband
coupling (i.e., at larger distances from the core it has slowly
recovering tail associated with only tiny suppression relative
to its ground-state value). At the same time, the recovery of
|	2|(r) to a larger degree is dominated by the light mass mode.

C. High-temperature limit

As noted above at elevated temperatures, the mixing angles
have close values, consistent with the type-1.5 behavior,
which appear in the framework of two-band Ginzburg-Landau
models.11 At very high temperatures Tmax � T < Tc, the
mixing angle θL gradually becomes small θL � π , which
means that there the mode 	̃L is dominated by the strong
band contribution 	̄1.

Since any Josephson interband coupling breaks the sym-
metry of the system in question down to U(1), then according
to Ginzburg-Landau argument, this symmetry dictates that,
asymptotically, in the limit T → Tc, one should recover
a single-component-like GL temperature dependence μL ∼√

1 − T/Tc of a single order parameter (at the level of
mean-field theory).1

In the regimes corresponding to Figs. 1(a) and 1(c) very
close to Tc, the mixing angle of the heavy mode is small
θH � 1, which makes the contribution of the smaller gap
	̄2 to the heavy mode the dominating one. This behavior of
the mixing angles, and the fact that for nonzero Josephson

coupling only one mass μL(T ) goes to zero at T → Tc, allows
one to neglect the heavy mode and construct a mean-field
GL order parameter with the scaling μL ∼ √

1 − T/Tc as an
“asymptotic” characteristic in the limit T → Tc. However,
as shown in Fig. 1(c), the temperature region of such
behavior shrinks drastically for large disparities of the band
characteristics and weak interband couplings. In general, the
smaller the interband coupling, the closer to Tc one should be in
order to obtain single-component-like GL scaling. For a wide
range of parameters, the mean-field GL theory with the single-
component-like GL scaling μL ∼ √

1 − T/Tc will emerge
only infinitesimally close to Tc. Note that the limit where
μL ∼ √

1 − T/Tc is in certain cases unphysical because the
underlying mean-field theory can become invalid because of
fluctuations, at temperatures lower that the temperature where
this scaling would take place. Thus, even in weak-coupling
two-band systems with U(1) symmetry for a wide parameter
range, one could not apply a leading order in (1 − T/Tc) GL
theory since the region of its applicability will fall into the
parameter space where underlying mean-field theory is not
valid because of fluctuations. In contrast to single-component
systems, as a consequence of the presence of two gaps even
slightly away from Tc, the behavior of μL(T ) can be drastically
different from the usual GL scaling. As a result, the product
�μL where � is the magnetic field penetration length acquires
a strong temperature dependence. Moreover, as we show
below, its limiting value at Tc does not determine entirely
the intervortex interaction potential nor the magnetic response
of the system. Therefore, one can not in general parametrize
the magnetic response of two-band systems by the single GL
parameter κ = �/ξ .

D. Light mode of gap function field and type-1.5 behavior

The plots of μL(T ) for γF = 1, 2, 5 are shown in Fig. 1(c)
by solid, dashed, and dashed-dotted thick black lines. There
is a clear general tendency of increasing Tmax with growing
parameter γF , which characterizes band disparity. It leads
to broadening of the temperature region of the anomalous
behavior of the mass μL(T ) where the field’s asymptotics are
dominated by the weak band. Figure 1(c) clearly demonstrates
the considerable overall suppression of μL with growing
parameter γF . The inverse of the mass of the light composite
gap mode μL sets the range of the attractive density-density
contribution to intervortex interaction. Therefore, the condi-
tion for the occurrence of the intervortex attraction will be met
if μL is smaller than �−1.

Thus, a physically important situation arising in a two-band
superconductor is that, for a wide range of parameters even
slightly away from Tc, the temperature dependence of μL is
dramatically different from that of the inverse magnetic field
penetration length �−1.

Furthermore, because the softest mode with the mass
μL in the two-band system may be associated with only a
fraction of the total condensate, and because there could be
the second mixed gap mode which can have larger mass μH ,
the short-range intervortex interaction can be repulsive. Since
ultimately the sign of the long-range interaction is decided
by the competition of �−1 and μL, we plot their temperature
dependencies in Fig. 3(a). It shows how in these cases the
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FIG. 3. (Color online) (a) Masses μL and μH (red solid and
dotted lines) of the composite gap function fields and inverse
London penetration (blue dashed lines) for the different values of
�μL(Tc)/

√
2 =1, 2, 3, 5. The position of branch cut is shown

by black dashed-dotted line. (b) The temperature dependence of
the quantity �μL for �μL(Tc)/

√
2 =1, 2, 3, 5 (red solid, blue

dashed, and black dashed-dotted lines). (c) Distributions of magnetic
field H (r)/H (r = 0), gap functions |	1|(r)/	10 (dashed lines), and
|	2|(r)/	20 (solid lines) in a single vortex for the coupling parameters
λ11 = 0.25, λ22 = 0.213, and λ21 = 0.0025 and different values of
the band parameter γF =1, 2, 3, 4, 5. (d) The energy of interaction
between two vortices normalized to the single vortex energy as
function of the intervortex distance d . In panels (c) and (d) the
temperature is T = 0.6.

system goes from type-II to type-1.5 behavior as temperature
is decreased. The type-1.5 behavior sets in when μL becomes
smaller than �−1, and the density associated with the light
mode is small enough that the system has a short-range
intervortex repulsion.

To contrast the physics of fundamental modes in the two-
band case with the single-band case, we plot on Fig. 3(b) the
product of � and μL. Note that only infinitesimally close to Tc

can this product can be interpreted as GL paramter κ because
the inverse mass

√
2μ−1

L becomes the single-component-like
GL coherence length. However, away from Tc, it represents
a mass of the softest of competing modes and the product
�μL has a strong and nonmonotonic temperature dependence
shown on Fig. 3(b).

III. SELF-CONSISTENT CALCULATION OF THE VORTEX
STRUCTURE AND NONMONOTONIC VORTEX

INTERACTION ENERGY

Next, we calculate self-consistently the structure of isolated
vortex for different values of γF . In these calculations, we
fix the values of parameters σi by adjusting the partial DOS,

which in the case of cylindrical Fermi surfaces is regulated
by the ratio of effective masses so that n2 = n1/γF and
λ12 = λ21/γF . We chose the following values of the coupling
parameters λ11 = 0.25, λ22 = 0.213. The interband interaction
is small λ21 = 0.0025 and the temperature is T = 0.6 when
	10 � 	20. In this case, the composite gap function mode
	̃L(r) consists mainly of the weak gap 	̄2(r). Thus, although
at the very long ranges the behavior of both |	1|(r) and |	2|(r)
are determined by the same mass μL, the overall behavior (i.e.,
outside asymptotic regimes) of the gap |	1|(r) [shown by red
dashed lines in Fig. 3(c)] is not very sensitive to the parameter
γF . A complex aspect of the vortex structure in the two-band
system is that, in general, the exponential law of the asymptotic
behavior of the gaps is not directly related to the “core size”
at which gaps recover most of their ground-state values. We
can characterize this effect by defining a “healing” length
L	i of the gap function as follows: |	i |(L	i) = 0.95	i0.
Then, we obtain that L	1 ≈ 0.8 for all values of γF . On
the contrary, the healing length L	2 changes significantly
such that L	2 = 1.6, 2.5, 3.2, 3.9, 4.5 for γF = 1, 2, 3, 4, 5,

correspondingly.
To demonstrate the type-1.5 behavior, we have chosen the

parameters σi in the self-consistency equation for the current
such that the characteristic magnetic field localization length
LH ≈ 2 is much larger than L	1. This leads to an existence of
regular vortex lattices in a wide range of strong magnetic fields
(i.e., when vortices are closely packed and thus experience only
strong short-range repulsive interaction). However, the high
magnetic field behavior notwithstanding, the vortex structures
shown in Fig. 3(c) clearly show that L	1 � LH � L	2, i.e.,
the long-range interaction is attractive and, thus, the system in
fact belongs to the type-1.5 regime.

Next, to demonstrate the type-1.5 superconductivity, i.e.,
large-scale attraction and small-scale repulsion of vortices,
which originate from disparity of the variations of two gaps,
we explicitly calculate the intervortex interaction energy.
We evaluate the two-band generalization of the Eilenberger
expression for the free energy of the two vortices positioned
at the points rR = (d/2,0) and rL = (−d/2,0) in the xy

plane. Here, we generalize to two-band theory the method
developed for calculation of asymptotic vortex interaction in
single-component theories.18 The method assumes that, for
large separations, in the region x < 0, the fields H, 	1,2,
and f

(+)
1,2 correspond to the single vortex placed at the point

rL weakly perturbed by the presence of the second vortex.
The interaction energy can be expressed through the integral
over the line x = 0 passing in the middle between vortices
Eint = 2

∫ ∞
−∞ dy Ẽint(y) where

Ẽint =
∫ ∞

−∞
dy HvQv + T

∑
j=1,2

∑
ωn>0

σj	0j

4ωn

×
∫ 2π

0
dθp cos θp(fLjf

+
Rj − f +

LjfRj ). (12)

The detailed derivation of the above expression can be found
in Appendix B. The indices R(L) correspond to the solutions
of Eilenberger equations (1) for isolated vortices positioned
at the points rR(L). The first term in Eq. (12) contains
the magnetic field Hv(|r − rL|) and the axial component of
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superfluid velocity distribution Qv(|r − rL|) corresponding to
the isolated vortex placed at the point r = rL.

In Fig. 3(d), the interaction energy Eint is shown as a
function of the distance between two vortices d. The energy
Eint is normalized to the single vortex energy Ev . The plots
on Fig. 3(d) clearly demonstrate the emergence of type-
1.5 behavior when the parameter γF is increased. This is
manifested in the appearance of nonmonotonic behavior of
Eint(d).

IV. LOW-TEMPERATURE VORTEX ASYMPTOTICS
AND INTRINSIC PROXIMITY EFFECT

Finally, we discuss the two-band superconductor with
	20 � 	10 at T → 0. Note that a qualitatively similar regime
is realized in the two-band superconductor MgB2.15 To model
such a situation, we choose the coupling constants λ11 = 0.25,
λ12 = λ21 = λJ = 0.05, and consider various values of λ22.
The temperature dependencies of the mass μL(T ) for different
values of λ22 are shown in Fig. 1(d). Note that, in this case,
decreasing of intraband coupling λ22 leads to the decreasing
of the μL at low temperatures. This anomalous behavior of
the characteristic length scale is clearly manifested in the
vortex structure shown in Fig. 4. The near-core gap-function
profiles [Figs. 4(a) and 4(c)] feature shrinkage of the vortex
core at decreasing temperature, similarly to clean single-

FIG. 4. (Color online) Gap-function profiles around vortex core
for λ11 = 0.25, λ22 = 0.1, λ12 = λ21 = 0.05. (a) and (c): Variation
of the gap functions |	j |(r)/	j0 (j = 1,2) near the core. (b) and
(d): The behavior of gap-function deviations from the vacuum
state δ	j (r) = 1 − |	j |(r)/	j0 at longer range. Note that, in this
temperature span, the higher the temperature, the faster the long
distance decay of δ	j (r), which reflects the found fact in the two-band
system that the field mass can increase with raising temperature [see
also Fig. 1(d).]

band superconductors.19 However, the asymptotics of gap
functions [Figs. 4(b) and 4(d)] are drastically different from
the single-band case. Indeed, it can be seen that, in a certain
temperature domain, the lower the temperature, the slower the
recovery of the gap functions at large distances from the core.
Such behavior in the two-band system is clearly in a sharp
contrast with the overall vortex core shrinking with decreasing
temperature in clean single-band superconductors.

Note that, in the above case, at low temperatures we

have μL ≈ 2
√

	2
20 + (πT )2/vF2. For the especially inter-

esting regime of purely interband proximity effect-induced
superconductivity in the weak band, we can consider the
limit T � 	20/π . Then, μL ≈ ξ−1

N , where ξN = vF2/(2πT )
is the coherence length in a pure normal metal2 describing the
penetration length of superconducting correlations induced by
the proximity effect in superconductor (normal) metal (SN)
hybrid structures.20 Thus, we obtain that the intrinsic proximity
effect due to the interband coupling11 can in certain cases
be described by the similar length scale as the usual one
in SN hybrid structures. At the temperature interval 	20 �
πT � 	10, the mass μL(T ) grows linearly with temperature
[Fig. 1(d)].

V. CONCLUSION

In conclusion, the rapidly growing family of discovered
multiband superconductors (MgB2, iron pnictides, etc.) re-
quires understanding and classification of possible magnetic
response of systems with multiple superconducting gaps. Here,
we reported a microscopic theory of magnetic response of a
superconductor with two bands (the developed approach can
be generalized to the case of a higher number of bands).
We have shown that new physics that arises in multiband
systems is the existence of several mixed gap modes. This, in
a range of parameters, results in the existence of the type-1.5
superconducting regime.

We described the system properties and emergence of
type-1.5 regimes in the entire temperature regimes, in par-
ticular, beyond the validity of a two-component GL theory.
The universal feature of all the regimes supporting type-1.5
behavior is the thermodynamic stability of vortex excitations in
spite of the existence of a mode, which varies at a fundamental
length scale larger than the magnetic field penetration length.
It results in nonmonotonic vortex interaction and appearance
of the additional semi-Meissner phase in low magnetic fields,
which is a macroscopic phase separation into (i) domains of
two-component vortex state and (ii) vortex clusters where one
of the components is suppressed.
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APPENDIX A: ASYMPTOTICAL BEHAVIOR
OF THE GAP FUNCTIONS

We focus on the structure of the isolated axially symmetric
vortex in two-band superconductor characterized by the
nontrivial phase winding of the gap functions

	1,2 = |	1,2|(r)eiϕ. (A1)

We begin by considering the asymptotical behavior of the
gap functions at distances far from the vortex core when the
deviations of all fields from the homogeneous values are small.
In this case, the Eilenderger equations (1) can be linearized in
order to find the asymptotical behavior of the gap-function
modules |	1,2|(r). To compare with the different linearization
problem in the single-band case, see Ref. 21.

To determine the asymptotic behavior, we use the transfor-
mation f → f eiϕ , f + → f +e−iϕ and rewrite the Eilenberger
equations (1) in terms of the deviations from the vacuum-state
values 	̄j = 	j0 − |	j | and f̄j = fj0 − fj , f̄ +

j = f +
j0 − f +

j .
Then, by keeping the first-order terms f̄�(d) and 	̄j in the
left-hand side, we can rewrite the Eilenberger equations in the
following form (we omit the band index for brevity):

vF n∇f̄� + 2ωnf̄d = X�,
(A2)

vF n∇f̄d + 2
2

n

ωn

f̄� − i
2	0

n

nQ − 4ωn

n

	̄ = Xd,

where the higher-order terms in 	̄j , f̄ , and f̄ + are incor-
porated in the r.h.s. functions X�(d) = X�(d)(np,ωn,r). In

Eq. (A2), we introduce n =
√

ω2
n + 	2

0 and the functions

f̄� = f̄ + f̄ + and f̄d = f̄ − f̄ +. The higher-order terms are
incorporated in the functions X�(d) = X�(d)(np,ωn,r).

Then, we take the real part of Eq. (A2) to obtain the
following system:

vF np∇f r
� + 2ωnf

r
d = Xr

�,
(A3)

vF np∇f r
d + 2

2
n

ωn

f r
� − 4ωn

n

	̄ = Xr
d.

Here, we omit the band index for brevity and denote f r
�(d) =

Ref̄�(d). Below we will find the asymptotic of the gap fields
treating the nonlinear terms in the r.h.s. of Eq. (A3) as source
functions.

The solution of Eq. (A3) can be found in the momentum
representation f r

�,d (k) = ∫
f r

�,d (r)e−ikrd2r. Then, we get

f r
� = ω2

n

n

8	̄

42
n + (vFk)2

+ M(vFk,ωn), (A4)

where the last term incorporates the higher-order corrections

M(vFk,ωn) = 2ωn

42
n + (vFk)2

(
Xr

d − ivFk
2ωn

Xr
�

)
. (A5)

After substituting it to the self-consistency Eq. (2), we get
the expression for the order parameter

	̄i(k) = R̂−1
ij Nj (k), (A6)

where

Ni(k) = λijT

2

Nd∑
n=0

∫ 2π

0
Mjdθp (A7)

and the elements of the matrix R̂ = R̂(k) are defined by Rii =
(λiiSi − 1) and Rij = λijSj , where

Sj = 4T

Nd∑
n=0

ω2
n

nj

∫ 2π

0

dθp

42
nj + (vFjk)2

. (A8)

The integrals entering the expressions (A8) above are∫ 2π

0

dθp

b2 + (sin θp)2
= 2π

b
√

b2 + 1

so that

Sj (k) = 4πT

Nd∑
n=0

ω2
n

2
nj

1√
42

nj + (vFjk)2
. (A9)

The source functions Nj (k) come from the nonlinear terms
Xr

�,d in Eilenberger Eq. (A3).
Equation (A6) is the two-band response function. To

compare with the single-band response function, see Ref. 17.
In general, the real-space asymptotic behavior of the order
parameter (A6) is determined by the contributions of the
singularities of the response function R̂−1(k), which are poles
and branch points at k = 2inj /vFj . Analogously to the
consideration in Ref. 17, we assume the branch cuts to lie
along the imaginary axis from k = 2inj /vFj to k = i∞.
The poles are determined by the zeros of the determinant
DR(k) = DetR̂(k) = 0, so that

DR(k) = (1 − λ11S1)(1 − λ22S2) − λ12λ21S1S2.

Since we are interested in the asymptotic behavior of the
order parameter, we need only to take into account the poles
of R̂−1(k) lying in the upper complex half plane below all
the branch cuts. In this case, all the zeros of the function
DR(k) are purely imaginary k∗ = iqn. Each of them can be
associated with the particular mass of the gap function field
μn = 1/qn, which determines the characteristic length scale of
the gap-function variation. On the other hand, the contribution
from the branch cut contains all the length scales, which are
larger than the threshold one given by position of the lowest
branch point k = iqbp, where

qbp = 2 min(02/vF2,01/vF1). (A10)

APPENDIX B: ENERGY OF INTERACTION BETWEEN
TWO VORTICES

1. General free-energy expression

The two-band generalization of the Eilenberger expression
for the free energy22 reads as

F (r) = H2

2
+ ρ̃11|	1|2 + ρ̃22|	2|2

+ ρ̃J (	1	
∗
2 + 	2	

∗
1) + FI1 + FI2, (B1)
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where (
ρ̃11 ρ̃12

ρ̃21 ρ̃22

)
= 1

κ2

(
ρ11 ρ12

ρ21 ρ22

)−1

,

ρ̃J = ρ̃12 = ρ̃21, and

FIj = − T

κ2

∑
ωn>0

∫ 2π

0
nj Ij (ωn,θp,r)dθp

with

Ij (ωn,θp,r) = 	∗
j fj + 	jf

+
j + (gj − 1)

×
[

2ω̃n + vFj

2
np∇(ln fj − ln f +

j )

]
, (B2)

where j = 1,2 and

ω̃n = ωn + ivFj npA/2.

Then, the variation of the free energy (B1) with respect
to the fields A and 	 gives the self-consistency equations
(4) and (2), correspondingly. The variation over f and f +
with the normalization condition taken into account yields
the Eilenberger equations (1). Provided the functions f,f +,g

satisfy Eqs. (1), the expression (B2) can be rewritten as

Ij (ωn,θp,r) = 	∗
j fj + 	jf

+
j

1 + gj

. (B3)

2. Linearized theory of vortex interaction

To calculate the energy of vortex interaction, we evaluate
the free-energy expression for the system of two vortices
positioned at the points rR = (d/2,0) and rL = (−d/2,0) in
the xy plane. Here, we employ the method similar to that in
Ref. 18.

Let us consider the half-plane x < 0 containing only one of
the vortices. We decompose the gap function into amplitude
and phase (we omit the band index for brevity)

	(r) = |	|(r) exp(i�). (B4)

The total phase can be written in the form � = �L + �R +
�ns , where

�L(R)(r) = arctan

(
y − yR(L)

x − xR(L)

)
are the vortex phases and �ns(r) is a regular part of the phase.
At the region x < 0, we can make the gauge transformation
removing the phase �R(r), since it does not contain singulari-
ties. After this transformation, we can assume that the fields A,
	1,2, and f

(+)
1,2 correspond to the solutions for a single vortex

placed at the point rL weakly perturbed by the presence of the
second vortex

A = Av + δQ, 	j = 	vj + δ	j ,

fj = fvj + δfj , f +
j = f +

vj + δf +
j ,

where we have introduced the superfluid velocity induced by
the second vortex δQ = AR − ∇�R . Then, we obtain

δIj = (δ	jf
+
vj + δ	∗

j fvj ) + (	vjδf
+
j + 	∗

vj δfj )

+ ivFj (gvj − 1)npδQ + 2ω̃nδgj

+ vFj

δgj

2
np∇(ln fvj − ln f +

vj )

+vFj

(gvj − 1)

2
np∇

(
δfj

fvj

− δf +
j

f +
vj

)
, (B5)

where

δgj = −(fvj δf
+
j + f +

vj δfj )/2gvj .

The last two terms in Eq. (B5) can be rewritten as

1

2gv

[
δf (np∇)f +

v − δf +(np∇)fv

]
,

(B6)
(np∇)

2

[
(gv − 1)

(
δf

fv

− δf +

f +
v

)]
.

The first term in this expression cancels with the second and
fourth terms in Eq. (B5). For the variation of magnetic field
energy in Eq. (B1), we obtain

HvδH = ∇ · (δQ × Hv) + ∇ × Hv · δQ.

Then, we are left with the nonzero terms

δF = ∇ · δQ × Hv − T

2κ2

∑
j,ωn

nj vFj

×
∫ 2π

0
dθp∇ · np

[
(gvj − 1)

(
δfj

fvj

− δf +
j

f +
vj

)]
. (B7)

The energy of vortex interaction is Eint = 2
∫

δFdr. It can
be expressed through the integral over the line x = 0 so that
Eint = 2

∫ ∞
−∞ dy x · eint:

eint = δQ × Hv − T

2κ2

∑
j,ωn

njvFj

×
∫ 2π

0
dθpnp

[
(gvj − 1)

(
δfj

fvj

− δf +
j

f +
vj

)]
. (B8)

To evaluate the second term in Eq. (B8), it is convenient to
bring Eq. (1) to the gauge-invariant form23 decomposing the
gap functions into amplitude and phase (B4) and transforming
the Green’s functions as f → f ei�, f + → f +e−i�. Then, at
the line x = 0, we can put

fvj = f0j + fLj , f +
vj = f0j + f +

Lj ,

where f0j = 	0j /
√
	2

0j + ω2
n. Also, we denote δfj = fRj ,

δf +
j = f +

Rj [L (R) stand for left (right) vortices]. Therefore,
up to the second-order terms, we obtain

(gvj − 1)

(
δfj

fvj

− δf +
j

f +
vj

)

= g0j − 1

f0j

(fRj − f +
Rj ) − 1

2g0j

(fLj + f +
Lj )(fRj − f +

Rj )

+ g0j − 1

f 2
0j

(f +
Rjf

+
Lj − fRjfLj ). (B9)

Now we use the symmetry relations fL,R(nx,ny) =
f ∗

R,L(−nx,ny) and f ∗(−np) = f +(np). Then, the contribution
to the interaction energy (B8) from the first-order term in
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Eq. (B9) cancels with the analogous contribution from the left
vortex. Also, from the symmetry relations, we obtain

Re
∫ 2π

0
cos θpfLfRdθp = 0,

(B10)

Re
∫ 2π

0
cos θpf +

L f +
R dθp = 0.

On the other hand,

Im
∫ 2π

0
cos θp(fLfR − f +

L f +
R )dθp = 0.

Therefore, we get for the interaction energy

Eint = 2
∫ ∞

−∞
dy Ẽint(y),

where

Ẽint = HvQv + T
∑
j=1,2

σj

∑
ωn>0

	0j

4ωn

×
∫ 2π

0
dθp cos θp(fLjf

+
Rj − f +

LjfRj ), (B11)

and σj = κ−2njvFj .
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