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Charging of superconducting layers and resonance-related hysteresis in the current-voltage
characteristics of coupled Josephson junctions
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A manifestation of a resonance-type hysteresis related to the parametric resonance in the system of coupled
Josephson junctions is demonstrated. In contrast with the McCumber and Steward hysteresis, we find that the
width of this hysteresis is inversely proportional to the McCumber parameter and it also depends on the coupling
between junctions and the boundary conditions. Investigation of the time dependence of the electric charge
in superconducting layers allows us to explain the origin of this hysteresis by different charge dynamics for
increasing and decreasing bias current processes. The effect of the wavelength of the longitudinal plasma wave
created at the resonance on the charging of superconducting layers is demonstrated. We find a strong effect of
the dissipation in the system on the amplitude of the charge oscillations at the resonance.
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I. INTRODUCTION

The hysteresis features of the single Josephson junction
(JJ) have been studied by McCumber and Steward a long
time ago.1,2 Particularly, it was shown that the width of the
hysteresis was determined by the capacitance of the JJ being
proportional to the McCumber parameter βc related to the
dissipation parameter β by βc = 1/β2. The origin of the
hysteresis becomes clear if we take into account the analogy
in the behavior of JJ and massive particle in the “washboard”
potential (see, for example, Ref. 3). In comparison with
the single junction, the system of the coupled Josephson
junctions has a multiple branch structure in its current-voltage
characteristics (CVC), and the definition of the return current
characterizing the hysteresis is more general now: the system
can return to the zeroth voltage state from any branch. The
outermost branch of CVC has a breakpoint (BP) and a
breakpoint region (BPR) before a transition to another branch
reflected by the parametric resonance in the system.4

It was shown by Koyama and Tachiki5 that the system of
equations for capacitively coupled Josephson junctions has a
solution corresponding to the longitudinal plasma wave (LPW)
propagating along the c axis. So the Josephson oscillations
can excite LPW by their periodic actions.6 The frequency
of Josephson oscillations ωJ is determined by the junction
voltage, and is at ωJ = 2ωLPW, where ωLPW is LPW frequency,
where the parametric resonance is realized. It means that the
BP current characterizes the resonance point at which LPW
with a definite wave number is created in the stack of JJs.

The hysteresis features of the intrinsic JJ in high tem-
perature superconductors are of great interest also due to
the observed powerful coherent radiation from that system.7

In Ref. 8, the authors summarized the experimental results
and stressed that the strong emission was observed near
the unstable point of the return current in the uniform
voltage branch. The radiation was related to the same region
in the CVC where BP and BPR were observed. This made the
phase dynamics investigation of the intrinsic JJ corresponding
to these parts of CVC an urgent problem today.

Since the thickness of the superconducting layer (S layer)
in the intrinsic JJ is comparable to the Debye screening length,

the S layers are in the nonstationary nonequilibrium state
due to the injection of quasiparticle and Cooper pairs.5,9 The
charge neutrality in S layers is locally broken and this charging
effect modifies the Josephson relation between the voltage
and the phase difference. The questions of the value of the
electric charge in the S layer and its maximum realized at the
parametric resonance have not been investigated yet.

In this paper, we study the phase dynamics in coupled
Josephson junctions. A resonance-type hysteresis related to the
parametric resonance in this system is demonstrated. We show
that the width of this hysteresis is inversely proportional to the
McCumber parameter and depends on the coupling parameter
of the system and the boundary conditions. The origin of
this hysteresis is related to the different charge dynamics for
increasing and decreasing bias current processes. We discuss
the question concerning the maximal electric charge in S layers
realized at the resonance and show that it depends on the
relation between the wavelength of LPW and the period of
lattice. We demonstrate a strong effect of the dissipation in
the system on the coefficient of the exponential growth of the
maximal electric charge in S layers.

The paper is organized in the following way. In Sec. II,
we introduce the coupled sine-Gordon equation, which is used
for numerical simulations and discuss the boundary conditions
and a numerical procedure. In Sec. III, we present the results of
simulation of CVC demonstrating the hysteretic behavior and
its features near the parametric resonance region. To clarify the
origin of the hysteresis, we describe the time dependence of
the charge oscillations in the S layers in Sec. IV. In Sec. V, we
discuss the question concerning the amplitude of the electric
charge oscillations in the S layer at the parametric resonance
and show that its maximal value depends on the wavelength
of created LPW. In Sec. VI, the charge-time dependence
in the growing region at different dissipation magnitudes is
presented. Finally, we discuss the obtained results and come
to the conclusions.

II. MODEL AND METHOD OF CALCULATION

Let us consider the system of N + 1 superconducting layers
in anisotropic high-Tc superconductors. The thicknesses of
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the superconducting and insulating layers are denoted by ds

and dI , respectively. At the edges of the stack, the effective
thickness of the S layer can be extended due to the proximity
effect into attached metals. The thicknesses of the 0th and
N th S layers are denoted by ds0 and dsN , respectively,
and we consider that ds0 = dsN . All other S layers and the
insulating layers in between are of the same thickness. The
N + 1 superconducting layers are characterized by the order
parameter �l(t) = |�| exp[iθl(t)] with the time-dependent
phase θl(t) and form N Josephson junctions.10 The thickness
of the S layers in the high-Tc superconductors (∼3 Å) is
comparable with the Debye length rD of the electric charge
screening and, therefore, there is no complete screening in a
separate S layer and the electric field induced in a separate
Josephson junction penetrates into the adjacent ones. The
electric neutrality of the S layers turns out to be dynamically
broken and, in the case of the ac Josephson effect, there appears
a capacitive coupling between the junctions.5

The absence of the complete charge screening in the S layer
leads to the generalized scalar potential �l of the layer defined
in terms of the scalar potential φl and the derivative of the
phase θl of the superconducting order parameter, according
to �l(t) = φl − h̄/(2e) dθl

dt
. The generalized scalar potential is

related to the charge density Ql in the S layer by the expression

Ql = − 1
4πr2

D

�l . These relations reflect the nonequilibrium

nature of the ac Josephson effect in layered superconductors.9

The superconducting layers are in a nonequilibrium state due
to the injection of quasiparticles and Cooper pairs. In the
equilibrium state �l(t) = 0.

In the CCJJ + DC model11 with diffusion current J l
D =

−(�l − �l+1)/R between the layers l and l + 1, the total
external current through the stack has the form

J = C
dVl

dt
+ J l

c sin(ϕl) + h̄

2eR
ϕ̇l, (1)

where Vl is the voltage between the superconducting layers l +
1 and l (see below), ϕl is the gauge-invariant phase difference
ϕl(t) = θl+1(t) − θl(t) − 2e

h̄

∫ l+1
l

dzAz(z,t) between the layers
l + 1 and l, R is the junction resistance, and Az is the vector
potential in the barrier.

Using the generalized Josephson relation, we obtain the
following system of dynamical equations for the phase
differences ϕl :

∂2ϕl/∂t2 =
∑

l′
All′ (I − sin ϕl′ − β∂ϕl′/∂t) (2)

with the matrix A

A =

⎛
⎜⎜⎜⎜⎜⎝

1 + αG −α 0 . . .

−α 1 + 2α −α 0 . . .

0 −α 1 + 2α −α 0 . . .

. . . . . . . . . . . . . . . . . . . . .

. . . 0 −α 1 + αG

⎞
⎟⎟⎟⎟⎟⎠

, (3)

where l′ runs over all N junctions, the parameter α gives the
coupling between junctions (α = εr2

D/dsdI ,5 ε is the dielectric
constant), β is the dissipation parameter (β2 = 1/βc, where
βc = ω2

pR2C2 is the McCumber parameter, ωp = √
2eIc/h̄C

is the plasma frequency, Ic is the critical current, and C is
the capacitance of the Josephson junction), I is the external
current normalized to Ic, and G = 1 + γ , γ = ds/ds0 =
ds/dsN . In the system of equations (2), time is normalized to
ω−1

p .12

In our simulations, we use both periodic and nonperiodic
boundary conditions (BC). At nonperiodic BC it is suggested
that the first and the last S layers are in contact with
normal metals, and their effective thicknesses ds0 and dsN

can be extended to the attached metals. Nonperiodic BC are
characterized by the parameter γ and the equations for the
first and last junctions in the system (2) are different from the
equations for the middle junctions.5,12

For periodic BCs, the matrix A has the form

A =

⎛
⎜⎜⎜⎜⎜⎝

1 + 2α −α 0 . . . −α

−α 1 + 2α −α 0 . . .

0 −α 1 + 2α −α 0 . . .

. . . . . . . . . . . . . . . . . . . . .

−α ... 0 −α 1 + 2α

⎞
⎟⎟⎟⎟⎟⎠

, (4)

We solve this system of equations (2) for the stacks with
different numbers N of the intrinsic Josephson junctions. For

a given set of model parameters N, α, β, and γ , we simulate
the CVC of the system, i.e., Vl(I ), increasing I from zero up
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Tf - size of time
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Ti - initial time for
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I - step in current;δ

trt - recording time;
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t - number of steps
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for time
dependence
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tN=Tf / Tp,

Tp 3Tf
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Tf = 250 - 25000;

FIG. 1. Scheme of the numerical procedure for the phase dynam-
ics investigation in coupled Josephson junctions.

and then down. A change in these parameters greatly changes
the branch structure in CVC. Their influence on CVC in the
framework of the CCJJ and CCJJ + DC models was discussed
in Refs. 11–13. To calculate the voltages Vl(I ) at each point
of CVC (for each value of I ), we simulate the dynamics of
the phases ϕl(t) by solving the system of equations (2) using
the fourth-order Runge-Kutta method with a step in time Tp.
The scheme of the numerical procedure and parameters of
simulation are presented in Fig. 1. After simulation of the
phase dynamics we calculate the dc voltages on each junction
as

∂ϕl/∂t =
∑

l′
All′Vl′ , (5)

where Vl is normalized to V0 = h̄ωp/(2e). The average of the
voltage V̄l is given by

V̄l = 1

Tf − Ti

∫ Tf

Ti

Vldt, (6)

where Ti and Tf determine the interval for the temporal
averaging. After completing the voltage averaging for bias
current value I , the current value is increased or decreased
by a small amount of δI (bias current step) to calculate the
voltages in all junctions at the next point of CVC. We use
the distribution of phases and their derivatives achieved at the
previous point of CVC as the initial distribution for the current
point.

Numerical stability was checked by doubling and dividing
in half the temporal discretization steps Tp and checking the
influence on the CVC. Finally, we can obtain the total dc
voltage V of the stack by

V =
N∑

l=1

V̄l . (7)

At some bias current value some junction (or junctions)
switches to the nonzero voltage state and gives some branch
of CVC. We plot the total CVC at different parameters of the
problem. The details concerning the numerical procedure are
given in Refs. 11–13. To investigate the BPR in detail, we have
calculated CVC for different boundary conditions for stacks
with a different number N of IJJs.

III. HYSTERETIC BEHAVIOR NEAR BREAKPOINT

The results of simulation of CVC and its features near the
parametric resonance region are presented in Fig. 2(a). The
inset to this figure shows the total branch structure of CVC
for the stack with 9 JJs at α = 1, β = 0.2, and nonperiodic
boundary conditions with γ = 0.5. We stress the following
features of CVC: (i) a jump at I/Ic = 1.0 from the zero-
voltage branch to the outermost branch with all junctions in the
rotating state, (ii) practically linear dependence of the voltage
on the bias current at I > Ic, and (iii) multiple branching in
the hysteresis region. The circle and arrow with letter B show
the BP location on the outermost branch.

Figure 2(a) shows part of the total CVC of the stack
and demonstrates a hysteresis in the outermost branch. It is
obtained by decreasing the bias current to some point in BPR
(curve 1), then we increase the current to pass the resonance
region again (curve 2). The arrows show the direction of the
bias current change. The hysteresis is characterized by its width
IB∗ − IB , where IB is the value of the breakpoint current in the
decreasing current process and IB∗ is a characteristic current
value in the increasing current process.
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FIG. 2. (Color online) (a) Demonstration of the hysteresis
behavior in the parametric resonance region in the outermost branch
of the CVC for the stack with 9 JJs at α = 1, β = 0.2, and γ = 0.5.
The arrows show the direction of the bias current sweeping. The inset
shows the total branch structure in the CVC of this stack and BP
location; (b) shows a change of the hysteresis width IB∗ − IB with
the dissipation parameter β and coupling parameter α, and (c) shows
the same with variation of the nonperiodic parameter γ .
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The dependence of the hysteresis width on the dissipation
parameter β is shown in Fig. 2(b) (the corresponding axes
shown by arrows). The width increases with the parameter
β, i.e., it decreases with the McCumber parameter. As we
mentioned above, this result is in contrast with the McCumber
and Steward hysteresis for a single JJ. They obtained that the
return current Ir (which characterizes the value of hysteresis)
decreases with increasing of McCumber parameter.11 So we
have observed a resonance-type hysteresis related to the
parametric resonance in coupled JJs. In Ref. 14, we showed
that the origin of the very small details in CVC was related
to the details of the charge dynamics in the superconducting
layers. Below we demonstrate that this hysteresis can be
explained by different charge dynamics for decreasing and
increasing bias current processes in obtaining CVC in the
resonance region. Figures 2(b) and 2(c) also show an increase
in the hysteresis width IB∗ − IB with the coupling parameter
α and parameter of nonperiodicity γ .

IV. TIME DEPENDENCE OF CHARGE OSCILLATIONS
IN THE S-LAYERS

To make clear the origin of this hysteresis, we study the
time dependence of the charge oscillations in the S-layers.
Using the Maxwell equation div(εε0E) = Q, where ε0 is
the permittivity (electric constant), we express the charge
density

Ql = Q0α(Vl+1 − Vl) (8)

in the S layer l by the voltages Vl and Vl+1 in the neighboring
insulating layers, where Q0 = εε0V0/r2

D . The solution of the
system of dynamical equations for phase differences gives us
the voltages as functions of time Vl(t) in all junctions in the
stack and it allows us to investigate the time dependence of
the charge in each S layer. As we mentioned above, the charge
dynamics in the S layers determines the features of the current
voltage characteristics of the coupled Josephson junctions.14

Here, we investigate the charge-time dependence for two
processes: decreasing [see Figs. 3(a), 4–6] and increasing [see
Fig. 3(b)] the bias current through the stack. The recorded time
is calculated as

trt = t + Tf (I0 − I )/δI (9)

for the decreasing bias current process. For the increasing
current process [see Fig. 3(b)], we record the time dependence
at bias current value I during the time interval (trt ,trt − Tf ).
The simulations were done at Tf = 1000, Tp = 0.05, and
δI = 0.0001.

In Fig. 3, the time dependence of the charge in the S layer
of the stack with nine coupled JJs at α = 1, β = 0.2, and
periodic BC is combined with CVC of the outermost branch.
We see the characteristic fine structure in the breakpoint region
of CVC and the corresponding features in the charge-time
dependence. The arrows show the direction of the bias
current sweeping. Here and after, we present the charge
oscillations in the first S layer of the stack; the features of
the charge oscillations we are interested in are practically the

FIG. 3. (Color online) Difference in the charge-time depen-
dence and CVC in (a) the decreasing current process and (b) the
increasing current process. The thick curves (solid and dashed)
show CVC.

same in all other layers. Figure 3(a) shows the charge-time
dependence when the current approaches the resonance point
in the decreasing current process, while Fig. 3(b) presents
it when the bias current is increased. We can see that the
charge on the S layer in Fig. 3(b) disappears at a different
value of current in comparison with the current value in the
decreasing process [see Fig. 3(a)]. So the origin of the observed
hysteresis is related to the parametric resonance in this
system and different charge dynamics in the superconducting
layers for decreasing and increasing bias current sweeping in
obtaining CVC.

V. LPW WITH DIFFERENT WAVELENGTH

Let us now discuss the question concerning the amplitude of
the electric charge oscillations in the S layer at the parametric
resonance, which corresponds to BP on the outermost branch
of CVC. Does its maximal value depend on the wavelength of
created LPW?

As was shown in Ref. 5, the system of equations for CCJJ
has a solution corresponding to LPW propagating along the
c axis. Frequency of LPW at the bias current I = 0 and β = 0
is given by

ωLPW(k) = ωp

√
1 + 2α(1 − cos kd) (10)

where k is the wave vector of LPW and d = ds + dI is
the period of the stack of Josephson junctions. At point B
[see Fig. 2(a)] the Josephson oscillations excite LPW by
their period actions. The frequency of Josephson oscillations
is determined by the voltage value in the junction, so at
ωJ = 2ωLPW the parametric resonance is realized and LPW is
created.

The Josephson oscillations excite LPW with k = π/d

(π -mode, wavelength λ = 2d) at the parametric resonance in
the stack with an even number of JJs at α = 1, β = 0.2 and
periodic BC.6 However, in the stacks with an odd number of
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FIG. 4. (Color online) (a) Demonstration of the absence of fine
structure in charge-time dependence and CVC for the stack with ten
junctions at α = 1, β = 0.2, and periodic BC. The filled squares
mark the bias current steps in CVC. (b) Charge distribution among
the layers. (c) The beginning of the growing region of the charge in
the S layer.

JJs the wave number depends on the number of junctions N

and it is equal to k = π (N − 1)/dN . In the stacks with an
even number of JJs the resonance is “pure,” i.e., no additional
fine structure appears in CVC.15 So it is interesting to compare
the maximal value of the electric charge realized in S layers
in this case (N even) with the case λ �= nd (N odd), where n is
an integer number.

In Fig. 4(a), we present the time dependence of the electric
charge in the S layer for the stack with 10 JJs combined with
the outermost branch of CVC (the corresponding axes are
shown by arrows). We found that the bias current interval
where the growing region [the beginning of that region is
demonstrated in the Fig. 4(c)] of the electric charge in S layers
is observed, is shorter now in comparison with the N = 9 case,
where LPW with k = 8π/9d is created at the same values
of α and β. Comparing this figure with Fig. 3 for N = 9,
we can see that the amplitude of the charge is larger for the
stack with an even number of JJs. Figure 4(b) illustrates the
charge distribution among the layers and confirms the π mode
of LPW. As we mentioned above, the wavelength of LPW
depends on the values of the dissipation and coupling
parameters.4 So we can compare the stacks with 9 and 10
JJs when LPW with different wave numbers are created and
test the idea concerning the maximal amplitude of charge
oscillations in the S layer.

FIG. 5. (Color online) Charge-time dependence and CVC at α =
3, β = 0.3, and periodic BC: (a) for a stack with 10 JJs and (b) for a
stack with 9 JJs. The inset shows the charge distribution among the
layers corresponding to the 2π/3d mode in the stack with 9 JJs.

In Fig. 5, the time dependence of the charge in the first
S layer at α = 3, β = 0.3, and the periodic BC combined
with CVC of the outermost branch are presented. Figure 5(a)
shows these dependencies for the stack with 10 junctions. The
CVC demonstrates BPR with irregular variation of the voltage
reflecting a complex charge dynamics in the S-layers. We stress
that at chosen values of parameters α = 3 and β = 0.3 LPW
with k = 3π/5d is created.4 The corresponding wavelength
does not satisfy the condition λ = nd. In the case N = 9 [see
Fig. 5(b)], the inset illustrates the charge distribution among the
layers corresponding to the (2π/3d) mode (λ = 3d). It leads
to the absence of the fine structure in CVC in the parametric
resonance region.

We can see that the charge value on the S layers in the
k = 2π/3d case is larger than in the case of k = 3π/5d, which
is the same result as we got before. In addition, we tested the
cases for λ = 4d and λ = 5d (not presented here) and they
supported our idea as well. So we may conclude that at the
fixed α and β the charge value in the S layers is larger for the
stacks with the pure parametric resonance, where LPW with
λ = nd is created.

VI. CHARGE-TIME DEPENDENCE
IN THE GROWING REGION

To demonstrate the character of the charge amplitude
increasing in the growing region, we enlarged in Fig. 6 the
charge-time dependence for the stack with 10 JJs at α = 1 and
β = 0.2.

In the inset (a), we present the time dependence of the
normalized amplitude of the charge in the first layer QA

1 /Q0

in the logarithmic scale. The values of the amplitude were
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FIG. 6. (Color online) Demonstration of the transition part
(shown by double arrow) in charge-time dependence for the stack
with 10 JJs. The inset (a) shows the amplitude of charge oscillations
in the logarithmic scale. The insets (b) and (c) demonstrate the results
of the FFT analysis of the voltage V (t) and charge Q1(t)/Q0 time
dependence in the exponential growth part.

taken at arbitrary times in the total growing region (examples
are shown by circles in Fig. 6). There are two different
parts in the charge-time dependence in Fig. 6: exponential
part and transition part (marked by double arrow) before a
jump to another branch. In the transition part the amplitude
demonstrates a sharp increase in a short time interval in
comparison with the exponential part. The insets (b) and (c)
show the results of the fast Fourier transform (FFT) analysis
of the voltage V (t) and charge Q1(t)/Q0 time dependence
in the exponential growth part. They prove the parametric
resonance condition ωJ = 2ωLPW. In the transition part, this
condition is broken. Writing the expression for the electric
charge as

Ql/Q0 = exp(Kt) (11)

we find K = 0.001.
Figure 7 illustrates the influence of the dissipation mag-

nitude (β = 0.2, 0.1, and 0.05) on the time dependence of
the charge oscillation amplitude in the logarithmic scale for
the stack with ten junctions at α = 1. From this figure, we
see the following features that are observed with decrease
in β (increase in the McCumber parameter): (i) the growing
region is getting shorter, (ii) the width of the transition
part decreases; and (iii) the coefficient of the exponential
growth K increases. We come to the important conclusion
that the parametric resonance features depend strongly on
dissipation in the system. The width of the growing region
is inversely proportional to the coefficient K . The value of K

is determined by the wave number of LPW created at the
resonance. As we mentioned above, in the stacks with an
even number of junctions at α = 1, β = 0.2, and periodic
BC, the wave number of LPW is the same (k = π/d). In
agreement with this, for all investigated stacks with an even
number of JJs (in our simulations we checked the stacks

t r
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/Q

0
)

10000 15000 20000
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10-4
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3

1. β = 0.2, Κ = 0.001

2. β = 0.1, Κ = 0.003

3. β = 0.0, Κ = 0.01

Ν = 10
α = 1

Periodic

FIG. 7. (Color online) Influence of the dissipation magni-
tude on the time dependence of the charge oscillation ampli-
tude in the logarithmic scale for the stack with ten junctions at
α = 1.

with N = 4,6,8,10,12, and 14) we obtained the same value
of K = 0.001. However, as we showed before, for stacks with
a fixed number of junctions, parameter K depends strongly
on β.

The animation of the charge dynamics at different time
moments in the growing region demonstrates the standing
π mode of the created LPW (the charge on the nearest
neighbor layers has the same value and an opposite sign)
in the exponential part and its modification in the transition
region.16 The corresponding avi files are given in Supplemental
Material.16

As a summary, the manifestation of a resonance-type
hysteresis related to the parametric resonance in the system
of coupled Josephson junctions is demonstrated. The width
of this hysteresis is inversely proportional to the McCumber
parameter and depends on the coupling between junctions
and the boundary conditions. The origin of this hysteresis is
related to the different charge dynamics for the increasing
and decreasing bias current processes. We consider that
these features are common for the systems demonstrating the
parametric resonance. These features can be used to develop
the methods for determination of coupling and dissipation
parameters of the system. We show that the maximal value
of the electric charge amplitude realized in superconduct-
ing layers at the resonance depends on the wavelength
of the created LPW. A strong effect of the dissipation in
the system on the width of the parametric resonance is
demonstrated.
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