
PHYSICAL REVIEW B 84, 094512 (2011)

Pressure gradients in solid 4He: Thermal quenching and annealing
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Torsional oscillator measurements on solid 4He show a frequency increase at low temperatures that suggests
mass decoupling or nonclassical rotational inertia (NCRI). The magnitude of the NCRI appears to be larger
when the helium is frozen and cooled rapidly. Annealing at high temperatures usually reduces the NCRI, with
an accompanying drop in pressure, suggesting that defects are involved. Measurements in quenched or deformed
crystals show a T 2 term in the temperature dependence of the pressure which has also been attributed to defects.
We have built a cell with two capacitive gauges to measure the temperature dependence of the pressure and
the magnitude of pressure gradients in solid helium. The helium can be melted in a few seconds using a heater
embedded in the crystal and can be refrozen and quenched to low temperature very rapidly. From the maximum
pressure differences in the cell, we infer a yield stress of order 4 kPa for solid 4He near melting. The pressure
gradients relax when the temperature is raised above about 0.5 K via a thermally activated annealing process with
an activation barrier of about 5 K. The existence of significant pressure gradients makes it difficult to measure the
thermodynamic temperature dependence of the pressure, for example to extract information about glassy regions
or other defects.
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I. INTRODUCTION

The possibility of supersolidity—the coexistence of crys-
talline order and superflow—was suggested more than 40
years ago1–3 but it was not until 2004 that Kim and Chan’s
torsional oscillator experiments4,5 provided direct evidence
of supersolid behavior in helium. At temperatures below
about 200 mK, they observed an increase in the frequency
of a torsional oscillator (TO) filled with solid 4He, which
they interpreted as a superfluidlike decoupling of about
1% of the solid—the nonclassical rotational inertia (NCRI)
which characterizes a supersolid. Two other observations
provided important support for this interpretation. First, the
apparent decoupling decreased at high oscillation amplitudes,
suggesting a critical velocity for superflow like that seen
in superfluid helium. Second, blocking the annular channel
eliminated the decoupling, confirming that long-range flow
was involved. It soon became clear that this behavior must
involve defects. Rittner and Reppy6 showed that annealing
(which removes defects) dramatically reduced the fraction of
the helium which decoupled. Their later experiments7 showed
that the NCRI fraction could be enhanced by growing crystals
in narrow channels and by rapid thermal quenching, which is
expected to increase defect densities.

Elastic measurements8–11 also show unusual effects closely
related to the TO behavior. The shear modulus decreases
by about 10% upon warming to 200 mK, with the same
dependence on temperature, amplitude, frequency, and 3He
impurity concentration as the NCRI. These modulus effects
have a natural interpretation in terms of dislocations, which
elastically weaken the crystal at high temperatures where
they are mobile but not at low temperatures where they are
pinned. Dislocations are created during crystal growth or
by plastic deformation and may also provide an explanation
of the TO behavior, either through superflow associated
with a dislocation network12–14 or via elastic effects15 which
mimic decoupling. In a recent experiment, a 4He crystal
was plastically deformed in the annular gap of a specially

designed torsional oscillator.16 If the increase in TO frequency
reflects the decoupling of a supersolid fraction (NCRI) which
is associated with crystal defects, then plastic deformation
(which increases defect densities) would be expected to
raise the TO frequency at low temperatures but not to affect
the high-temperature behavior in the normal state. However,
the behavior at the lowest temperature was unaffected by
deformation. Instead, the high-temperature TO frequency
decreased after the deformation. This behavior resembles that
of the shear modulus9 and suggests that the TO frequency
changes may have an elastic origin. Although the resonant
frequency of a torsional oscillator containing solid helium
depends primarily on the oscillator’s total moment of inertia, it
is also affected by the helium’s elastic response. An increase in
the elastic stiffness of any part of an oscillator, e.g., in the solid
helium’s shear modulus, will raise the oscillator’s frequency
and mimic decoupling. However, simple estimates and detailed
numerical modeling17 of typical TO geometries show that a
30% modulus change in the solid 4He would produce TO
frequency changes much smaller than those attributed to
decoupling, so changes in the helium’s stiffness do not appear
to be sufficient to explain the observed NCRI.

Heat capacity measurements18 in solid 4He show a small,
broad peak at temperatures near the onset of the TO and shear
modulus anomalies. This may reflect a transition to a new
low-temperature state but these data have also been analyzed19

in terms of a linear T term in the heat capacity, in addition
to the usual Debye T3 contribution. This suggests a glasslike
two-level system (TLS) component in the heat capacity. Glassy
behavior has also been proposed to explain the mechanical
response seen in TO and elastic measurements.19

Pressure is another fundamental thermodynamic parameter,
with a temperature dependence related to the heat capacity
through the Grüneisen equation of state

P (T ) − P0 =
∑ γi

V

∫
CidT , (1)

094512-11098-0121/2011/84(9)/094512(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.094512


A. SUHEL AND J. R. BEAMISH PHYSICAL REVIEW B 84, 094512 (2011)

so a Debye T3 phonon term in the heat capacity produces a
T4 term in the pressure. A linear T term in the heat capacity
is expected to produce a T2 term in the pressure, although
the Grüneisen relation for the TLS contributions in glasses20

is not as well established as it is for phonons in 4He.21

Pressure measurements22 in 4He have shown a non-Debye T2

term which was reduced or eliminated through annealing, as
expected if it originated from defects in the solid. Intriguingly,
the T2 pressure term did not appear23 in measurements on 3He.
Other pressure measurements24 have also shown a T2 pressure
term in crystals grown with the blocked capillary technique,
but in this case the non-Debye term decreased only slightly
when the crystal was annealed. Also, the measured pressure
relaxed slowly, even at the lowest temperatures (19 mK). At
higher temperatures the relaxation was faster, consistent with
a thermal activation barrier of 28 mK.

During crystal growth at constant volume (the blocked
capillary technique used in nearly all TO experiments) the
pressure at which the solid is formed drops by about 25 bars.
This deforms the crystal and produces defects in the solid
helium. In some experiments, subsequent annealing produced
large pressure drops which were attributed to changes in
density due to elimination of defects7 or recrystallization of
metastable liquid or glassy regions.22 If the excess volume
associated with defects like dislocations could be calculated,
this pressure drop would provide a measure of the dislocation
density in solid helium, an important parameter for models
of supersolidity and one for which we currently have only
indirect estimates. However, internal strains in a solid can
lead to significant pressure gradients, and pressure changes
measured at a single point might be due to a reduction of
these gradients rather than to an overall drop in pressure. This
would redistribute mass within the cell and could produce
changes in the moment of inertia which would affect a torsional
oscillator’s frequency.

A number of attempts25–28 to observe mass flow in solid
helium in response to a pressure difference showed no evidence
of flow at low temperatures, although some flow was seen near
melting.26,27 Recent experiments29–31 have shown mass flux
through solid helium in some samples but in other cases there
were stable pressure differences of about 100 mbar across the
cell without any apparent flow.

In order to distinguish overall pressure changes associated
with elimination of defects from local pressure effects due to
changes in pressure gradients, and to better understand anneal-
ing processes in solid helium, we have made measurements of
the pressure in solid 4He in two locations in a cylindrical
cell. By rapidly melting and thermally quenching the helium
crystals, we were able to produce pressure differences between
the ends of the cell as large as 330 mbars, from which we
estimate a yield stress of hcp 4He crystals of roughly 4 kPa.
Above about 0.5 K, these pressure gradients decreased at
a rate which increased with temperature. The temperature
dependence was consistent with a thermally activated process
with an activation barrier of about 5 K. Pressure gradients could
be almost completely eliminated by annealing near the melting
temperature, but we did not observe any significant changes
in the average pressure in the cell due to this annealing. In
most of our measurements the temperature dependence of the
pressure below 700 mK was well described by the Debye

T4 phonon contribution. In a few cases we saw an additional
T2 contribution but this was not reproducible at both ends
of the cell, showing that it is difficult to measure the true
thermodynamic temperature dependence of the pressure in the
presence of pressure gradients.

II. EXPERIMENTAL DETAILS

In these experiments, we created large pressure gradients
and defect densities by rapid thermal quenching of solid 4He
samples. Our goal was to heat the cell from low temperature
to the melting point in a few seconds and to then cool the
cell below 0.5 K as quickly as possible. The cylindrical cell
is shown schematically in Fig. 1. It is made from oxygen
-free high-conductivity copper and has an internal volume
of 5.5 cm3 (length L = 3.05 cm, radius R = 0.76 cm). Two
capacitive pressure gauges (P1 and P2) are incorporated into
the cell’s end caps in order to measure pressure differences
and were calibrated against each other in the liquid phase at
4.2 K. The end of the cell containing the first pressure gauge
(P1) was attached to the mixing chamber of our dilution refrig-
erator via a brass block, whose thermal resistance R determined
the cooling rate during thermal quenches. Temperatures were
measured with a calibrated germanium sensor, supplemented
by a 60Co nuclear orientation thermometer at temperatures
below 50 mK. Crystals were grown from 4He (with a nominal
3He concentration of 0.3 ppm) using the blocked capillary
technique.

Heat pulses could be applied at the opposite end of the
cell (close to gauge P2) using an external 1000 � heater

FIG. 1. (Color online) Schematic of the pressure cell attached
to the mixing chamber of the dilution refrigerator. P1 and P2 are
capacitive pressure gauges. H1 and H2 are the internal and external
heaters used for applying heat pulses. H3 is a 200 � heater used
for temperature control. T is a calibrated germanium resistance
thermometer. The fill capillary C enters at the center of the cell.
R is the thermal link between the cell and the mixing chamber.
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H2 mounted on the cell or using an internal heater H1
embedded directly in the solid helium. The internal heater
was a 1000 � thick film chip resistor, 4 × 4 mm2, suspended
near the cylinder axis by its electrical leads. Heat pulses were
generated by applying dc voltages up to 10 V for times ranging
from 1 to 10 s.

When a heat pulse is applied, the response depends on
the heat capacities of the solid helium, the copper cell, and
the dilution refrigerator’s mixing chamber and on the thermal
time constants of the different components. The high thermal
conductivity of copper results in a very short time constant
for relaxation of thermal gradients in the copper cell. It also
severely limits the thermal gradients that can be produced in the
cell with the external heater. The internal thermal time constant
of the solid helium in the cell is somewhat longer, a few tens
of milliseconds below 0.5 K. The time constant for thermal
equilibrium between the helium and the cell is controlled by
the Kapitza resistance between solid helium and copper and is
comparable to the helium’s internal time constant. Since these
time constants are much shorter than our typical heat pulse
durations (several seconds), we expect the temperature of the
solid helium and cell to be fairly uniform. The internal heater
supplies heat directly to the solid helium and so will produce
much larger local temperature gradients in the helium. The
longest thermal time constant is that between the cell and the
mixing chamber of the refrigerator. The mixing chamber’s heat
capacity is much larger than that of the cell containing helium
so this time constant essentially depends on the heat capacity of
the cell plus helium and on the conductivity R of the thermal
link. The link was chosen to maximize the thermal quench
rate after a heat pulse while still allowing us to partially melt
the helium before the mixing chamber warms significantly.
We estimated time constants of order 1 and 10 s for the two
thermal links used in these experiments, although the measured
values were somewhat longer because of additional thermal
resistances at the clamped surfaces of the link.

III. RESULTS

Starting with high-pressure liquid in the cell, crystals
were grown at constant volume using the blocked capillary
technique. Figure 2 shows the measured pressure P2 during
the growth of two such crystals. The higher-pressure crystal
began to freeze at a pressure of 57 bars and a temperature of
2.5 K. It then cooled along the 4He melting curve for about
70 min until freezing was complete around 1.77 K and
30.7 bars. After leaving the melting curve in the hcp phase,
the pressure along the isochore dropped slightly, to 30.6 bars
below 1 K. The second crystal began freezing at 51 bars and
2.35 K, and then was slowly cooled (over about 11 h) until
it reached the bcc-hcp triple point at 36 bars and 1.77 K. It
then followed the bcc-hcp coexistence curve for 20 min until
it entered the hcp phase at about 1.55 K, ending up at a pressure
of 27.2 bars.

During blocked capillary growth, the parts of the solid
which form first (at high pressure) expand and deform as
the pressure decreases along the melting curve. At the end
of crystal growth, significant inhomogeneities and pressure
gradients may be present in the solid helium, particularly if
the freezing is rapid. Figure 3 compares the pressures P1 and

FIG. 2. (Color online) Thermodynamic paths (pressure vs tem-
perature) for constant volume (blocked capillary) growth of two 4He
crystals with final pressures of 30.6 and 27.2 bars. The solid lines
are the melting curve and bcc-hcp coexistence line for 4He. The inset
shows a blowup of the path for the lower-pressure crystal, which
undergoes a bcc-hcp transition after freezing.

P2 at opposite ends of the cell during melting and freezing
of the 30.6 bar hcp crystal. Figure 3(a) shows the pressures
when the crystal was warmed at a rate of 0.14 mK/s to
1.95 K (where about 20% of the solid has melted). The onset
of melting was sharp and occurred at 1.788 K. Initially there
was a pressure difference �P of about 10 mbars in the solid,
which dropped to less than 1 mbar after melting began. The
cell was then cooled [Fig. 3(b)] from 1.95 K at a rate of
0.5 mK/s and the helium was completely refrozen by about
1.76 K. Pressure differences �P = P 2 − P 1 as large as
33 mbars occurred near the end of freezing; these dropped
to about 13 mbars upon further cooling.

In order to maximize the pressure gradients and disorder
in the crystal, we partially melted and thermally quenched the
30.6 bar crystal as quickly as possible. The density difference
between liquid and hcp solid helium at this pressure is about
7%, so melting of even a small fraction of the solid produces
pressure differences much larger than we could generate from
temperature gradients in solid helium. Figure 4 shows the
temperature and the pressures at the two ends of the cell
during one such melt-quench cycle. The crystal was initially
at a temperature of 50 mK with a small pressure gradient
P 1 − P 2 = 30 mbars. A 750 mJ heat pulse (100 mW for 7.5 s)
was applied to the internal heater, raising the cell temperature
to about 1.86 K. This melted 10% of the crystal and raised
the pressures to about 33 bars. Following the heat pulse, the
temperature and pressure decreased linearly until freezing was
complete, about 30 s after the end of the heat pulse. The solid
helium then cooled more rapidly, reaching 0.5 K about 20 s
later. This rapid melting and thermal quench increased the
pressure difference to P 1 − P 2 = 170 mbars. As expected,
melting and quenching raises the pressure P1 at the end
furthest from the heater since melting near the heater raises
the pressure locally. This pushes mass toward the opposite
end, leaving a larger pressure P1 at that end after quenching.
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(a)

(b)

FIG. 3. (Color online) Pressures P1 (green symbols) and P2 (blue
symbols) measured at the two ends of the cell for the 30.6 bar crystal
of Fig. 2 during (a) warming and melting and (b) subsequent cooling
and freezing.

Substantial pressure changes can also be generated without
melting, by heating a lower-pressure crystal into the bcc phase.
Figure 5 shows the result for the 27.2 bar crystal of Fig. 2.
The crystal was initially at a temperature of 50 mK with a

FIG. 4. (Color online) Creation of a pressure gradient by partial
melting and thermal quenching of the 30.6 bar 4He crystal. Pressures
P1 (blue symbols) and P2 (green symbols) and temperature (red line)
for a 750 mJ heat pulse.

FIG. 5. (Color online) Creation of a pressure gradient by heating
the 27.2 bar 4He crystal into the bcc region of the phase diagram.
Pressures P1 (blue symbols) and P2 (green symbols) and temperature
(red line) for a 100 mJ heat pulse.

pressure gradient P 2 − P 1 = 30 mbars. A 100 mJ heat pulse
(100 mW for 1 s) was applied to the internal heater, raising the
cell temperature to about 1.2 K and the pressure P2 by about
half a bar. The temperature decreased very quickly following
the heat pulse, reaching 0.5 K in about 12 s. This process
resulted in a pressure difference P 1 − P 2 = 350 mbars, larger
than was produced by partial melting of the higher-pressure
hcp crystal.

After these thermal treatments, we warmed the quenched
helium crystals to study the annealing of the pressure gradients
we had created. Figure 6 shows the pressures P1 and P2 at

FIG. 6. (Color online) Warming and cooling a 43.4 bar 4He crystal
with an initial pressure gradient. Open circles show the pressures P1
(blue) and P2 (green) during initial warming to 1.5 K. The black
dotted line is the average of these two pressures. The solid (blue
and green) lines show the pressures P1 and P2 during subsequent
cooling.
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the opposite ends of a higher-pressure (43.4 bar) hcp crystal.
After applying a 750 mJ heat pulse and thermally quenching
the sample, the final pressure difference at low temperatures
was P 1 − P 2 = 240 mbars. The crystal was then warmed to
1.5 K over about 25 h. Around 0.5 K the pressures began to
change: P2 increased while P1 (and the pressure difference
P 1 − P 2) decreased. By the time the sample reached 1.5 K,
annealing had reduced the pressure difference to 20 mbars. The
sample was then cooled to 50 mK in 12 h (blue and green solid
lines). The pressure difference changed sign below 1.2 K but
remained small during cooling, with P 2 − P 1 = 4 mbars at
50 mK. It is clear from Fig. 6 that a drop in pressure measured
at a single point during annealing can be misleading. If only
the pressure P1 had been measured, the pressure drop due
to annealing might have been interpreted as being due to the
elimination of excess volume associated with defects or liquid
droplets in the sample. With two pressure gauges, it is obvious
that the main effect of annealing is to eliminate pressure
gradients, not to reduce the overall pressure. This is clear from
Fig. 6, where we compare P 1+P 2

2 (dotted line), the average
of the pressures measured during warming, to the pressures
P1 and P2 measured while cooling after the anneal. Annealing
does not change the average pressure significantly—it actually
increases slightly. Of course, even measuring the pressures at
two points does not give the overall average pressure in the
cell.

We studied the annealing of pressure gradients in more
detail by changing the sample temperature in discrete steps.
Figure 7 shows the pressures P1 and P2 for the 30.6 bar crystal
of Figs. 3 and 4. After partial melting and thermal quenching
to create a large pressure gradient (264 mbars), the crystal was
warmed from 55 to 100 mK, and then in 100 mK steps to
900 mK, holding the temperature constant for about 35 min
at each step. Above 0.5 K, the pressures began to change at a
rate which increased rapidly with temperature. By the time the

FIG. 7. (Color online) Annealing of a pressure gradient in the
30.6 bar 4He crystal (melting temperature 1.79 K) during stepwise
warming. The upper (blue and green) data (left axis) are the pressures
P1 and P2 as functions of time; the lower (red) curve (right axis) is
the corresponding temperature.

FIG. 8. (Color online) Annealing of a pressure gradient in a
43.4 bar 4He crystal (melting temperature 2.15 K) during stepwise
warming. The upper (blue and green) data (left axis) are the pressures
P1 and P2 as functions of time; the lower (red) curve (right axis) is
the corresponding temperature.

temperature reached 900 mK, the pressure difference P 1 − P 2
had been reduced by more than 50%, to 120 mbars. We then
held the temperature constant at 900 mK for 13 h, during
which time the pressure difference decreased to 43 mbars
but then stabilized. To further reduce the pressure difference,
we then raised the temperature in steps to 1.5 K, where
the two pressures became equal. When we waited at 1.5 K,
the pressure difference reversed, leaving a small 8 mbar
pressure difference in the opposite direction. The fact that
a pressure difference reappears after the pressures P1 and P2
were equal indicates that the pressure distribution within the
solid was inhomogeneous.

Figure 8 shows the analogous behavior for the 43.4 bar
crystal of Fig. 6. Starting from an initial pressure difference
of 160 mbars, the temperature was raised in steps. Again,
the pressure difference began to decrease above 500 mK. At

FIG. 9. (Color online) Blowup of the initial portion of Fig. 8, for
temperatures up to 0.7 K. Note the break in the pressure (left) axis.

094512-5



A. SUHEL AND J. R. BEAMISH PHYSICAL REVIEW B 84, 094512 (2011)

FIG. 10. (Color online) Arrhenius plot [ln(rate) vs 1/T] of the
annealing rates for the 30.6 bar (open circles) and 43.4 bar (solid
stars) crystals of Figs. 7 and 8. Solid lines are linear fits corresponding
to activation energies of 5.0 and 5.1 K, respectively.

the maximum temperature of 1.3 K, the pressure difference
was only 1 mbar. The rate at which the pressure difference
changed during annealing increased rapidly with temperature.
The slope of P1 vs temperature is a measure of the rate of
annealing and Fig. 9 shows these pressure changes on an
expanded scale.

In Fig. 10 we plot the logarithm of the slope dP 1
dt

vs 1
T

for the
crystals of Figs. 7 and 8. Using the pressure difference P 1 −
P 2 gives essentially the same result but with more scatter
since the P2 data are noisier. The data for each crystal fall on a
straight line in this Arrhenius plot, showing that the annealing
of pressure gradients in the temperature range 0.5 to 1 K is a
thermally activated process. The slopes give similar activation
barriers for the two crystals: 5.0 K for the 30.6 bar crystal and
5.1 K for the 43.4 bar crystal.

In addition to studying the effects of thermal quenching and
annealing on pressure gradients, we also attempted to look for
a T2 defect contribution to the temperature dependence of the
pressure. Figure 11(a) shows the pressures P1 and P2 at low
temperatures for the 43.4 bar crystal of Figs. 6 and 8 during its
initial cooling (following blocked capillary growth). The two
pressures differ by P 2 − P 1 = 43 mbars but their temperature
dependences are similar. Both P1 and P2 are well described by
P (T ) = P0 + aT 2 + bT 4, as shown by plotting the same data
as P−P0

T 2 vs T2 in Fig. 11(b). The slopes of the straight lines (the
coefficients b corresponding to the Debye T 4 pressure term)
are essentially the same for the pressures measured at the two
ends of the cell. However, the intercepts (the magnitude of the
non-Debye T 2 term) seem to be different at the two ends. The
P2 data have a nonzero intercept of about 0.0017 bars/K2,
similar to the value seen in other measurements.22,24 However,
the P1 data from the opposite end of the cell (which is less
noisy) have essentially zero intercept, i.e., P1 is described by
the Debye T4 dependence alone. This was true for almost all
our pressure measurements in different crystals—only one of
our five other crystals showed a nonzero T2 term in pressure
(a T2 term of 0.0018 bars/K2 in a 30.5 bar crystal after partial
melting and thermal quenching).

(a)

(b)

FIG. 11. (Color online) Temperature dependence of the pressure
in the 43.4 bar crystal. (a) Pressures P1 (open green squares) and P2
(solid blue circles) vs temperature. Note the different pressure axes
for P1 and P2. (b) (P − P0)/T 2 vs T2 for P1 and P2, showing the
aT 2 + bT 4 dependence of the pressure.

We also observed unexpected pressure dependences in
some samples. For example, in one crystal the coefficient of
the Debye T4 term changed by a factor of 2 when the crystal
was warmed and then cooled. In another case, during cooling
the pressure P2 increased below 250 mK (by about 3 mbars)
while P1 remained constant at the other end.

IV. DISCUSSION

Pressure gradients in a solid require nonzero shear stresses.
These are limited by the crystal’s yield stress—the maximum
shear stress that can be sustained without plastic flow.
However, the mechanisms by which a crystal can plastically
deform depend on the strain rate dε

dt
, as well as on the

temperature and previous history of the solid, so there is no
single well-defined yield stress for a material. In measurements
like ours, pressure gradients are created or measured over time
scales from seconds to hours, and it is the flow stress at strain
rates dε

dt
∼ 10−2–10−7 s−1 that is relevant.

Many different mechanisms can contribute to plastic defor-
mation. Close to melting, thermally activated vacancy creep
may be important at low strain rates but at lower temperatures
the motion of dislocations32 dominates. For small stresses and
strains, deformation occurs via the bowing out of dislocations
between pinning points. As the stress increases, dislocations
break away from impurity pinning sites, increasing the
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deformation but not creating new dislocations or irreversibly
changing the dislocation network. At even higher stresses,
dislocations bow out further and, depending on the dislocation
density, may intersect other dislocations. If they pass through
each other—a process known as forest cutting—jogs are
produced on each dislocation and can provide additional
pinning points. However, for large plastic deformations the
most important effect is dislocation multiplication, in which
Frank-Read sources create new dislocation loops which
remain after the stress is removed. Irreversible phenomena
like yield drop (reduction of plastic flow stress because of
dislocation multiplication) and work hardening (increased
flow stress due to intersections and pinning in high-density
dislocation networks) are often observed.

The new defects created by plastic deformation can only
be removed by annealing at high temperatures. For example,
the elimination of dislocations via climb (the motion of an
edge dislocation perpendicular to its Burgers vector) requires
mass transport from the bulk lattice to the dislocation. This
normally occurs via vacancy motion and therefore requires
temperatures high enough to create significant numbers of
thermal vacancies. It has been suggested that superflow along
dislocation cores could provide an additional, nonthermal
climb mechanism in solid helium, a phenomenon dubbed
superclimb.33 Climb is an important process for annealing
away edge dislocations and it also allows jogs to move along
a dislocation and disappear, eliminating them as pinning sites.
However, it does not have the same effects on screw dislo-
cations, which are often much harder to anneal away. Plastic
deformation often produces a dense tangle of edge and screw
dislocations, with many intersections and pinning sites, and it
is generally not possible to return the crystal to its original,
low-defect-density state by annealing, even by holding it close
to its melting temperature for an extended period.

Large-scale plastic flow involves dislocations moving in
response to shear stresses in their slip planes. Although dislo-
cations may glide easily in some crystallographic directions,
a general plastic deformation involves motion along several
different slip systems. In hexagonal crystals like helium, a
minimum of five different slip systems are needed to ensure
continuity of the solid when, for example, an object is pulled
through a crystal or a polycrystal is deformed. In such cases,
the flow will be controlled by the slip system with the largest
yield stress. Early experiments34,35 in which a steel ball was
pulled through solid 4He at 32 bars and 1.5 K gave flow
stresses of order 2 to 6 kPa at strain rates of dε

dt
∼ 10−5

–10−3 s−1. If there is liquid present at crystal surfaces or grain
boundaries, continuity constraints are relaxed and deformation
can occur on the easiest slip systems, at lower stresses.
This effect was seen in plastic deformation experiments on
constrained hcp and bcc 4He single crystals near their melting
temperatures.36,37 These gave yield stresses of 20 to 120 kPa
at strain rates of dε

dt
∼ 10−3–10−4 s−1. However, when a thin

layer was melted at the crystals’ sides, deformation occurred
at stresses below the experimental resolution of 3 kPa. This
implies that the pressure differences and stresses which can be
sustained during crystal growth (when there is liquid present)
are smaller than those which can occur in the solid off the
melting curve.

In our experiments, the largest pressure differences we
observed with any liquid in the cell were about 40 mbars and
these were typically much smaller (∼1 mbar) when a crystal
was melted slowly. At the completion of blocked capillary
crystal growth, we saw pressure differences of order 30 mbars
and these persisted to low temperatures unless cooling was
very slow. By rapidly melting some of the solid, followed
by freezing and thermal quenching, we were able to generate
pressure differences up to 240 mbars (Fig. 6). Even larger
pressure differences (330 mbars) were generated by rapidly
heating a lower-pressure crystal into the bcc phase without
any melting (Fig. 5), supporting the idea that the presence of
liquid in the cell limits the maximum pressure gradient that
can be sustained.

An estimate of the yield stress σc of solid helium can be
obtained from the observed pressure differences in the cell. If a
large pressure difference is applied between the opposite ends
of a long cylindrical cell (length L and radius R), the helium
will flow plastically until the force from the pressure difference
�P between the ends of the helium cylinder, πR2�P , is
balanced by the maximum force from the shear stress at the side
walls, 2πRLσc. This gives a maximum pressure difference
(the extrusion pressure) �Pmax = 2 L

R
σc. In our cell, with L

R
=

4.0, the largest pressure difference we were able to generate
(by heating into the bcc phase and quenching) was �Pmax =
330 mbars, which corresponds to a yield stress σc ≈ 4.1 kPa
(41 mbars). The pressure differences generated by blocked
crystal growth or by partial melting and quenching of hcp
crystals were smaller, which could be due to rapid annealing
at high temperatures during the thermal quench or could reflect
a smaller yield stress at the melting curve.

Note that the maximum pressure difference depends on cell
geometry. For example, for a typical fill capillary (with an L/R
ratio of 1000), a yield stress of 4.1 kPa lets the capillary sustain
a pressure difference of about 80 bars (which allows crystals
to be grown using the blocked capillary technique without the
solid helium plug slipping). In recent flow experiments30 in a
cylindrical cell of radius 0.32 cm, a pressure difference was
applied to solid 4He through superfluid in Vycor rods L = 2.06
cm apart. In some cases there was no flow and static pressure
differences up to about 450 mbars were observed, close to
the maximum predicted pressure difference �Pmax = 2 L

R
σc =

530 mbars.
A similar calculation can be done for other geometries.

For a thin annulus (gap t � length L), the maximum
pressure difference is �Pmax = 2L

t
σc. The helium sample

which showed the largest apparent NCRI in TO experiments7

was grown using the blocked capillary method in an annular
oscillator with a narrow gap t = 0.15 mm. When the crystal
was annealed, the pressure dropped by 7 bars, which the
authors suggested could reflect the elimination of defects and
the inflationary pressure associated with them. However, for
the ratio L/t = 73 of this annulus, a yield stress of 4.1 kPa
gives a maximum pressure difference about 6 bars, suggesting
that most of the observed pressure change may be due to
annealing of pressure gradients, not elimination of excess
volume associated with defects.

An analogous calculation can also be done for a disk
geometry, (a cylindrical cell with height H � radius R)
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for which the maximum pressure difference between the
center and the outer edge is �Pmax = 2 R

H
σc. In a cell

used for pressure relaxation studies,24 the ratio R/H = 172
gives a maximum pressure difference of 7 bars, roughly the
same as the 6 bar pressure drop observed when a crystal
was annealed in this cell. In a cell used for plastic defor-
mation pressure studies,38 R/H = 35, giving a maximum
pressure difference of about 3 bars. By applying an excess
pressure greater than 5 bars at the center of the cell, the authors
were able to deform the sample and produce an increase in the
glassy T 2 term in the temperature dependence of the pressure.
However, applied pressures of less than 3 bars did not show
such an effect, which might be anticipated since these pressures
would not generate stresses large enough to produce plastic
flow.

All the experiments discussed above appear to be consistent
with a yield stress of order 4000 Pa (40 mbars). This is
much larger than the stress at which the shear modulus shows
amplitude dependence10 associated with the breakaway of
dislocations from 3He impurity pinning sites (∼8 Pa). It is
also larger than the 700 Pa acoustic stresses which changed
the shear modulus9 of solid 4He. However, those changes
were completely reversed by warming the crystal to 600 mK
while the pressure gradients we created by thermal quenching
annealed much more slowly and could only be eliminated at
temperatures above 1 K.

The pressure gradient annealing began at 500 mK and
the annealing rate increased rapidly with temperature. As
shown in Fig. 10, the annealing rate was thermally activated
with an energy barrier of about 5 K. This is much larger
than the 28 mK activation energy found24 for pressure
relaxation at temperatures below 300 mK. However, the total
pressure change associated with that relaxation was only about
0.1 mbars and so would not have been resolvable in our
experiments. The 5 K energy barrier is also much larger
than the 0.7 K energy for unpinning of dislocations from
3He impurities,11 which was measured at much lower stresses
(<0.2 Pa). It appears to be associated with the annealing of
defects created by plastic deformation during crystal growth
or subsequent thermal quenching. As discussed above, these
could be jogs created on existing dislocations when they
intersect with other dislocations or they could be new edge
and screw dislocations created by the deformation. In the
case of jogs, thermal vacancies can allow them to move along
dislocations and, for example, annihilate with antijogs. Since
jog motion is nonconservative, i.e., involves mass transport,
the relevant activation energy is that of mobile vacancies.

Nuclear magnetic resonance and other measurements39 give
experimental values of the activation energy for vacancy
motion in helium which range from about 8 to 16 K at pressures
near melting. Recent computations40 give a value of 13 K at
the melting density. The observed 5 K activation energy is
somewhat smaller than these values, but activation energies for
motion of vacancies along dislocation cores (pipe diffusion)
are often significantly smaller than the bulk values. The climb
of dislocations due to jogs moving along them is an important
mechanism in annealing, particularly of edge dislocations. The
fact that the activated pressure relaxation we observe between
500 mK and 1 K does not completely eliminate pressure
gradients may reflect the greater stability of screw dislocations
or high-density dislocation tangles and grain boundaries. At
higher temperatures, other processes assist in annealing so that
the pressure gradients become much smaller, but there is no
reason to believe that all the dislocations and other defects
have been eliminated.

The non-Debye behavior and other unexpected effects we
observed in the temperature dependence of the pressure, P(T),
may simply reflect annealing of pressure gradients. From
Figs. 7 to 9 it is obvious that significant time-dependent
pressure changes occur above 500 mK. These would affect
the apparent Debye T 4 term which is extracted from P(T)
in the range 0.4 to 0.7 K. It is clear that it is difficult
to extract reliable information about the thermodynamic
temperature dependence of the pressure, P(T), in the presence
of pressure gradients and annealing. Our cell is quite an open
one—pressure gradients would be even bigger in annular or
pancake-shaped cells with larger aspect ratios.

Annealing crystals removes most of the pressure gradients
but would also eliminate many of the defects presumed
to be responsible for the T2 term in P(T). It is possible
that the thermodynamic temperature dependence of P could
be determined in the presence of pressure gradients by
restricting the measurements to temperatures well below
500 mK, where the thermally activated annealing we observed
is negligible. However, this puts more stringent requirements
on the resolution of the pressure measurements and, given the
relaxation observed by Rittner and Reppy below 300 mK, this
may still not be possible. Measurements made with a single
pressure gauge should be interpreted with caution, especially
if the samples were grown or deformed in such a way as to
produce large pressure gradients.
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