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We use a renormalized mean-field theory to investigate the superconducting properties of underdoped cuprates
embedded with overdoped or metallic regions that carry excess dopants. The overdoped regions are considered,
within two different models, first as stripes of mesoscopic size larger than the coherence length and then as
point impurities. In the former case we compute the temperature-dependent superfluid stiffness by solving
Bogoliubov-de Gennes equations within the slave boson mean-field theory. We average over stripes of different
orientations to obtain an isotropic result. To compute the superfluid stiffness in the model with point impurities we
resort to a diagrammatic expansion in the impurity concentration (to first order) and their strength (up to second
order). We find analytic expressions for the disorder-averaged superfluid stiffness and the critical temperature.
For both types of inhomogeneities we find increased superfluid stiffness. Remarkably, in the case of microscopic
impurities we find that the maximal Tc can be significantly increased compared to Tc at optimal doping of a pure
system.
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I. INTRODUCTION

Local probes of the cuprate superconductors reveal sig-
natures of electronic inhomogeneity both at the microscopic
scales of lattice constants and at somewhat larger mesoscopic
scales.1–7 The inhomogeneity is generally seen as separated
regions with either a large or a small gap, which have been
attributed to local variations in the doping level with respect
to the half-filled Mott insulator.7

Experiments which probe global properties indicate that
the average doping level has two direct effects on the
superconducting properties. First, the pairing gap is seen
to decrease with hole doping away from half filling.8,9

Second, the superfluid stiffness extracted from penetration
depth measurements increases with doping.10,11 This interplay
between two energy scales relevant to superconductivity is
thought to give rise to the dome-shaped dependence of Tc on
hole doping.12 Doping inhomogeneity is therefore expected to
lead to spatial modulations of the pairing amplitude along with
variations of the charge-carrier density.

In this paper we shall investigate how inhomogeneity in the
doping level affects global superconducting properties of the
material. Specifically we address the effect of inhomogeneity
on the temperature-dependent thermodynamic stiffness and,
ultimately, on the transition temperature. To this end we
employ a semiphenomenological model of a d-wave super-
conductor that takes into account the the proximity to the
Mott insulator through a strong on-site repulsion. Furthermore,
we consider various scales of inhomogeneities, ranging from
the microscopic scale of a lattice constant to mesoscopic
scales, somewhat larger than the coherence length (see Fig. 1).
An important question for practical applications is whether
the transition temperature can be enhanced significantly by
judicious design of the inhomogeneity. The idea is to gain from
an optimal combination of large pairing gap in the low doping
regions and large carrier density in the highly doped ones.13

Enhancement of Tc due to a similar mechanism was
predicted in cuprate heterostructures composed of an

underdoped superconducting layer coupled to an overdoped
metallic one.14–16 The underdoped layer induces a proximity
gap in the overdoped layer, which then contributes to the zero-
temperature phase stiffness of the system and considerably
enhances it compared with the suppressed stiffness of the
underdoped layer. On the other hand, the d-wave proximity
gap which is induced on the metallic layer is small, and
thus results in a sharp reduction of the stiffness with the
temperature.16 We found in Ref. 16 that the combined effect
can in principle lead to enhancement of Tc compared with an
optimally doped layer. However, to attain such enhancement
the coupling between layers needs to be much larger than
the realistic coupling between the copper-oxide planes. It
is therefore unlikely that these simplified models provide a
satisfactory explanation for the Tc enhancement observed in
various experiments on heterostructures.17–19 However, if there
is doping inhomogeneity within a plane, the coupling between
the overdoped and underdoped regions would naturally be
large since they are connected by the in-plane rather than the
c-axis tunneling. As we shall see, this situation can indeed
give rise to enhancement of the maximal critical temperature
compared to a pure system.

Specific kinds of in-plane inhomogeneity and their effect
on superconductivity have been previously investigated the-
oretically. For example, a weak-coupling BCS theory of the
attractive Hubbard model showed that Tc can be enhanced
by periodic modulations of the weak attraction.20 A density
matrix renormalization group (DMRG) study of the repulsive
Hubbard model on a two-leg ladder showed that modulations
of the hopping matrix element along the ladder can enhance the
pairing correlations and thereby possibly increase the Tc of a
coupled ladder system.21 A direct study of the two-dimensional
Hubbard model using contractor renormalization (CORE) also
indicated that there is an optimal modulation of the hopping
matrix element, which maximizes the pairing correlations.22

Finally, dynamical mean-field and cluster Monte Carlo calcu-
lations find an increased pairing gap, and possibly Tc, in a state
with charge modulation near 1/8 doping.23,24
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FIG. 1. (Color online) (a) An illustration of a mesoscopic-scale
inhomogeneous layer. The typical size of the metallic regions
is equal or larger than the superconducting coherence length.
(b) Microscopic-scale inhomogeneous layer. The metallic regions
are pointlike impurities.

The above studies focus on the effect of periodic commen-
surate charge modulations on the pairing order parameter. We
complement and extend the analysis in several ways. First, we
use an effective theory, amenable to analytic treatment, that
allows to identify the physical origin of the various effects.
Second, we compute the temperature-dependent superfluid
stiffness, which at least in the underdoped cuprates is a
more complete measure of superconductivity than the pairing
amplitude and allows us to directly estimate Tc. Third, in
addition to the stripe model treated in previous work, we also
consider random doping variations, which appear to be the
more generic situation in samples of doping above 1/8. Both
for the stripe model and the random inhomogeneity we assess
the possibility of enhancing Tc by tuning the magnitude of
characteristic doping modulations and their length scale.

We implement the inhomogeneity in the form of inclusions
of a highly overdoped phase, already in the metallic regime,
embedded in a background of underdoped or optimally doped
material. The case of mesoscopic inhomogeneity, where the
metallic inclusions are of the size of the superconducting
coherence length or larger is sketched in Fig. 1(a). This is
treated within an effective stripe model of the metallic regions,
where we average over stripe orientations to obtain an isotropic
macroscopic stiffness. Another case we consider is where the
metallic regions are much smaller than the coherence length
and are modeled as point impurities. This case is depicted in
Fig. 1(b).

In both cases we include the crucial effects of strong
Coulomb repulsion and of the d-wave symmetry of the order
parameter. The former is the reason for the low superfluid
density ρs at low doping, while the second is responsible for
the linear suppression of ρs with T at low temperatures.25

These effects are taken into account within a slave boson
mean-field theory of the t-J model.26,27 Furthermore, we
include Fermi-liquid-like corrections phenomenologically to
the description of low-energy quasiparticles.28–30

Regardless of the model for the metallic regions, we
find an increase of the zero-temperature stiffness. In the
case of microscopic impurities we also find and higher
critical temperature compared to the pure system with the
same average doping, for a wide range of doping levels.
Furthermore, in this case we predict that a higher Tc can be
attained even compared to the maximal Tc at optimal doping
of the pure system.

The paper is structured as follows: In Sec. II we give a
general overview of the models used, of the assumptions that

underlie our choice of models, and of the main results obtained
in the different regimes. Section III gives a detailed treatment
of a model representing mesoscopic inhomogeneity, while in
Sec. IV we consider a model with point impurities. Section V
is a summary and discussion of the results.

II. OVERVIEW

In this section we introduce the framework for treating the
inhomogeneous cuprate layer within a slave boson mean-field
theory. We describe the essential ingredients of the theory for
the case of mesoscopic inhomogeneity as well as for point
impurities. Finally, we summarize the main results that are
derived in detail in later sections.

In order to describe doping inhomogeneity in cuprate
materials we make use of models that can account for the
effects of doping of the Mott-insulating parent compound. A
simple theoretical framework that captures many of the impor-
tant effects is the renormalized mean-field theory (RMFT)26

or slave boson mean-field theory (SBMFT)27 of the t-J
Hamiltonian

HtJ = −PG

∑
ijσ

tij c
†
iσ cjσPG +

∑
〈ij〉

Jij

(
SiSj − 1

4
ninj

)
.

(1)

Here Jij = 4t2
ij /U is the superexchange interaction, Si =

1
2c

†
isσss ′cis ′ , and PG = �i(1 − ni↑ni↓) implements the

Gutzwiller constraint, which prohibits double occupancy of
sites.

The standard mean-field treatment of the t-J model
includes two approximations. The first is to account for the
projection only through renormalization of the hopping tij →
gij tij , while working in the full rather than the projected Hilbert
space.26 The second approximation consists of a standard
decoupling of the quartic term in both the Fock and BCS
channels. The resulting mean-field Hamiltonian is given by

HMF = −
∑
i,j,σ

(
gt

ij t + χij

)
c
†
iσ cjσ −

∑
i,s

μic
†
iσ ciσ

+
∑
〈ij〉

�ijc
†
i↑c

†
j↓ + H.c., (2)

where χij = 3Jij

∑
σ 〈c†iσ cjσ 〉/4, �ij = 3Jij 〈c†i↑c

†
j↓ − c

†
i↓

c
†
j↑〉/4 and gij are doping-dependent renormalization fac-

tors that account for the effect of the no-double-occupancy
constraint. In a uniform system of doping p, g = 2p/(1 +
p), χij = χ for all nearest-neighboring i,j , and �i,i+x̂ =
−�i,i+ŷ = � such that the pairing has a dx2−y2 symmetry.

The mean-field theory of the t-J model captures the
crucial fact that the zero-temperature superfluid stiffness of
underdoped cuprates scales linearly with the hole doping
ρ0 ∝ p.10,25 It also accounts for the d-wave symmetry of the
gap that gives rise to a low-energy quasiparticle spectrum
of the form Ek = [(vf k||)2 + (v�k⊥)2]1/2. This form of
the spectrum explains the observed linear reduction of the
superfluid stiffness with temperature, ρs(T ) = ρ0 − b0T with
b0 = 2 log 2(2

√
2Zt)2/(πvf v�).25 However, the mean-field

theory does not give the correct value of Z. This can be
viewed as a Fermi-liquid correction that may be strongly
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renormalized at low energies due to quasiparticle interactions
not included in the mean-field theory.28–30 Therefore, Z is best
taken as a phenomenological parameter to be extracted from
experiments.29,31

In this paper we extend the analysis of the stiffness and
the critical temperature to the case of an inhomogeneous
system. Specifically, we describe an underdoped system in
the bulk (0.1 < p1 < 0.15) embedded with highly overdoped
metallic regions. We consider two regimes of inhomogeneity
as illustrated in Fig. 1. First is when the metallic regions are
of the order or larger than the superconducting coherence
length, and second is when they are of the order of one lattice
constant. As discussed in the Introduction, a pertinent question
we wish to address is whether such inhomogeneity can lead to
enhanced Tc.

A. Mesoscopic inhomogeneity

In the first model, described in Sec. III, we assume
a two-dimensional (2D) mixture of a superconducting
underdoped phase (of doping p1) and an extremely overdoped
metallic phase (of doping p2 > 0.3). The doping level
varies considerably only across a length scale of the order
of the coherence length ξ ∼ vf /�, which is typically
approximately five lattice spacings, such that the 2D regions
are of intermediate size �ξ as depicted in Fig. 1(a). This
scenario is reminiscent of various experiments that find gap
variations on a similar scale, of 5–10 nm.1–4,7

We model this system as a mixture of striped domains,
each one with alternating underdoped and overdoped stripes
along the x or y direction, such that on a macroscopic scale
the system is fourfold rotationally invariant [see Fig. 2(a)].
This allows us to obtain an expression for the superfluid
stiffness of the entire system. The superconducting stripes
are described by the t-J Hamiltonian and the metallic stripes
are modeled by free fermions. We vary the widths of the
stripes in order to explore the superconducting properties
in various geometries. To calculate the critical temperature
of the inhomogeneous mixture, we solve self-consistently
the Bogoliubov-de Gennes equations for Hamiltonian (2),
allowing for position-dependent gij , �ij , and χij . We derive
a general formula for the superfluid stiffness ρs(T ) of a
striped superconductor in terms of response kernels that can
be directly calculated from the Bogoliubov-de Gennes solution

[see Eqs. (6) and (10)]. We then use the Kosterlitz-Thouless cri-
terion ρs(Tc) = 2Tc/π to determine Tc of the mixed system.32

We show that there exist optimal configurations which
allow for an enhanced zero-temperature superfluid stiffness
in the inhomogeneously doped layer, compared with the
homogeneous superconducting one. This is a consequence of
the proximity effect that leads to a gap in the metallic regions.
The metallic regions, having a large density of charge carriers,
can then contribute significantly to the superfluid stiffness
of the inhomogeneous layer at T = 0. On the other hand,
since the proximity gap is much smaller than the original
superconducting gap, the reduction of the stiffness at finite
temperature is sharper than in the uniform superconductor.
It therefore does not immediately follow that the interplay of
these two effects can lead to an enhancement of the critical
temperature. Previously we found that such an enhancement
is possible in a bilayer of underdoped and overdoped cuprates,
under appropriate conditions.16 In the present scenario,
however, we find that Tc of the inhomogeneously doped
layer is lower than the one of a homogeneous underdoped
superconductor of doping p1. The reason is that already at
T = 0 the enhancement of the stiffness due to enlarged carrier
density is counteracted to a large extent by a significant
paramagnetic suppression of the stiffness which is inevitable
in inhomogeneous superconductors. Consequently, the zero-
temperature stiffness is enhanced compared with the uniform
case, but not enough to allow for an enhancement of Tc.

Nonetheless, we find that the critical temperature of the
system increases with the reduction of the relative width of
the metallic stripes. This allows for a large proximity gap in
the metallic regions, manifested in a relatively small reduction
of the stiffness at finite temperature. In order to maximize the
proximity effect, but at the same time allow for a significant
contribution of carriers from the metallic region, an optimal
configuration should have small but relatively dense metallic
regions. In the following we consider the effect of small
metallic regions.

B. Microscopic inhomogeneity

In this model, described in Sec. IV we assume micro-
scopic overdoped regions (doping p2) which are placed in
a low doping superconducting background (doping p1) [see
Fig. 1(b)]. The microscopic overdoped regions are modeled as
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−Δy

M M MSC SC
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FIG. 2. (Color online) (a) A model of the inhomogeneous layer as an array of striped domains, which on average is macroscopically
fourfold rotationally invariant. (b) The self-consistent gap profile, solved for J = t/3, x = 0.1, d = 3a. SC and M denote the underdoped and
overdoped regions, respectively.
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single-site impurities with zero or very weak local Hubbard
repulsion (U ∼ 0), which induces modified hopping and
pairing amplitudes along their neighboring bonds, as depicted
in Fig. 4. The hopping amplitude along these bonds is the bare
t rather than the renormalized value of SBMFT, and the local
pairing strength there is suppressed to zero.

In the presence of the bond disorder we compute the
temperature-dependent superfluid stiffness using a perturba-
tive expansion to second order in the impurity strength for
disorder averaging (second-order Born approximation). Then
we determine the transition temperature using the Kosterlitz-
Thouless criterion as before.

Since the variations in doping generate unconventional
bond disorder, the calculation bears several important dif-
ferences from the standard impurity averaging. The most
important difference is that the bond disorder introduces local
modulations in the current operator, thus renormalizing the
coupling to the external vector potential. As a result, the
superfluid response obtains vertex corrections which have no
counterpart in standard (on-site) impurity averaging but play a
crucial role in our case. One important effect of these correc-
tions is to allow for an enhancement of the zero-temperature
diamagnetic stiffness of the disordered system compared with
the pure one. A second effect of the vertex corrections is
to introduce a paramagnetic reduction of the stiffness at
zero temperature, similarly to the mesoscopic inhomogeneous
scenario. In addition, the disorder introduces self-energy
corrections which amount to an antiproximity effect that acts
to reduce the average pairing gap and contributes to the
suppression of the stiffness at finite temperature.

The net effect that we find is an enhancement of the
superfluid stiffness and a concomitant increase in the critical
temperature for a given bulk doping level p1. Interestingly,
we even find an overall enhancement of the maximal Tc,
that is at optimal doping, compared to the maximal Tc of
the homogeneous system.

III. MESOSCOPIC SCALE INHOMOGENEITY

A. The model

In this section we consider a stripe model. The inhomo-
geneity is of mesoscopic scale in the sense that the width
of the stripes is of the order or somewhat larger than the
coherence length associated with the superconducting regions.
The superfluid response of such a striped system is of course
anisotropic. However we envision that it becomes isotropic on
macroscopic scales due to mixing of striped domains with
random orientations, as sketched in Fig. 2(a). The doping
level of the stripes alternates between p1 in underdoped
superconducting (SC) stripes of width l, and p2 in metallic
(M) stripes of width d.

As the Hamiltonian of a single domain we take the t-J
model (1) with PG that eliminates double occupancy of sites
in the superconducting stripes, but does not affect the metallic
stripes. The magnetic exchange coupling is Jij = J in the
superconducting stripes and it vanishes in the metallic stripes.

We treat the space-dependent projection and exchange
interaction within SBMFT.26,27 The resulting Hamiltonian is
of the form (2), with space-dependent μi , gt

ij , χij , and �ij .

The electrochemical potential μi is determined such that the
doping levels of the superconducting and the metallic regions
are p1 and p2, respectively. Due to the spatial variations in
doping, the renormalization of the hopping also varies in
space and equals gt

ij = 2p1/(p1 + 1) in the superconducting
stripes and gt

ij = 1 in the metallic stripes, while the tunneling
at the interface between the two regions is renormalized by
gt

ij = √
2p1/(p1 + 1).33

Given all the parameters of the mean-field model, the fields
χij and �ij can now be determined by the self-consistency
conditions:

χij = 3Jij

4

∑
σ

〈c†iσ cjσ 〉,
(3)

�ij = 3Jij

4
〈c†i↑c

†
j↓ − c

†
i↓c

†
j↑〉.

An example of the resulting profile of the pairing amplitudes
is plotted in Fig. 2(b), where �x and �y denote the pairing
amplitudes on bonds along the x and the y directions,
respectively. Because the pairing amplitude in the metallic
regions is nonzero, these regions contribute to the superfluid
stiffness at low temperatures.

B. Calculation of the superfluid stiffness

In a striped system the superfluid response depends on the
direction of the applied phase twist. However, we assume that
the system consists of many striped domains with random
orientations along the principal axes. Under this assumption
the superfluid response is homogeneous on large scales. It was
shown in Ref. 34 that the superfluid stiffness of the mixed
domains is given by the geometric mean of the x and y

components of the stiffness of a single domain ρs = √
KxxKyy .

Here Kaa (a = x,y) are the diagonal components of the
response tensor

Kab = Ia

�θb

, (4)

where �θb is the static phase difference applied across the
system in the b̂ direction and Ia = ∫

Jadsa is the total current
measured in the â direction.

In an inhomogeneous system, we express the stiffness
tensor using the microscopic response kernel κab(r,r ′) defined
through

Ja(r,t) =
∫ t

−∞
dr ′ dt ′ κab(r,r ′; t,t ′)∂bθ (r ′; t ′). (5)

The response kernel can then be calculated using the standard
Kubo formalism. In the y direction, parallel to the stripes, the
stiffness Kyy = ∫

dx Jy/�θy is simply an algebraic sum of
the response kernels along the x direction

Kyy =
∫

dx

∫
dx ′ κyy(x,x ′,qy = 0), (6)

where we used the uniformity along the y direction to express
it in terms of the qy = 0 Fourier component of the response
kernel.

To derive an analogous relation between Kxx and κxx(x,x ′),
we follow the arguments presented in Ref. 34. It is convenient
to use the lattice formulation and express all convolution
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integrals as matrix products. The response kernel is then
defined by (summation over repeating indices implied)

Ja(i) = κab(ij )∂bθ (j ), (7)

where the y dependence is suppressed and we denote by i,j

the position in the x direction only.
The static current is a divergenceless field ∇ · J = 0 and

therefore derived from a potential Ja(i) = εab∂bφ(i). Plugging
this back into (7) we obtain

εab∂bφ(i) = κab(ij )∂bθ (j ). (8)

We can now derive a second relation between φ and θ if
we multiply by εκ−1 from the left-hand side. Defining κD

ab =
εacκ

−1
cd εdb we arrive at

κD
ab(ji)∂bφ(i) = εab∂bθ (j ). (9)

Equations (8) and (9) establish a duality relation θ ↔ φ and
κ ↔ κD . We make use of this duality in the calculation of Kxx .
The response Kxx is obtained by applying a phase difference
�θx along the x direction and measure the resulting current
Jx , equivalent to a difference in φ in the transverse direction
�φy = ∫

dy Jx . The response is then Kxx = �φy/�θx .
Using Eq. (9) we deduce that ∂xθ = −κD

yy∂yφ. Integrating
this relation over x and y, and exploiting the transla-
tion invariance in the y direction, we obtain �θx/�φy =
− ∫

dx dx ′ κD
yy = K−1

xx . This gives the result

Kxx[κ] = 1∫
dx

∫
dx ′ κ−1

xx (x,x ′)
. (10)

When the stripes are macroscopic we can take the response
functions to be translationally invariant within a stripe. Then
(10) reduces to the well-known fact that the stiffness of
macroscopic objects in series adds as resistors in parallel.

The superfluid stiffness is now expressed in terms of
the local response kernel which can be computed using the
standard Kubo formalism. The diamagnetic contribution of
the response to a transverse vector potential is

κdia
aa (x,x ′,qy → 0) = e2δxx ′ 〈−Ka(x,qy → 0)〉. (11)

where Ka(j ) = −t(j )
∑

σ (c†j+x̂a ,σ
cj,σ + c

†
j,σ cj+x̂a ,σ ) is the

local kinetic energy operator. The paramagnetic contribution
is

κ
para
ab (x,x ′,qy,iωn)

= −
∫ β

0
dτ eiωnτ

〈
Tτ j

p
a (x,qy,τ )jp

b (x ′,−qy,0)
〉
, (12)

in the limit ω = 0, qy → 0. Here j
p
a is the paramagnetic current

operator:

jp
a (j ) = it(j )

∑
σ

(c†j+x̂a ,σ
cj,σ − c

†
j,σ cj+x̂a ,σ ). (13)

In order to calculate (11) and (12) we diagonalize the
Hamiltonian using the Bogoliubov transformation

c
†
j↑(ky) =

∑
α

u∗
α(j,ky)γ †

α (ky),

(14)
cj↓(−ky) =

∑
α

v∗
α(j,ky)γ †

α (ky).

We then solve the self-consistent equations (3) and express
Ka(j ) and j

p
a in the new basis. As an example, the x component

of the static paramagnetic response kernel is

κpara
xx (j,j ′,qy) =

∑
kyαβ

J (x)
αβ (j,ky,qy)J (x)

βα (j ′,ky,−qy)

×P
[
f (Eα,ky

) − f (Eβ,ky−qy
)

Eα,ky
− Eβ,ky−qy

]
, (15)

whereP denotes the principal part, Eα,ky
are the eigenenergies,

f (ε) = [1 + eβε]−1 is the Fermi-Dirac distribution, and

J (x)
αβ (j,k,q) ≡ it(j )[u∗

α(j + 1,k)uβ (j,k − q)

+ v∗
α(j + 1,k)vβ(j,k − q)] + c.c.

To solve the periodic problem we introduce an additional
superlattice momentum, whose index is suppressed here for
simplicity.

Finally, the superfluid stiffness ρs(T ) = √
KxxKyy is com-

puted from the response kernels κaa(x,x ′) = κdia
aa (x,x ′) +

κ
para
aa (x,x ′) using Eqs. (6) and (10).

C. Results and discussion

We first discuss the superfluid stiffness at zero temperature,
and then turn to an analysis of the temperature dependence of
the stiffness, in order to estimate the critical temperature of the
striped system.

The superfluid stiffness at zero temperature ρs(T = 0) is
plotted in Fig. 3(b) as a function of the relative width of
the metallic stripes ζ = d/(d + l) at fixed width l + d =
20a (a is the lattice spacing). The doping levels of the
superconducting and the metallic stripes are p1 = 0.1 and
p2 = 0.35, respectively. Note the enhancement of the stiffness
compared with the uniform superconductor ρSC which is
maximized for ζ ∼ 0.5.

The enhancement of the zero-temperature stiffness and the
optimal volume fraction ζ are determined by the interplay
of two effects. First, the metallic regions are gapped by
the proximity effect, and contribute their large number of
carriers to the diamagnetic superfluid density Kdia

yy which
increases with ζ . However, this increase is partially countered
by a zero-temperature paramagnetic term K

para
yy special to

inhomogeneous superconductors. A similar effect was noted
by us in a bilayer heterostructure.16

To see if the moderate net increase of the zero-temperature
stiffness will facilitate enhancement of the transition tem-
perature, we compute the full temperature dependence of
the stiffness. As an example, Fig. 3(a) shows the result
for a specific ratio d/(d + l) = 3/20 with p1 = 0.1 and
p2 = 0.35. The macroscopic stiffness ρs is seen to decrease
approximately linearly with temperature, as in a uniform
d-wave superconductor, but with a larger slope dρs/dT .
As a result, the transition temperature, determined using
the Kosterlitz-Thouless criterion ρs(Tc) = 2Tc/π , is found to
be lower in the inhomogeneous layer despite the increased
stiffness at zero temperature. This remains the case in all
possible stripe geometries, as shown in Fig. 3(c).

The slope dρs/dT is affected by two main factors: The first
is the density of states (DOS) of low-energy quasiparticles
that carry the paramagnetic current, and the second is the
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FIG. 3. (Color online) (a) Temperature-dependent superfluid stiffness of a striped vs a homogeneous superconducting layer. In this example
the width of the metallic stripes (doping p2 = 0.35) in this example is d = 3 and that of the superconducting stripes (J = t/3 and doping
p1 = 0.1) is l = 17 (in lattice constants). The critical temperature estimated from the Kosterlitz-Thouless criterion is seen to be higher in the
homogeneous system (circle marks). (b) Zero-temperature stiffness vs the relative size of the metallic segments d/L for a fixed L = 20. The
diamagnetic (dashed) and paramagnetic (dotted-dashed) contributions to the stiffness Kyy are plotted for comparison. All results are normalized
by the zero-temperature stiffness ρSC of the uniform superconductor. (c) Critical temperature, normalized by the uniform value, vs d/L for
the same parameters as in (b) and different unit cells L (in units of the lattice spacing a). (d) The density of states for a system with the same
parameters as (a). At low energies the density of states (DOS) of the striped system (black) is identical to the DOS of a uniform underdoped
superconductor of the same size (gray). The dashed line denotes the calculated slope dν/dE at E = 0 for the uniform superconductor.

effective charge of these quasiparticle (or the effective current
renormalization). The DOS of the system is plotted in Fig. 3(d).
Below a threshold energy of E ∼ 0.05t the DOS is the
same as in the uniform superconductor of p1 = 0.1. This
agrees with experimental results in inhomogeneous cuprate
superconductors.3 Note that the limit of very narrow metallic
stripes (d = 3a) preserves the low-energy DOS up to a
relatively high energy, compared with the critical temperature.
As the metallic stripes get wider, there are more low-energy
states that contribute to the reduction of the stiffness with the
temperature.

Despite the fact that the low-energy DOS is the same
as in the uniform superconductor, the slope |dρs/dT | is
still larger than in the uniform case. This is a consequence
of the difference in the effective charge of quasiparticles
in the two systems: In the underdoped superconducting regions
the quasiparticle charge is renormalized down by a factor of
gt = 2p1/(1 + p1), whereas in the metallic regions there is no
such renormalization and the current is carried by electrons.
As a result, at finite temperature the stiffness reduction in
the inhomogeneous system is steeper than in the uniform
underdoped superconductor.

Here we should note again that, in general, the renormal-
ization of the current carried by a quasiparticle that enters the
low-temperature dependence of the stiffness is a Fermi-liquid
parameter that may be renormalized compared to the SBMFT
value of gt = 2p1/(1 + p1). Indeed, measurements of the
temperature-dependent stiffness give a renormalization factor
that is independent of doping over a wide range of doping,
in contradiction to the mean-field prediction. However, for
an inhomogeneous system there is no unambiguous way to
replace the mean-field value of the current renormalization by

a single phenomenological parameter. Moreover, the existence
of a length scale d of the superconducting regions may
introduce a cutoff that prevents this parameter from flowing
far from its mean-field value at low energies.

The stripe model shows that doping inhomogeneity on a
mesoscopic scale can lead to an increased superfluid stiffness
at zero temperature. This is a consequence of a proximity
gap that opens in the metallic stripes, which then contribute
their high carrier density to the stiffness. On the other hand,
the metallic stripes also give rise to low-energy states that
hasten the reduction of stiffness with temperature. In addition,
there is a paramagnetic reduction of the stiffness even at
zero temperature due to the impurities. For these reasons
the transition temperature of the striped system is found to
be always lower than that of the homogeneous system. The
highest Tc is obtained for the narrowest metallic stripes because
then the proximity coupling to the bulk is high and the Andreev
bound states are only slightly below the gap. It is therefore
tempting to consider the case of even smaller metallic regions
by reducing the length of the stripes, in addition to their width,
to a microscopic scale. In the following section we examine a
model that takes a step in this direction.

IV. MICROSCOPIC SCALE INHOMOGENEITY

A. The model

In this section we consider a scenario in which the metallic
regions embedded in the underdoped superconductor are
nearly pointlike. We model these metallic impurities as cross
vertices of the square lattice (see Fig. 4) on which the average
doping p2 is higher than the bulk average p1. The effective
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FIG. 4. (Color online) Doping inhomogeneity on a microscopic
scale. An illustration of the model. Nearest-neighboring bonds to the
impurity sites (solid lines) are characterized by enhanced hopping
amplitude gt + δt and reduced pairing �0 + δ�, with respect to the
superconducting background of gt and �0, respectively.

hopping matrix elements and the pairing amplitudes on these
links naturally take different values than the bulk. Specifically,
in the mean-field model of Eq. (2) the parameters gt

ij , �ij , and
χij take a different value on the impurity bonds.

We analyze two scenarios: In the first, the impurities are
metallic, with doping p2 > 0.3, such that on the impurity
bonds gij = 1 and �ij = χij = 0. In the other scenario the
excess doping on the impurity sites p2 − p1 is small, leading
to gij = g(p2) and �ij = �(p2) with the doping dependence
of SBMFT. In this case we assume that χ , which has a very
weak doping dependence, is uniform throughout the system.

The Hamiltonian H = H0 + Himp consists of a uniform part
and an impurity contribution. Written in momentum space, the
uniform Hamiltonian is the Fourier transform of (2),

H0 =
∑

k

�
†
k(ξkσ3 + �kσ1)�k. (16)

Here �
†
k = {c†k↑,c−k↓}, σa are Pauli matrices, ξk =

−2teff(cos kx + cos ky) − μ, and �k = �0(cos kx − cos ky),
with teff = g(p1)t + χ . The impurity Hamiltonian is

Himp =
∑
kk′

�
†
kρk′−k [Ukk′σ3 + Vkk′σ1] �k′ , (17)

where

Ukk′ = −2δt (cos kx + cos ky + cos k′
x + cos k′

y),

Vkk′ = δ�(cos kx − cos ky + cos k′
x − cos k′

y), (18)

ρ̂k′−k =
∑

α

e−i(k′−k)rα .

Here δ� = �(p2) − �(p1), and {rα} are the impurity sites. The
excess hopping at the impurity sites is δt = teff(p2) − teff(p1).
In the case of metallic impurities we set teff(p2) = t .

The above terms result from the shift in doping level from
p1 to p2 near the impurity. We should in principle include
also the direct impurity potential, which caused the change
in hole concentration. Such a potential that acts locally on
the impurity as U (r) = U0δ(r − rα) can be regarded as a

k-independent contribution to Ukk′ . The magnitude of this
term can be estimated from the observed change in hole
concentration through U0 � (p2 − p1)/κ , where κ is the local
compressibility. We omit this term from the calculations
described below. Then, at the end of Sec. IV C, we quantify
the contribution of the direct impurity potential and explain
why it can be neglected.

Our goal is to compute the temperature-dependent super-
fluid stiffness and estimate the transition temperature of the
inhomogeneous layer compared to a uniform layer. To this
end we use the Born approximation to perform the disorder
average. This is strictly valid in the limit of dilute uncorrelated
impurities and weak disorder. We expand to first order in the
impurity concentration ni and to second order in the strength
of a single impurity δt/teff and δ�/�0. In practice, we will
allow δ�/�0 to be close to −1, which is the case when the
overdoped inclusions are already in or close to the metallic
regime.

B. Calculation of the superfluid stiffness

The stiffness is the linear response of the system to an
externally applied vector potential A(r). In order to calculate
it in the disordered system, it is convenient to resort to
the real-space Hamiltonian (2) and include a vector poten-
tial through a Peierls substitution, gij t → gij t exp [ieAij ] =
gij t exp [ieAx(ri)] in the case of a vector potential in the x

direction. For the linear response calculation we expand the
Hamiltonian to second order in Ax ,35

H (Ax) = H (0) −
∑

r

[
ejx(r)Ax(r) + e2

2
Kx(r)A2

x(r)

]
, (19)

with

jx(r) = i
∑
r,σ

tx(r)(c†r+x,σ cr,σ − c†r,σ cr+x,σ ),

Kx(r) = −
∑
r,σ

tx(r)(c†r+x,σ cr,σ + c†r,σ cr+x,σ ).

Here tx(r) = g(p1)t + δc
t

∑
α δ(r − rα) is the coupling to the

external vector potential, in the presence of the modified
bonds around sites rα . The excess local current on the
impurity sites is δc

t = t[g(p2) − g(p1)]. In the case of highly
overdoped impurities (p2 > 0.3) we take g(p2) = 1. Note that
this impurity contribution is different from δt that appears in
the impurity Hamiltonian (17). The reason is that the external
vector potential couples only to the hopping gij t , and not to
the Fock term proportional to χ , which originated from the
magnetic exchange interaction.

The superfluid stiffness is now given by35

ρs = 〈−Kx〉 + lim
q→0

�xx(q,ω = 0), (20)

where X denotes the average over disorder realizations and

�xx(q,ωn) = −
∫ β

0
dτ eiωnτ 〈jx(q,τ )jx(−q′,0)〉.

Note that after disorder averaging the right-hand side is
proportional to δqq′ . The different contributions to ρs are
presented as diagrams in Fig. 5, where we denote diamagnetic
terms by Dα and paramagnetic terms by �α .
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FIG. 5. Diagrammatic calculation of the superfluid stiffness in the
disordered system. Top: Diamagnetic contributions. Middle: Param-
agnetic contributions. Bottom: Green’s function renormalization and
the definition of the self-energy within Born approximation. A dashed
line corresponds to a scattering event and × denotes a single impurity.
Note that the scattering is a matrix in Nambu space.

One type of correction to the stiffness stems from standard
renormalization of the electron self-energy by the impurities.
Such corrections are given by diagrams D0 and �0 in Fig. 5.
Similar terms would arise in the common case of point (on-site)
impurities. We note that the vertex correction �1 vanishes due
to inversion symmetry of the impurity potential.

A second type of correction to the stiffness is special to the
bond disorder we consider here. The disorder in the hopping
amplitude introduces modulations in the local current operator
and kinetic energy, proportional to δt . This causes a direct
renormalization of the coupling to the external vector potential,
as represented in diagrams D1, D2, �2, �3, and �4 in Fig. 5.

1. Self-energy corrections

The disorder in the hopping and pairing strength introduces
renormalizations to the spectrum parameters or to the elec-
tronic Green’s function, which in turn affect the superfluid
stiffness. Such corrections are represented by diagrams D0

and �0 in Fig. 5. In order to calculate these diagrams we first
compute the renormalized Green’s function using the Born
approximation.

The Dyson equation for the disorder-averaged Green’s
function is depicted in Fig. 5 and given by

G−1
k,ωn

= (
G0

k,ωn

)−1 + �k,ωn
, (21)

where the bare Green’s function is(
G0

k,ωn

)−1 = iωnσ0 − ξkσ3 − �kσ1, (22)

and �k,ωn
≡ ∑3

a=0 �aσa is the self-energy after disorder
averaging. To calculate the self-energy explicitly in the limit
of small ωn, we use the fact that the main contributions arise

from the vicinity of the nodal points �k = ξk = 0. We expand
around these points and solve self-consistently for the decay
rate �0 in the limit of ω → 0,k → knode similarly to Ref. 36.
The high-energy cutoff for this approximation is defined as p0.
This calculation gives (see Appendix A)

�0 � −ip0e
− 2πvf v�t2eff

ni (2μδt )2 ,

�1(k) � 2ni

δ�

�0
(1 − η) �k, (23)

�3(k) � 2ni

δt

teff
(1 − η) ξk + δμ,

where η ≡ S1δ�/�0 + (1 − S1)δt/teff , S1 ≡ √
2�0/teff/π =

2
√

v�/vf /π , and δμ is a k-independent constant that renor-
malizes the chemical potential.

The low-energy limit of �0 is exponentially small close
to zero doping, and is further suppressed by the large
number t2

eff/(niδ
2
t ). We solve for the other components of the

self-energy under the self-consistent assumption that any k
dependence of �0 is negligible and indeed get that the entire
effect of the decay rate i�0 is negligible. For more details
about the calculation, the reader should turn to Appendix A.

In the absence of decay, no zero-energy states are introduced
by the disorder. The effect of �1 and �3 is to renormalize the
gap and the hopping, leading to a corrected spectrum Ẽk =
[ξ̃ 2

k + �̃2
k]1/2. In the low-energy limit this is equivalent to a

renormalization of the effective values of vf and v�, which
we find to be

ṽf = vf

[
1 + 2ni

δt

teff
(1 − η)

]
,

(24)

ṽ� = v�

[
1 + 2ni

δ�

�0
(1 − η)

]
.

The renormalization of v� is the antiproximity effect due to the
metallic inclusions, which gives rise to a modified coefficient
of the linear DOS compared with the pure system. These
modifications primarily affect the low-temperature physics in
the disordered system.

With the Green’s function at hand we can calculate the
leading contributions to the superfluid stiffness. Details of the
calculations appear in Appendixes B and C. The contributions
to the superfluid stiffness, to second order in the disorder
strength, can be separated into zero-temperature and finite-
temperature contributions.

Zero temperature. The contribution to the zero-temperature
stiffness due to self-energy corrections is the diamagnetic
response expressed in diagram D0. This is a nonuniversal
contribution which turns out to differ only very slightly
from the bare diamagnetic stiffness of the pure system (see
Appendix B for details)

D0 = 2gt
∑

k

cos kx

(
1 − ξ̃k√

ξ̃ 2
k + �̃2

k

)

= gtD0

(
ṽ�

ṽf

)
, (25)

where D0(X) is an order unity slowly decreasing function of
its argument in the relevant range of parameters. Note that, in
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practice, this function may include a weak dependence on the
chemical potential which we neglect, assuming low doping.
To conclude, the renormalization of the spectrum parameters
due to the self-energy corrections have a negligible effect on
the diamagnetic stiffness.

Finite temperature. The finite-temperature contribution to
the stiffness due to self-energy corrections arises from diagram
�0. The effect of disorder here is to modify the low-energy
density of states through a renormalization of the effective
values of vf and v�. This affects the superfluid stiffness
through the paramagnetic contribution �0 leading to faster
reduction of the stiffness with temperature. More precisely,

�0 = −2 log 2

π

8(Zt)2

ṽf ṽ�

T

� −
[

1 − 4ni

(
δ�

�0
+ δt

teff

)
(1 − η)

]
b0T . (26)

Here b0 = −dρs/dT = 2 log 2(2
√

2Zt)2/(πvf v�) is the
slope in the clean system and Z is the renormalization of
the quasiparticle current by interactions. The low T behavior is
dominated by low-energy quasiparticles, which may be altered
by Fermi-liquid renormalization not included in the mean-field
theory. Therefore, Z should be taken as a phenomenological
Fermi-liquid parameter28,31 and not as the value g(p) dictated
by the microscopic mean-field theory.

In our case the disorder acts to induce faster decrease of the
superfluid stiffness with temperature. This is because when
the inclusions are highly overdoped with nearly zero gap, then
δ�/�0 � −1, while 0 < δt/teff � 1.

2. Current operator renormalizations

The second type of corrections to the stiffness have no coun-
terpart in systems with standard on-site disorder. The disorder
in the hopping amplitude introduces renormalizations of the
kinetic energy Kx and the current operator jx , proportional to
δc
t . This leads to corrections of O(δc

t ),O[(δc
t )2] to the stiffness,

which are represented as vertex corrections in diagrams D1,
D2, �2, �3, �4 of Fig. 5. We again distinguish between
zero-temperature and finite-temperature contributions to the
stiffness.

Zero temperature. The most intuitive effect of the vertex
correction is the increase of the diamagnetic stiffness at the
impurity sites due to the extra charge carriers they contribute.
This effect is reflected in the diagram D1, with each impurity
bringing an additional 2δc

t to the average kinetic energy

D1 = 4niδ
c
t

∑
k

cos kx

⎛
⎝1 − ξk√

ξ 2
k + �2

k

⎞
⎠

= 2niδ
c
t D0

(
v�

vf

)
� 2ni

δc
t

gt
ρ0. (27)

This expression reveals a small parameter niδ
c
t /gt that did

not appear in the Hamiltonian. The perturbative correction
inevitably becomes large upon underdoping toward the Mott
insulator where niδ

c
t /gt → ∞. This signals the breakdown of

the Born approximation at doping levels smaller than p∗
1 �

g(p2)ni/(1 + 2ni).

The second significant contribution to the zero-temperature
stiffness stems from the paramagnetic diagram �4, which is
seen to be

�4 = −2ni

(
δc
t

)2

teff
P0

(
v�

vf

)
. (28)

Here P0(X) is an order unity decreasing function of its
argument in the relevant parameter range. This term is closely
analogous to the zero-temperature paramagnetic reduction in
the stripe model of Sec. III. Here as in the stripe model, the
effect acts to moderate the enhancement of the stiffness at zero
temperature.

Another correction to the zero-temperature stiffness is given
by the diagram D2. This diagram, which represents a combined
renormalization of the vertex and the spectrum, is calculated
to be

D2 = 4niδ
c
t

[
δD

�0
D1

(
v�

vf

)
+ δt

teff
D2

(
v�

vf

)]
.

Here D1(X) is an increasing function and D2(X) is slowly
decreasing, and their weak dependence on the chemical
potential is again neglected. This diagram turns out to give
a negligible numerical contribution to the overall stiffness.

Finite temperature. The finite-temperature contributions to
the stiffness that arise from current renormalization are shown
in diagrams �2 and �3. An explicit calculation gives

�2 = −4ni

δc
t

gt

2 log 2

π

(2
√

2Zt)2

ṽf ṽ�

T ,

(29)

�3 = 4niη
δc
t

gt

2 log 2

π

(2
√

2Zt)2

ṽf ṽ�

T .

Within SBMFT the current renormalization Z = g(p) depends
strongly on the doping. However, it is known that this
strong doping dependence leads to a disagreement with the
experimentally measured slope dρs/dT , which is seen to be
almost independent of doping.29

Here we adopt a phenomenological approach, with an
effective paramagnetic current renormalization Z which is
independent of doping.28,30 This holds at finite low temper-
ature, when the physics is dominated by the effective theory
of low-energy Dirac quasiparticles. In this case, the entire
contribution �2 + �3 is negligible because it stems precisely
from the difference in the local current operator between the
p1 superconductor and the p2 impurities. Therefore, when
summing up the finite T contributions to the stiffness we
neglect these two diagrams.

C. Results and discussion

We can summarize the results of this section by putting
together the various contributions to the superfluid stiffness.
This gives the temperature-dependent stiffness

ρs(T ) = ρ0 − b0T + 2ni(δρs(0) − δbT ). (30)

Here the first two terms constitute the usual expression for
the temperature-dependent superfluid stiffness of a uniform
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d-wave superconductor,25 as reviewed in Sec. II. The second
term is

δρs(0) = δc
t

gt
ρ0 −

(
δc
t

)2

teff
P0

(
v�

vf

)
. (31)

The leading-order correction to δρs(0) in the impurity strength
is due to the added charge carriers donated by the impurities.
The negative second-order term is a paramagnetic correction to
the zero-temperature stiffness analogous to the paramagnetic
correction that we derived previously for a bilayer heterostruc-
ture. In the latter case this correction was proportional to
(J1 − J2)2, the square of the difference of the quasiparticle
currents on the two layers. Here similarly this contribution
scales as (δc

t )2 ∝ [g(p2) − g(p1)]2, which is the square of the
difference between the local current renormalization in the
bulk and near the impurity.

The last term in Eq. (30) is the change of the linear
reduction of the stiffness with temperature due to the presence
of impurities. It is given by

δb = 2b0

(
− δ�

�0
− δt

teff

) (
1 − S1

δ�

�0
+ (1 + S1)

δt

teff

)
,

where S1 = 2
√

v�/vf /π and b0 is the parameter for
the uniform superconductor given in Sec. II, b0 =
2 log 2(2

√
2Zt)2/(πvf v�).25 Note that the expression in the

first parentheses is positive because δ� < 0 on the impurities.
Hence the superfluid stiffness is reduced faster as a function of
temperature than in the uniform superconductor. We estimate
the parameters of the uniform system using SBMFT, so that
vf = 2

√
2teff and v� = √

2�. Taking J = t/3, the effective
hopping and gap parameters are given by teff(p) = g(p)t + χ

and �(p) = χ [1 − 4p], where χ is the value of the mean fields
(both pairing and Fock field) at zero doping.

Figure 6(a) displays the calculated zero-temperature stiff-
ness as function of the doping p1 with the impurities fixed
to a high doping level p2 = 0.35, which corresponds to
zero pairing amplitude, and a hopping amplitude of t . We
plot the total stiffness ρs(T = 0) as well as the diamagnetic
contribution ρdia = D0 + D1 + D2. Note that the diamagnetic
contribution in the disordered system ρdia is significantly
increased with respect to the pure case ρ0. However, the
total zero-temperature stiffness ρs(T = 0) is only moderately
increased compared to the uniform case (where ρ0 is the total
stiffness at T = 0). The reason for this is the zero-temperature
paramagnetic contribution of the impurities �4.

In Fig. 6(b) we plot the critical temperature as a function
of the bulk doping p1, estimated from Eq. (32) using the
Kosterlitz-Thouless criterion ρs(Tc) = 2Tc/π . Again this is
for a fixed value of p2 = 0.35 and ni = 0.1 and the result
is compared against T 0

c of the pure system. The critical
temperature of the disordered system is significantly enhanced,
above the maximal Tc of the clean superconductor. The
maximum of Tc is shifted to the underdoped regime. These
results are reminiscent of experiments by Yuli et al.17 that
show a Tc enhancement in an underdoped-overdoped bilayer.
We can relate our results to the experiment if we assume that the
interface between the two layers is in fact an inhomogeneous
mixture of underdoped and overdoped regions. Our results
suggest that an optimal configuration for Tc enhancement can
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FIG. 6. Superfluid stiffness and critical temperature in the in-
homogeneously doped layer with point impurities. In (a) and
(b) the impurities have an average doping charge p2 = 0.35 while
the bulk doping p1 varies, with impurity concentration ni = 0.1.
(a) Zero-temperature stiffness (Solid) compared to that of the
clean case (dashed). The dashed-dotted line marks the diamagnetic
contribution. (b) Tc with impurities compared to T 0

c without. We
used a doping-independent quasiparticle current renormalization of
Z = 0.5. Results are plotted only within the validity range of the
diagrammatic expansion. (c) Relative change in Tc for the case of
small excess doping on the impurity, with impurity concentration
ni = 0.2. Contours map the relative change Tc/T 0

c as a function of
the base doping p1 and the excess doping on the impurities p2 − p1.

be achieved by placing pointlike metallic inclusions inside a
slightly underdoped superconductor.

Figure 6(c) shows the relative change in the critical
temperature with respect to T 0

c as a function of p1 and δp =
p2 − p1, for ni = 0.2. The critical temperature is enhanced
relative to the clean system by up to 15%, in a broad range
of p1 and δp. Here the excess doping on the impurities δp is
small, and there is no enhancement of Tc above the maximal
Tc of the clean superconductor. The main reason for this is the
zero-temperature paramagnetic reduction of the stiffness due
to the impurities. Without this effect we could have obtained
an absolute enhancement of Tc in the disordered system, also
in the small δp limit. We have checked and found that whether
we use the microscopic or phenomenological parameter Z

to renormalize the quasiparticle current makes very little
difference to the final result of Tc.

It is instructive to look at the behavior of the stiffness
and Tc, for small values of δp ≡ p2 − p1, for which we can
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neglect second-order contributions in δt/teff and |δ�/�0|, such
as the paramagnetic effect. Here we use the SBMFT doping
dependence for both the bulk and the impurity, such that
δt = δc

t = t[g(p2) − g(p1)]. In this regime there is a simple
expression for the superfluid stiffness

ρs(T ) � ρcl(T ) + 2ni

δc
t

gt
ρ0 − 4ni

(∣∣∣∣ δ�

�0

∣∣∣∣ − δt

teff

)
b0T ,

where ρcl(T ) = ρ0 − b0T is the stiffness of the clean super-
conductor. The zero-temperature stiffness is always enhanced,
whereas the slope |dρs/dT | is increased. The latter is easily
seen by expressing |δ�/�0| − δt/teff as a function of p1 and
δp. Using the Kosterlitz-Thouless criterion as above we can
estimate the change in transition temperature Tc with respect
to the critical temperature T 0

c of the clean superconductor

Tc

T 0
c

� 1 + 2ni

[
δc
t

gt
+ 2b0

b0 + 2/π

(
δt

teff
−

∣∣∣∣ δ�

�0

∣∣∣∣
)]

. (32)

This can be expressed in terms of the doping level p1 of the
clean superconductor and the difference in doping δp = p2 −
p1 between the background and the impurities. We obtain an
expression of the form

Tc

T 0
c

= 1 + 2ni

δp

p1
(p∗ − p1)F(p1),

where F(p1) is positive for p1 < 0.25. This implies that for
p1 < p∗ the critical temperature of the disordered system
is enhanced compared with the clean superconductor with
doping p1. Under the assumptions of SBMFT, with Z = 0.5
and χ = 0.4t , we get p∗ ∼ 0.125 and

F(p1) � (1 − p1)(0.08 + p1)(0.6 + p1)

(0.5 − p1)(0.25 − p1)(0.17 + p1)(0.29 + p1)
.

(33)

We note that F(0.1) � 18.
It seems from Eq. (33) that Tc can be further enhanced

by increasing the impurity concentration. However, by doing
this we would quickly violate the Born approximation. In
particular, the superfluid stiffness in this nonperturbative
regime should be calculated as the resistance of an effective
resistor network with ρ−1

s of the various puddles playing the
role of the resistance.

We now remark on the nature of our perturbative approach
and the small parameters involved in it. The scattering from
individual impurities is taken into account within the Born
approximation to second order in the impurity strength as
measured by the parameters δt/teff and |δ�/�0|. We found
that the second-order correction to both ρs and Tc was always
negligible compared to the first-order contribution. This was
the case even when we took the parameter |δ�/�| � 1. An
additional small parameter niδ

c
t /gt appeared through the effect

of the impurities on the coupling to the electromagnetic field
rather than the scattering on the impurity potential.

We would like to contrast our approach with the commonly
used self-consistent T -matrix approximation (SCTMA),37

which treats the single impurities exactly. This turns out to be
important to describe the effect of in-plane ion substitutions
such as Zn impurities that act as unitary scatterers and give
rise to strong bound states. However, in our case the SCTMA

is not analytically solvable because of the strong momentum
dependence of the impurity potential and the fact that it acts
as a matrix in Nambu space (δt is the diagonal component
and δ� is off diagonal). Fortunately, the disorder potential
that interests us is generated by dopants, which reside outside
the CuO plane.38 Indeed, we can show that the fact that such
impurities induces only a small change in the local doping
level (p2 − p1 � 1) implies that the impurity scattering is
far from the unitary limit and does not give rise to a bound
state. To see this consider the strength of the local impurity
potential U0 � (p2 − p1)/κ . Since the compressibility κ is
approximately the density of states at the Fermi level ν0, the
dimensionless impurity strength is just U0ν0 � p2 − p1 � 1.
This is far from satisfying the condition for formation of a
bound state.39 In this limit the direct impurity scattering can
be taken within the Born approximation and lead to negligible
contributions to the low-energy DOS.40,41 Hence it leads to a
concomitantly small correction to the stiffness.

V. CONCLUSIONS

We investigated the effects of doping inhomogeneity on
the superconducting properties of the cuprates using the slave
boson mean-field theory27 supplemented by phenomenolog-
ical Fermi-liquid parameters to account for the low-energy
quasiparticle properties.31 In particular, the superfluid stiffness
and the critical temperature was calculated within two different
models of the inhomogeneity.

The first model described doping variations on mesoscopic
scales, comparable to or larger than the superconducting
coherence length. Technically we computed the transverse
electromagnetic response tensor of a model system with
metallic stripes embedded in an underdoped superconducting
bulk. This was done by solving the appropriate Bogoliubov-de
Gennes equations within the renormalized mean-field theory.
We then averaged over the different stripe orientations to obtain
an isotropic superfluid stiffness.

In the second model we considered microscopic impurities
that carried an excess doping charge. The temperature-
dependent stiffness in this case was calculated using a
perturbative expansion expansion assuming both dilute and
weak impurities (Born approximation).

In both models, the regions of higher doping add to the
total carrier density and hence increase the superfluid stiffness
at zero temperature. On the other hand, the impurity regions
give rise to low-energy states that lead to a faster reduction
of the superfluid stiffness with temperature. Nevertheless, we
found that for a range of doping levels in the underdoped
regime a higher Tc than a uniform superconductor of the
same doping can be attained. Moreover, in the case of
microscopic impurities it is even possible to attain a higher
critical temperature than the maximal Tc obtained in the pure
system, that is, higher than Tc at optimal doping.

The last result can help to understand the enhancement of
Tc seen at the interface between an underdoped and a highly
overdoped LSCO film.17 We have previously noted that such
an increase in Tc due to coupling between two homogeneous
layers with different doping requires unrealistically strong
coupling between the two CuO planes.16 However, if, due
to the structure of the interface, overdoped and underdoped
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layers interpenetrate each other, then the proximity coupling
can be induced by the strong in-plane hopping and the situation
becomes equivalent to the one considered here.

Finally we remark that our main result for the case of
microscopic impurities was obtained within a perturbative
expansion in the impurity strength. It would be interesting
to compare this to a numerical solution that takes into account
scattering, at least from individual impurities, exactly. If
indeed excess dopants concentrated at random locations can
lead to increase of the maximal Tc, this opens up intriguing
possibilities for further enhancement of Tc, for example,
through design of an optimal ordered arrangement of the highly
doped regions.
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APPENDIX A: THE SELF-ENERGY IN BORN
APPROXIMATION

We write down the Dyson equation for the disorder-
averaged Green’s function42

Gk,ωn
= G0

k,ωn
+ G0

k,ωn
�(k,ωn)Gk,ωn

. (A1)

From the Dyson equation we obtain the disorder-averaged
self-energy, up to second order in the disorder potential
Ukk′ ≡ Ukk′σ3 + Vkk′σ1,

�(k,ωn) = ni

[
Ukk +

∑
k′

Ukk′Gk′,ωn
Uk′k

]
. (A2)

Using (A2) we can now calculate the Nambu components of
�(k,ωn) = ∑3

a=0 σa�a:

�0(k,ωn) = −iωnni

∑
k′

U 2
kk′ + V 2

kk′

ω2
n + Ek′

,

with Ek = [ξ 2
k + �2

k]1/2. In the limit of small ωn this becomes

�0(k,ωn) � −iωnni

[(
δ�

�0

)2

S1 +
(

δt

teff

)2

(1 − S1)

]

− iωnni

[(
δ�

�0

)2

�2
k +

(
δt

teff

)2

(ξk + 2μ)2

]
× S0(ωn), (A3)

where S1 = limωn→0
∑

k �2
k/(ω2

n + E2
k) � √

2�0/teff/π . In
(A3) we used the fact that in the limit of ωn → 0, S1 =∑

k �2
k/(ω2

n + E2
k) � 1 − ∑

k ξ 2
k/(ω2

n + E2
k). The sum S0 is

logarithmically divergent in the ωn → 0 limit

S0 =
∑

k

1

ω2
n + E2

k

= 1

4πvf v�

log

[
1 − C2

(iωn)2

]
, (A4)

where C is an upper cutoff for the momentum sum. To solve
for the zero-frequency limit of the self-energy we follow
Ref. 36 and assume a self-consistent solution of the form
�0(k,ω → 0) → −i�k. For the self-consistent solution we

perform the analytic continuation iωn → ω + iδ and replace
ω by its renormalized value ω̃ = ω − � → i�k. This gives
the following equation for �k,

1

ni

= Ū 2
k

4πvf v�

log
C2

�2
k

+
(

δ�

�0

)2

S1 +
(

δt

teff

)2

(1 − S1),

where we denote Ū 2
k ≡ ( δ�

�0
)2�2

k + ( δt

teff
)2(ξk + 2μ)2. In the

limit k → knode we approximate Ū 2
k ∼ μ2δ2

t /t2
eff . Finally,

using the fact that |(δ�/�0)2S1 + (δt/teff)2 (1 − S1)| � 1 �
1/ni , we obtain the low-frequency long-wavelength limit of
the decay rate �,

� = Ce
− vf v�t2eff

ni (2μδt )2 , (A5)

where C � �0 is a high-energy cutoff. We shall now es-
timate the exponent and show that � is negligible. We
plug in the doping-dependent values μ ∝ p1t , teff/δt =
vf /[2

√
2(g(p2) − g(p1))t], v�/vf ∼ 0.5(1 − 4p1), and ni <

0.25. We obtain � � �0e
−100 � 0.

Using the fact that �0 → 0, we can calculate the other two
components of the self-energy

�1(k,ωn) = niVkk

+ ni

∑
k′

�k′
(
U 2

kk′ − V 2
kk′

) − 2ξk′Ukk′Vkk′

ω2
n + Ek′

,

�3(k,ωn) = niUkk

+ ni

∑
k′

ξk′
(
V 2

kk′ − U 2
kk′

) − 2�k′Ukk′Vkk′

ω2
n + Ek′

.

We perform the momentum summations in the ωn → 0, and
express the results in terms of S1 as in the case of �0. This
gives Eqs. (23).

APPENDIX B: DIAMAGNETIC RESPONSE

The diamagnetic response stems from the second-order
term in the vector potential

Hdia = −1

2

∑
r

Kx(r)A2
x(r)

= −1

2

∑
q,q′

Ax(q)Kx(−q − q′)Ax(q′), (B1)

where Kx(r) = −∑
r,σ tx(r)(c†r+x,σ cr,σ + H.c.). Its Fourier

transform to momentum space is then with

Kx(−q − q′) ≡
∑

r

ei(q+q′)rKx(r)

=
∑

r,k,k′,σ

t(r)ei(q+q′+k−k′)r(eikx + e−ik′
x )c†k,σ ck′,σ .

(B2)

Performing the disorder average leads to a diagrammatic
expansion with three contributions

〈Kx(−q − q′)〉 = D0 + D1 + D2,
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where D0 is the diamagnetic contribution including only self-
energy corrections to the Green’s function, described in Fig. 5.
An explicit calculation of this diagram gives

D0 = gt
∑
k,k′

δq+q′+k−k′ (eikx + e−ik′
x )tr {Gkσ3}δkk′ .

Note that in our notations the trace includes the Matsubara
summation and Nambu space tracing. The contribution D1 +
D2 of Fig. 5 is due to modification of the hopping on the
impurity sites and is therefore proportional to δc

t ,

D1 + D2 = δc
t

∑
k,k′

(eikx + e−ik′
x )tr {ρq+q′+k−k′Gkk′σ3}.

The object Gkk′ is defined by

Gkk′ ≡ G0
kδkk′ + G0

kρ̂k′−kUkk′G0
k′

+
∑

p

G0
kρ̂p−kUkpG

0
pρk′−pUpk′G0

k′ .

As usual, the average over realizations amounts to integrating
over all possible impurity positions. In all the summations, the
only dependence on impurity positions appears in factors of
ρ̂k. The disorder averaging gives

ρ̂k = ni

∫
d3re−ikr = niδk,

(B3)
ρ̂kρ̂k′ =

∑
ij

e−ikrie−ik′rj � niδk+k′ + O
(
n2

i

)
.

We perform the sums and and keep terms up to first order in ni

and second order in the disorder strength δt and δ�. This gives

D0 = δq+q′2gt
∑

k

cos kxn(ξ̃k,�̃k),

D1 = δq+q′4niδ
c
t

∑
k

cos kxn(ξk,�k), (B4)

D2 = δq+q′2niδ
c
t

∑
kk′

(eikx + e−ik′
x )tr

{
G0

kUkk′G0
k′σ3

}
,

where n(ξ,�) ≡ [1 − ξ/(
√

ξ 2 + �2)]. Note that ξ and � ap-
pear in their renormalized values in D0 and are unrenormalized
in D1.

Since D2 is nonvanishing at T = 0, it does not depend
necessarily on low-energy quasiparticles. Indeed, it includes a
sum over all occupied states. We evaluate it numerically and
express the result as a function of ν = �0/2teff = v�/vf in the
limit of half-filling. Any deviation from half-filling introduces
a small value of the chemical potential μ which we neglect in
this calculation. The result has the general form

D2 = 4niδ
c
t

[
δD

�0
D1(ν) + δt

teff
D2(ν)

]
, (B5)

and turns out to give a negligible numerical contribution in the
relevant regime of parameters.

APPENDIX C: PARAMAGNETIC RESPONSE

The paramagnetic current-current correlator for a given
disorder realization is

�xx(q,q ′,ω) = −
∫ β

0
dτ eiωnτ 〈jx(q,τ )jx(−q ′,0)〉. (C1)

Naturally, after disorder averaging all contributions are pro-
portional to δqq′ . The current operator is modified by the
disordered hopping, and has the form j (q) = j (0)(q) + δj (q).
The uniform part of the current operator in the x direction is

j (0)
x (q) = igt

∑
kσ

(eikx − e−i(kx−qx ))c†kσ ck−q,σ

≡ Jkqc
†
kσ ck−q,σ .

The disorder contribution to the current operator is given by

δj (q) = iδc
t

∑
kk′σ

ρq−k+k′ (eikx − e−ik′
x )c†kσ ck′σ . (C2)

As a result, the current-current correlator has the form

〈jx(q,τ )jx(−q′,0)〉 = 〈
j (0)
x (q,τ )j (0)

x (−q′,0)
〉

+ 2δc
t

gt

∑
k

ρ̂q−k
〈
j (0)
x (k,τ )j (0)

x (−q′,0)
〉

+
(

δc
t

gt

)2 ∑
kk′

ρ̂q−kρ̂k′−q′

× 〈
j (0)
x (k,τ )j (0)

x (−k′,0)
〉
. (C3)

The disorder averaging of �xx(q,q ′,ω) amounts to averag-
ing the correlator (C3) over realizations.

The first line of (C3) corresponds to diagrams �0 + �1 in
Fig. 5, which incorporate the effects of self-energy renormal-
ization and standard vertex corrections

�0 + �1 = −
∫ β

0
dτ eiωnτ

〈
j

(0)
x (q,τ )j (0)

x (−q ′,0)
〉
.

The disorder-averaged correlator takes the form

〈
j

(0)
x (q,τ )j (0)

x (−q ′,0)
〉

= δqq′
∑
kk′

JkqJk′,−qtr {Gk′+q,k(−τ )Gk−q,k′ (τ )}. (C4)

The disorder-averaged Green’s function product has a vertex
correction part �1 which vanishes, as we will show below. As
a result we are left with a simple product of disorder averaged
Green’s function

�0 = −
∫ β

0
dτ eiωnτ δqq′

∑
k

|Jkq|2 tr {Gk′+q,k(−τ )Gk−q,k′ (τ )}

= −
∫ β

0
dτ eiωnτ δqq′

∑
k

|Jkq |2tr {Gk(−τ )Gk−q(τ )}.

(C5)

To calculate �0 we notice that the disorder-averaged Green’s
function Gk,ωn

differs from the bare one G0
k,ωn

by renormalized
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values of �k and ξk, as specified in (23), leading to renormal-
ized spectrum parameters vf and v� according to (24). This
gives the result shown in (26).

In order to see that the standard vertex correction �1

vanishes, we write it explicitly as

�1 = ni

∫ β

0
dτ eiωnτ

∑
kk′

JkqJk′,−q

× tr
{
G0

k′+qUk′+q,kG
0
kG

0
k−qUk−q,k′G0

k′
}
. (C6)

In the limit of q → 0, the sum over momenta becomes
4nit

2 ∑
k,k′ sin kx sin k′

xF(k,k′), where F is symmetric with
respect to k and k′. Thus, under the summation over k or k′,
this contribution vanishes.

The second line of (C3) corresponds to diagrams �2 + �3

and the third line to �4. These contributions do not appear
in the case of standard on-site disorder because they stem
from direct renormalization of the current operator jx(q) by
an amount proportional to δc

t . The first part of this contribution
is

�2 + �3 = −
∫ β

0
dτ eiωnτ

2δc
t

gt

∑
kk′p

JkpJk′,−q ′

×ρq−p tr {Gk′+q′,k(−τ )Gk−p,k′ (τ )}.
(C7)

When we insert (B3) and perform the disorder average we
obtain a contribution of O(U),

�2(q,0) = −4ni

δc
t

gt

1

β

∑
k,n

|Jkq|2 tr
{
G0

k,ωn
G0

k−q,ωn

}
,

and a contribution of O(U2),

�3(q,0) = −4ni

δc
t

gt

1

β

∑
kp,n

JkpJk−q,−q

× tr
{
G0

k,ωn
G0

k−p,ωn
Uk−p,k−qG

0
k−q,ωn

}
.

Taking the trace and performing the summations at the limit
q → 0 we obtain the results in Eq. (29).

Finally, the third line of (C3), corresponding to second-
order corrections of the current-current correlation, yields the
sum

�4(q,0) = −
(

δc
t

gt

)2 1

β

∑
pp′kk′,n

JkpJk′,−p′

× ρq−pρp′−q′ tr
{
Gk′+p′,k,ωn

Gk−p,k′,ωn

}
= −

(
δc
t

gt

)2 1

β

∑
pp′kk′,n

|Jkp|2 tr
{
G0

k,ωn
G0

k−p,ωn

}
.

After summation this gives Eq. (28).
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