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Magnetic breakdown and quantum oscillations in electron-doped high-temperature
superconductor Nd2−xCexCuO4
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Recent, more precise experiments have revealed both a slow and a fast quantum oscillation in the c-axis
resistivity of nearly optimal to overdoped electron-doped high-temperature superconductor Nd2−xCexCuO4.
Here, we study this problem from the perspective of Fermi surface reconstruction using an exact transfer matrix
method and the Pichard-Landauer formula. In this method, neither quasiclassical approximations for magnetic
breakdown nor ad hoc broadening of Landau levels is necessary to study the high-field quantum oscillations. The
underlying Hamiltonian is a mean-field Hamiltonian that incorporates a twofold commensurate Fermi surface
reconstruction. While the specific mean field considered is the d-density wave, similar results can also be obtained
by a model of a spin density wave, as was explicitly demonstrated earlier. The results are consistent with an
interplay of magnetic breakdown across small gaps in the reconstructed Fermi surface and Shubnikov–de Haas
oscillations.
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I. INTRODUCTION

Quantum oscillations were first discovered1 in the Hall
coefficient of a hole-doped high-temperature superconductor
YBa2Cu3O6+δ (YBCO) at high magnetic fields between 35
and 62 T in the underdoped regime close to 10%. Since then,
a number of measurements, in even higher fields and with
greater precision using a variety of measurement techniques,
have confirmed the basic features of this experiment. However,
the precise mechanism responsible for oscillations has become
controversial.2 Fermi surface reconstruction due to a density
wave order that could arise if superconductivity is “effectively
destroyed” by high magnetic fields has been the focus of some
attention.3

In contrast, similar quantum oscillation measurements in
the doping range 15–17% in Nd2−xCexCuO4 (NCCO)4 seem
easier to interpret, as the magnetic field range 30–65 T is far
above the upper critical field, which is less than 10 T. This
clearly places the material in the “normal” state, a source of
contention in measurements in YBCO; in NCCO, the crystal
structure consists of a single CuO plane per unit cell, and, in
contrast to YBCO, there are no complicating chains, bilayers,
ortho-II potential, stripes, etc.5 Thus, it would appear to be
ideal for gleaning the mechanism of quantum oscillations. On
the other hand, disorder in NCCO is significant. It is believed
that well-ordered chain materials of YBCO contain much less
disorder by comparison.

In a previous publication,6 we mentioned in passing that
it is not possible to understand the full picture in NCCO
without magnetic breakdown effects, since the gaps are
expected to be very small in the relevant regime of the
parameter space. However, in that preliminary work, the break-
down phenomenon was not addressed; instead, we focused
our attention on the effect of disorder. Since then, recent
measurements7,8 have indeed revealed magnetic breakdown
in the range 16–17% doping, almost to the edge of the
superconducting dome. Here, we consider the same transfer
matrix method used previously,6 but we include third-neighbor
hopping of electrons on the square planar lattice, without which
many experimental aspects cannot be faithfully reproduced,

including quantitative estimates of the oscillation frequencies
and breakdown effects. The third-neighbor hopping makes
the numerical transfer matrix calculation more intensive
because of the enlarged size of the matrix, but we were able
to overcome the technical challenges. In this paper, we also
analyze the c-axis resistivity and the absence of the electron
pockets in the experimental regime.

II. HAMILTONIAN

The mean-field Hamiltonian for a d-density wave9 (DDW)
in real space, in terms of the site-based fermion annihilation
and creation operators ci and c

†
i , is

HDDW =
∑

i

εic
†
i ci +

∑
i,j

ti,je
iai,jc†i cj + H.c., (1)

where the nearest-neighbor hopping matrix elements include
a DDW gap W0 and are

ti,i+x̂ = −t + iW0
4 (−1)(n+m),

(2)
ti,i+ŷ = −t − iW0

4 (−1)(n+m),

where (n,m) are a pair of integers labeling a site: i = nx̂ + mŷ;
the lattice constant a will be set to unity unless otherwise
specified. In this paper, we also include both the next-nearest-
neighbor hopping matrix element, t ′, and the third-nearest-
neighbor hopping matrix element, t ′′. A constant perpendicular
magnetic field B is included via the Peierls phase factor ai,j =
e
h̄c

∫ i
j A · dl, where A = (0, − Bx,0) is the vector potential in

the Landau gauge. The band parameters are chosen to be t =
0.38 eV, t ′ = 0.32t , and t ′′ = 0.5t ′.10 The chemical potential
μ is adjusted to achieve the required doping level and is given
in Table I, as is the DDW gap W0. We assume that the on-
site energy is δ-correlated white noise defined by the disorder
average εi = 0 and εiεj = V 2

0 δi,j. Disorder levels for each of the
cases studied are also given in Table I. The range of parameters
chosen covered the estimates made in Ref. 8. We have seen
previously that longer-ranged correlated disorder led to very
similar results.11
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TABLE I. Parameters W0 (DDW gap), V0 (on-site disorder
potential), and μ (chemical potential).

Figure Gap W0 (meV) μ doping (%)

Fig. 2 5 0.057t 17
Fig. 3 10 0.057t 17
Fig. 4 15 0.0176t 16
Fig. 5 30 0.0176t 16

The Fermi surface areas (see Fig. 1) of the small hole pocket
in the absence of disorder correspond to oscillation frequencies
330 T at 15% doping, 317 T at 16% doping, and 291 T at 17%
doping. These frequencies seem to be insensitive to W0 within
the range given in Table I.

III. THE TRANSFER MATRIX METHOD

The transfer matrix to compute the oscillations of the
conductance is a powerful method. It requires neither a qua-
siclassical approximation to investigate magnetic breakdown
nor ad hoc broadening of the Landau level to incorporate
the effect of disorder. Various models of disorder, both long-
and short-ranged, can be studied ab initio. The mean-field
Hamiltonian, being a quadratic noninteracting Hamiltonian,
leads to a Schrödinger equation for the site amplitudes, which
is then recast in the form of a transfer matrix; the full derivation
is given in the Appendix. The conductance is then calculated
by a formula that is well known in the area of mesoscopic
physics, namely the Pichard-Landauer formula.12 This yields
Shubnikov–de Haas oscillations of the ab-plane resistivity,
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FIG. 1. (Color online) A plot showing the breakdown junctions
and electron trajectories across them in the extended Brillouin zone.
The figure corresponds to NCCO with 17% doping and a small DDW
gap. Note that the reflection at the junctions involves a large change in
momentum. The electron trajectories that lead to magnetic breakdown
of small hole pockets are shown.

ρab. We show later how this can be related to the c-axis
resistivity ρc measured in experiments.

Consider a quasi-1D system, N � M , with a periodic
boundary condition along the y direction. Here, Na is the
length in the x direction and Ma is the length in the y direction,
a being the lattice spacing. Let �n = (ψn,1,ψn,2, . . . ,ψn,M )T ,
n = 1, . . . ,N , be the amplitudes on the slice n for an eigenstate
with a given energy. Then the amplitudes on four successive
slices must satisfy the relation
⎡
⎢⎣

�n+2

�n+1

�n

�n−1

⎤
⎥⎦ =

⎡
⎢⎣

U−1
n An U−1

n Bn U−1
n Cn U−1

n Dn

1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎦

⎡
⎢⎣

�n+1

�n

�n−1

�n−2

⎤
⎥⎦

= Tn

⎡
⎢⎣

�n+1

�n

�n−1

�n−2

⎤
⎥⎦ , (3)

where Un, An, Bn, Cn, and Dn are M × M matrices. The
nonzero matrix elements of matrix An are

(An)m,m = −
[
−1 − iW0

4
(−1)m+n

]
, (4)

(An)m,m+1 = −t ′ei(−n− 1
2 )φ, (5)

(An)m,m−1 = −t ′ei(n+ 1
2 )φ, (6)

where φ = Ba2e/h̄c is a constant. The elements of the matrix
Bn are

(Bn)m,m = εn,m − μ, (7)

(Bn)m,m+1 =
[
−1 + iW0

4
(−1)m+n

]
e−inφ, (8)

(Bn)m,m−1 =
[
−1 + iW0

4
(−1)m+n

]
einφ, (9)

(Bn)m,m+2 = t ′′e−i2nφ, (10)

(Bn)m,m−2 = t ′′ei2nφ. (11)

Here Cn = A
†
n and Dn = −Un = t ′′11, where 11 is the M × M

identity matrix.
The 4M Lyapunov exponents, γi , of limN→∞(TNT †

N ),
where TN = ∏j=N

j=1 Tj , are defined by the corresponding
eigenvalues λi = eγi . All the Lyapunov exponents γ1 > γ2 >

· · · > γ4M , are computed by a method described in Ref. 13.
However, the matrix is not symplectic. Therefore, all 4M

eigenvalues are computed. Remarkably, except for a small
set consisting of large eigenvalues, the rest of the eigenvalues
do come in pairs (λ,1/λ), as for the symplectic case, within
our numerical accuracy. We have no analytical proof of this
curious fact. Clearly, large eigenvalues contribute insignifi-
cantly to the Pichard-Landauer12 formula for the conductance,
σab(B):

σab(B) = e2

h
Tr

2M∑
j=1

2

(TNT †
N ) + (TNT †

N )−1 + 2
. (12)

We have chosen M to be 32, smaller than our previous work.6

The reason for this is that the matrix size including the third-
neighbor hopping is larger, 4M × 4M instead of 2M × 2M .
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We chose N to be of the order of 106, as before. This easily
led to an accuracy better than 5% for the smallest Lyapunov
exponent, γi , in all cases.

IV. MAGNETIC BREAKDOWN AND QUANTUM
OSCILLATIONS

We compute the conductance as a function of the mag-
netic field and then Fourier transform the numerical data.
This procedure depends of course on the number of data
points sampled within a fixed range of the magnetic field,
typically between 45 and 60 T. But the location of each
peak and the relative ratio of the intensities remain the
same. In order to compare the Fourier transformed results,
we keep the sampling points fixed in all cases to be
1200.

In Fig. 2, the results for 17% doping for a 5 meV gap
and varying degrees of disorder are shown. Both the slow
oscillation at a frequency 290 T corresponding to the small
hole pocket and 11 700 T corresponding to the large hole
pocket, as schematically sketched in Fig. 1 in the extended

Brillouin zone, can be seen. Note that partitioning of the
spectral weight between the peaks changes as the degree of
disorder is increased. If we change the value of the gap to
10 meV, shown in Fig. 3, the overall picture remains the same,
although the lower frequency peak is a bit more dominant, as
the magnetic breakdown is a little less probable.

For 16% doping, a similar calculation with gaps of 15 and
30 meV also shows some evidence of magnetic breakdown
depending on the disorder level, particularly seen in the
15 meV data in Fig. 4. On the other hand, the evidence of
magnetic breakdown is much weaker in the 30 meV data
shown in Fig. 5. It is important to note that in none of
these calculations does one find any evidence of the electron
pocket centered at (π,0) and its symmetry counterparts,
which should correspond roughly to a frequency of 2700 T.
This is due in part to the fact that the effect of disorder
is stronger on the electron pocket6 and in part to the fact
that at the breakdown junctions transmission coefficient is
larger than the reflection coefficient because it entails a
large (π/2) change in the direction of the momentum; see
Fig. 1.
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FIG. 2. (Color online) Fourier transform of the conductance oscillations with a smooth background term subtracted. The parameters
correspond to 17% doping with a DDW gap of 5 meV and disorder V0 = 0.2t (row 1), V0 = 0.4t (row 2), and V0 = 0.6t (row 3). The horizontal
axis is a magnetic field in terms of kilo-Tesla (103 T) and the vertical axis is in arbitrary units. The left panels in all cases show the lower
frequency component and the right panel the higher-frequency component. Note that there is no evidence of the electron pocket frequency at
about B = 2.7 kT.
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FIG. 3. (Color online) Fourier transform of the conductance oscillations with a smooth background term subtracted. The parameters
correspond to 17% doping with a DDW gap of 10 meV and disorder V0 = 0.2t (row 1), V0 = 0.4t (row 2), and V0 = 0.6t (row 3). The
horizontal axis is a magnetic field in terms of kilo-Tesla (103 T) and the vertical axis is in arbitrary units. The left panels in all cases show
the lower frequency component and the right panel the higher frequency component. Note that there is no evidence of the electron pocket
frequency at about B = 2.7 kT.

V. OSCILLATIONS IN c-AXIS RESISTIVITY

The Pichard-Landauer formula was calculated for con-
ductance oscillations in the ab plane, while the actual mea-
surements in NCCO are carried out for the c-axis resistivity.
It is therefore necessary to relate the two to compare with
experiments. A simple description for a strongly layered
material can be obtained by modifying an argument of Kumar
and Jayannavar.14 An applied electric field, E, along the
direction perpendicular to the planes will result in a chemical
potential difference

�μ = edE, (13)

where d is the distance between the two planes of a unit cell.
The corresponding current, jc, is (εF is the Fermi energy)

jc = e [�μg2D(εF ,H )] γ, (14)

since �μg2D(εF ,H ) is the number of unoccupied states to
which an electron can scatter, while γ is the scattering rate
between the planes of a unit cell. Here, we have included a
possible oscillatory dependence of the the two-dimensional
density of states, g2D(εF ,H ), that gives rise to Shubnikov–de

Haas oscillations in the ab plane. Thus,

ρc = E

jc

= 1

e2dg2D(εF )γ
. (15)

There is an implicit assumption: an electron from a given plane
makes a transition to a continuum of available states with a
finite density at the Fermi surface in the next plane. We are not
interested in the Rabi oscillations between two discrete states,
a process that cannot lead to resistivity.

The measured ab-plane resistivity is of the order 10 μ� cm
as compared to � cm for the c-axis resistivity even at optimum
doping,5 which allows us to make an adiabatic approximation.
Because an electron spends much of its time in the plane,
making only infrequent hops between the planes, we can
adiabatically decouple these two processes. The slower motion
along the c axis can be formulated in terms of a 2 × 2
matrix for each parallel wave vector k‖ after integrating out
the planar modes. For simplicity, we are assuming that the
c-axis warping is negligible, so there are only two available
states of the electron corresponding to its locations in the two
planes. The excitations in a plane close to the Fermi surface,
k‖ ≈ kF,‖, can be approximated by a bosonic heat bath of
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FIG. 4. (Color online) Fourier transform of the conductance oscillations with a smooth background term subtracted. The parameters
correspond to 16% doping with a DDW gap of 15 meV and disorder V0 = 0.2t (row 1), V0 = 0.4t (row 2), and V0 = 0.6t (row 3). The
horizontal axis is a magnetic field in terms of kilo-Tesla (103 T) and the vertical axis is in arbitrary units. The left panels in all cases show
the lower frequency component and the right panel the higher frequency component. Note that there is no evidence of the electron pocket
frequency at about B = 2.7 kT.

particle-hole excitations. In this language, the problem maps
onto a two-state Hamiltonian,

H = −tcσx +
∑

j

h̄ωjb
†
j bj + σz

2

∑
j

fj (b†j + bj ), (16)

where σ ’s are the standard Pauli matrices and tc is the hopping
matrix element between the nearest-neighbor planes. Given
the simplification, the sum over k‖ is superfluous, and the
problem then maps onto a much studied model of a two-level
system coupled to an Ohmic heat bath.15 The Ohmic nature
follows from the fermionic nature of the bath.16 The effect of
the bath on the transition between the planes is summarized
by a spectral function,

J (ω) = π

2

∑
j

f 2
j δ(ω − ωj ). (17)

For a fermionic bath, we can choose

J (ω) =
{

2παω, ω � ωc

0, ω � ωc,
(18)

where ωc is a high-frequency cutoff, which is of the order of
ωc = 2/τab, where τab is of the order of the planar relaxation

time. For a Fermi bath, the parameter α is necessarily restricted
to the range 0 � α � 1.16 Moreover, for coherent oscillations
we must have α < 1/2.15 However, we shall leave α as an
adjustable parameter, presumably less than or equal to 1/2 to
be consistent with our initial assumptions. While a similar
treatment is possible for a non-Fermi liquid,17 the present
discussion is entirely within the Fermi liquid theory.

The quantity γ is the interplanar tunneling rate renormal-
ized by the particle-hole excitations close to the planar Fermi
surface and can be easily seen to be15

γ = 2tc

h̄

(
2tc

h̄ωc

) α
1−α

. (19)

The c-axis resistivity is then

ρc = h̄

e2

1

dg2D(εF ,H )h̄ωc

(
h̄ωc

2tc

) 1
1−α

. (20)

This equation can be further simplified by expressing it as
a ratio of ρc/ρab, but this is unnecessary. Two important
qualitative points are as follows: ρc is far greater than ρab,
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FIG. 5. (Color online) Fourier transform of the conductance oscillations with a smooth background term subtracted. The parameters
correspond to 16% doping with a DDW gap of 30 meV and disorder V0 = 0.2t (row 1), V0 = 0.4t (row 2), and V0 = 0.6t (row 3). The
horizontal axis is a magnetic field in terms of kilo-Tesla (103 T) and the vertical axis is in arbitrary units. The left panels in all cases show
the lower frequency component and the right panel the higher frequency component. Note that there is no evidence of the electron pocket
frequency at about B = 2.7 kT.

and the root of the quantum oscillations of ρc is quantum
oscillations of the planar density of states.

VI. CONCLUSIONS

We have shown that a qualitatively consistent physical
picture for quantum oscillations can be provided with a simple
set of assumptions involving reconstruction of the Fermi
surface due to density wave order. Although not presented
here, we have also noted that even for 15% doping one can
observe magnetic breakdown if the gap is small, in the range
20–30 meV. This appears to be consistent with even more
recent unpublished experiments.18 Although the specific order
considered here was the DDW, we have shown previously that
at the mean-field level, a very similar picture can be provided
by a twofold commensurate spin density wave (SDW).6 Thus,
it appeared unnecessary to repeat the same calculations using
the SDW order.

In YBCO, studies involving tilted fields seem to rule out
a triplet order parameter, hence the SDW.19 Moreover, from
nuclear magnetic resonance (NMR) measurements at high
fields, there appears to be no evidence of a static spin density
wave order in YBCO.20 Similarly, there is no evidence of

SDW order in fields as high as 23.2 T in YBa2Cu4O8,21 while
quantum oscillations are clearly observed in this material.22

Also, no such evidence of SDW is found up to 44 T in
Bi2Sr2−xLaxCuO6+δ .23 At present, results from high-field
NMR in NCCO do not exist, but measurements are in
progress.24 It is unlikely that such static SDW order will
be revealed in these measurements. This conjecture is based
on the zero-field neutron-scattering measurements, which
indicate a very small spin-spin correlation length in the relevant
doping regime.25 A long-range SDW order cannot appear
merely by applying high magnetic fields, which is energetically
a weak perturbation even for a 45 T field.26

As to singlet order, most likely relevant to the observation of
quantum oscillations,27 a charge density wave is a possibility.
This has recently found some support in the high-field NMR
measurements in YBCO.20 As to singlet DDW, there are
two neutron scattering measurements that seem to provide
evidence for it.28 However, these measurements have not
been confirmed by further independent experiments. However,
DDW order should be considerably hidden in NMR involving
nuclei at high symmetry points, because the orbital currents
should cancel.
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A mysterious feature of quantum oscillations in YBCO is
the fact that only one type of Fermi pocket is observed. If a
twofold commensurate density wave is the mechanism, this
will violate the Luttinger sum rule.3,29 We have previously
provided an explanation for this phenomenon in terms of
disorder arising from both defects and vortex scattering in
the vortex liquid phase.11 However, the arguments are not
unassailable. In contrast, for NCCO, the experimental results
are quite consistent with the simple theory discussed above.
We have not addressed angle-dependent magnetoresistance
oscillations (AMRO) in NCCO, as the data seem to be
somewhat anomalous,8 although within the Fermi liquid
framework discussed here it should be possible to address
this effect in the future.

The basic question as to why Fermi liquid concepts should
apply remains an important unsolved mystery.30 It is possible
that if the state revealed by applying a high magnetic field has
a broken symmetry with an order parameter (hence a gap), the
low-energy excitations will be quasiparticle-like, not spectra
with a branch cut, as in variously proposed strange metal
phases. In this respect, the notion of a hidden Fermi liquid
may be relevant.31
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APPENDIX: THE DERIVATION OF THE
TRANSFER MATRIX

The DDW Hamiltonian in real space is

H =
∑

i

εic
†
i ci−t

∑
〈i,j〉

eiai,jc†i cj−t ′
∑
〈i,j〉′

eiai,jc†i cj− t ′′
∑
〈i,j〉′′

eiai,jc†i cj

+
∑

i

iW0

4
(−1)n+mc†i ci+x̂−

∑
i

iW0

4
(−1)n+mc†i ci+ŷ+H.c.

(A1)

Here, eiai,j is the Peierls phase due to the magnetic field. The
summation notations are as follows: 〈i,j〉, 〈i,j〉′, and 〈i,j〉′′
imply a sum over nearest-neighbor, next-nearest-neighbor, and
the third-nearest-neighbor sites, respectively. For example,
with the lattice constant set to unity, 〈i,j〉 is satisfied when
i = j ± x̂ or i = j ± ŷ. Likewise, 〈i,j〉′ requires i = j + x̂ ± ŷ
or i = j − x̂ ± ŷ and 〈i,j〉′′ requires i = j ± 2x̂ or i = j ± 2ŷ.
Here W0 is the DDW gap and i = (n,m). Consider an eigenstate
|�〉 with an energy eigenvalue E: H |�〉 = E|�〉, where
|�〉 = ∑

i ψ(i)|i〉; the amplitude at a site is ψ(i). Then the

Schrödinger equation can be written in terms of the amplitudes
ψn(m) of the nth slice for all values of m = 1,2, . . . ,M:

Eψn(m) = εiψn(m)−t[ψn+1(m)+ψn−1(m) + e−inφψn(m+1)

+ einφψn(m − 1)] − t ′[ei(−n− 1
2 )φψn+1(m + 1)

+ ei(n+ 1
2 )φψn−1(m + 1) + ei(n+ 1

2 )φψn+1(m − 1)

+ ei(−n− 1
2 )φψn−1(m−1)]−t ′′[ψn+2(m) + ψn−2(m)

+ e−i2nφψn(m + 2) + ei2nφψn(m − 2)]

+ iW0

4
(−1)n+m[ψn+1(m) + ψn−1(m)]

− iW0

4
(−1)n+m[e−inφψn(m+1) + einφψn(m−1)].

(A2)

With the periodic boundary condition along the y axis,
i.e., ψn(M + 1) = ψn(1), the Schrödinger equation can be
expressed as a matrix equation:

0 = −Unψn+2 + Anψn+1 + Bnψn + Cnψn−1 + Dnψn−2,

(A3)

where Un, An, Bn, Cn, and Dn are M × M matrices
defined in the equations following Eq. (3). Now we can
solve the Schrödinger equation for ψn+2 to obtain ψn+2 =
U−1

n (Anψn+1 + Bnψn + Cnψn−1 + Dnψn−2). Then the ampli-
tudes at a set of four successive slices, ψn−1 through ψn+2, can
be written in terms of the amplitudes of a previous set of four
successive slices, ψn−2 through ψn+1. Thus, the transfer matrix
in the main text follows.
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