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Controlling non-Abelian statistics of Majorana fermions in semiconductor nanowires
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Under appropriate external conditions a semiconductor nanowire in proximity to an s-wave superconductor can
be in a topological superconducting (TS) phase. This phase supports localized zero-energy Majorana fermions
at the ends of the wire. However, the non-Abelian exchange statistics of Majorana fermions is difficult to verify
because of the one-dimensional topology of such wires. In this paper we propose a scheme to transport Majorana
fermions between the ends of different wires using tunneling, which is shown to be controllable by gate voltages.
Such tunneling-generated hops of Majorana fermions can be used to exchange the Majorana fermions. The
exchange process thus obtained is described by a non-Abelian braid operator that is uniquely determined by the
well-controlled microscopic tunneling parameters.
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I. INTRODUCTION

Majorana fermions (MFs) have been the subject of intense
recent studies in part due to their potential application in
topological quantum computation (TQC).1–7 Unlike ordinary
fermionic or bosonic operators for which the particle creation
operators are the Hermitian conjugate of the annihilation
operators, MF operators γ are self-adjoint (γ † = γ ). In this
sense, MFs are their own antiparticle and the realization of
such excitations would be an example of such particles which
had been proposed more than 75 years ago.8 MFs are of
interest for TQC because, despite having no internal degrees
of freedom individually, a pair of MFs, say, γ1 and γ2, have two
distinct possible states (fusion channels). These states, which
may be thought of as the two possible occupation states of
the complex fermionic operator c† = γ1+iγ2

2 , are energetically
degenerate to a degree exponential in the separation of the
Majorana fermions, and correspond to the eigenstates of the
combined operator ıγ1γ2, with eigenvalues ±1. To the best
of our knowledge, such a topological protected degeneracy
has yet to be seen in nature, and the observation of such
would be a major breakthrough in physics. The central idea
of TQC is to use the topologically degenerate states of a
pair of MFs as a two-level topological qubit which would in
principle be protected from decoherence. The manipulation of
the information contained in the topological qubits requires the
use of topological braid operations which consist of moving
the MFs around one another.

In the past few years, topological superconductors have
become promising candidates for realizing MFs.9–16 Re-
cently, it has been proposed that a semiconductor thin film
with Rashba-type spin-orbit (SO) coupling, together with
proximity-induced superconductivity and Zeeman splitting,
would be a suitable platform for realizing a Majorana-fermion-
carrying topological superconducting (TS) state.17–20 The
s-wave superconducting pairing potential can be induced in
the semiconductor system by placing it in proximity to a
conventional superconductor, such as aluminum. The Zeeman
splitting can similarly be induced, in principle, by proximity
to a magnetic insulator.20 The one-dimensional version of

this system, i.e., a semiconducting nanowire with proximity-
induced s-wave superconductivity, has also been shown to
host MFs as zero-energy modes at the ends of the wire under
appropriate conditions.21,22 The one-dimensional nanowire
geometry has the specific advantage that the Zeeman splitting
VZ in the nanowire is not required to be proximity induced
from a magnetic insulator, but instead can be introduced by
a magnetic field parallel to the nanowire.22 Such a parallel
magnetic field would not introduce unwanted orbital effects
such as vortices if a thin-film superconductor is used to
generate the superconducting proximity effect. The proposed
semiconducting structures exist in a TS phase and supports
MFs at its ends when the s-wave superconducting pair
potential �, Zeeman splitting VZ , and the chemical potential μ
satisfy the condition V 2

Z > �2 + μ2.17,20,22 Thus the chemical
potential μ, which can be controlled by an external gate
potential, can be used to tune a nanowire from the TS
phase to a nontopological (NTS) phase. In fact, the s-wave
proximity effect on an InAs quantum wire, which also has a
sizable SO coupling, may have already been demonstrated in
experiments.23 These semiconductor-based proposals for real-
izing a TQC platform can take advantage of the considerably
advanced semiconductor fabrication technology. Therefore, it
seems that a Majorana-carrying TS state in a semiconductor
quantum wire may be within experimental reach.

Until recently, motivated by experiments, most discus-
sions of observing non-Abelian statistics using MFs have
been restricted to two-dimensional (2D) systems. In 2D
non-Abelian systems, the quantum information associated
with MFs can be manipulated in a topologically protected
manner by exchanging the Majorana bound states (e.g., by
adiabatically moving vortices in p + ip superconductors).24,25

The protection of the topological degeneracy associated with
MFs requires the MFs to remain spatially separated at all
steps of the exchange. Therefore, at first glance, it appears
that it is impossible to exchange the MFs at the ends of a
one-dimensional (1D) wire, since any such attempt would
necessarily lead to the spatial overlap of MFs at some stage
of the overlap process. A solution to this problem has been
provided by by Alicea et al.,26 who have shown that connecting
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up a system of nanowires into a network allows one to
exchange MFs. In their proposal, the two MFs γ1 and γ2
at the ends of a wire can be exchanged by introducing an
additional nanowire B. The additional nanowire B allows one
to temporarily move one of the MFs, say, γ1, away from the
original nanowire A, so that the other MF γ2 can be moved
across the wire A without colliding with γ2. The MF γ1 can
then be returned from the wire B back to its original wire A.
While this scheme solves the basic problem of non-Abelian
statistics in 1D, it requires the transport of a MF across a
trijunction between two topological nanowires A and B, which
is potentially a more complex topological object than the
simple topological nanowire. The continuous transport of MFs
through such a trijunction is potentially dependent on details
of the junction that may be difficult to control.27 Moreover,
from a theoretical point of view, the explicit determination
of the non-Abelian statistics in this geometry in terms of the
microscopics of the junction is somewhat complicated.

In this paper we propose an alternative scheme to transport
MFs at the ends of one-dimensional semiconductor nanowires
where the ends of the nanowires remain fixed, but the tunneling
amplitudes between the end MFs are varied. Bringing the
end MFs closer together allows one to create a nonvanishing
Hamiltonian of the MFs which can generate effecting MF
hopping from one end site to another. Using this picture of
a dynamically changing tunneling Hamiltonian, we will be
able to derive a simple explicit expression for the non-Abelian
statistics transformation of the MFs in terms of tunneling
matrix elements.

II. OUTLINE AND SUMMARY OF RESULTS

As mentioned above, MFs are strictly zero-energy modes
with an associated topological degeneracy only in the limit
when they are separated by a distance that is large compared
to the decay length of the MFs. The two states of the MFs
γ1 and γ2 can be described in terms of the two possible
occupation states of the Dirac fermion c† = γ1 + iγ2. These
two states correspond to the eigenvalues 0 and 1 of the number
operator n = c†c = 1+iγ1γ2

2 . In general, the Hamiltonian for a
pair of MFs with a non-negligible splitting produces a splitting
between the two energy states and can be written as

Htunneling = iζ12(x)γ1γ2, (1)

where ζ12(x) is the tunneling matrix element for the MFs which
depends on the separation x between the MFs γ1 and γ2.25

The energy splitting between the n = 0 and n = 1 states is
given by |ζ1,2(x)|. Therefore, the topological degeneracy of
MFs emerges only in the limit x � ξ when the MF overlap
matrix element ζ12(x) vanishes because of the localization of
the MF wave functions. Here ξ is the localization length of
the MFs. The tunneling of MFs at the ends of different wires,
whose ends are placed close together, is entirely analogous to
the tunneling of electrons between two quantum dots which
can be controlled by raising and lowering the barrier between
the dots. Similarly, tunneling amplitudes between MFs on
different semiconductor nanowires can be controlled simply by
adding a gate-controllable tunnel barrier between the MFs.28

Gate voltages can also induce tunneling between MFs at the
ends of the same TS segment by tuning the nanowire close to

a TS-NTS phase transition.20 Bringing the nanowire close to
the TS-NTS transition decreases the gap of the system, which
in turn increases the localization length ξ of MFs in the wire
and allows the tunneling between the initially localized MFs
at the ends of TS segments. The quantitative details of how the
tunneling is controlled in topological nanowires is discussed
in the Appendix.

Tunneling of ordinary fermions such as electrons can be
used to move electrons from one quantum dot to another in
a system of quantum dots. In this paper, we will show that
the same principle applies to MFs, and repeated use of the
tunneling Hamiltonian in Eq. (1) can be used to exchange MFs
γ1 and γ2 in a system of TS nanowires that hosts such MFs at its
ends. The unitary time-evolution operator U associated with
the exchange maps γ1 → Uγ1U

† = λγ2 and γ2 → Uγ2U
† =

−λγ1, where λ can be directly computed from the tunneling
matrix elements ζi,j involved in moving the MF γ1 to the
starting position of the MF γ2. In the low-energy subspace
of MFs, the time-evolution operation U , which describes the
exchange process, has the usual form of a braid matrix24

U = e
π
4 λγ1γ2 . (2)

While there are only two possible answers λ = ±1 for
the braid matrix, it is critical to be able to determine the
factor λ for a given braid since this is what distinguishes
“clockwise” from “counterclockwise” exchanges. For the
specific geometry discussed in the Appendix with wires placed
in a superconducting film together with an in-plane magnetic
field at 45◦ to the wires, the sign of the braid matrix λ is
determined by the sign of the Rashba spin-orbit coupling
constant α.

The braiding scheme we will discuss is potentially related
to measurement-only schemes for braiding of topological
quasiparticles.29,30 However, it is not clear how the anyon
model postulates assumed in the measurement-only theory
apply to the superconducting nanowire systems described by
mean-field BCS theory. For example, the identification of the
tunneling matrix element between MFs in Eq. (1) with the
topological charge measurement in Ref. 30 becomes subtle
in cases where the sign of the tunneling ζ12(x) oscillates
in sign with the separation x. On the other hand, the
approach in this paper is based only on the MF tunneling
Hamiltonian Eq. (1), which can be derived microscopically
from BCS Hamiltonians.31 The tunneling matrix elements
ζij (x) themselves depend on the details of the nanowire system
such as the spin-orbit coupling, the orientation of the wire, and
the Zeeman splitting. Therefore, we first consider exchange
of MFs around a specific triangular loop geometry in terms
of the tunnel matrix elements between the various MFs, and
then in the Appendix we show how the microscopic tunneling
parameters may be calculated in one specific geometry. As a
result of our calculation, we find that for general values of the
tunneling, the parameter λ in the braid matrix U has the simple
form λ = sgn(ζ12)χ , where χ is the junction chirality of the
triangular loop that we will define as the product of tunnelings
around the loop. Finally, we would like to note that while the
motivation of exchanging MFs is to be able to manipulate the
information contained in topological qubits constructed from
MFs in an effort to perform TQC, it is well known that braiding
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by itself is insufficient for TQC.6 However, MF exchanges are
still crucial for one of the most direct tests of non-Abelian
statistics and probably also for any future TQC schemes using
MFs.

III. MF TRANSPORT

To understand how MF transport in a system of nanowires
can be induced by tunneling, consider the simple system of
nanowires shown in Fig. 1(a) consisting of three semicon-
ducting nanowire segments. Two of these segments [shown
by solid blue lines in the schematic in Fig. 1(b)] are in the
TS phase, while the wire shown with the red dashed line is
in the NTS phase and serves as the tunnel barrier connecting
MFs. Each end of the wires in the TS phase supports a MF
(shown as disks). In the initial state [shown in the upper
panel of Fig. 1(b)], the gate voltage of the NTS segment
is chosen to allow a finite tunneling amplitude (shown by
the light blue oval) across it. This pairs up the MFs γ2 and
γ3 into finite-energy states with a gap. Thus the operators
γ2,3 become gapped MFs (shown as dark blue disks) and
cannot be used to store quantum information as can be done
with the true zero-energy MFs (shown as light orange disks).
The transfer of the MF from position 1 to 3 is achieved by
adiabatically deactivating the tunneling in the NTS segment
2–3 and activating the tunneling in the TS segment 1–2.

The process of transferring the MF from position 1 to
3 shown in Fig. 1(b) is described by the time-dependent
tunneling Hamiltonian that is derived by extending the
tunneling Hamiltonian in Eq. (1) and can be written
as

H = [ζ12α(t)γ1γ2 + ζ23(1 − α(t))γ2γ3], (3)

where ζ12 and ζ23 are the activated tunneling amplitudes across
the segments 1–2 and 2–3, respectively. Over the transfer

FIG. 1. (Color online) (a) Combination of SC, Zeeman, and gate
potentials leads to nanowire segments in TS and NTS phases. Gates
1 and 3 are adjusted such that the nanowire is in the TS phase, while
gate 2 is adjusted so that the wire is in the NTS phase corresponding
to the schematic in (b). (b) Nanowire segments in the TS phase
are shown as blue (solid) lines and NTS segments are shown as red
(dotted) lines. Orange (light) and blue (dark) circles indicate unpaired
and paired MFs at TS-NTS interfaces, respectively. MFs are paired
by tunneling across the TS or NTS segments denoted by the light
blue oval. Decreasing the tunneling amplitude between γ2 and γ3 and
simultaneously increasing the tunneling amplitude between γ1 and γ2

can effectively transfer MF γ1 → γ3.

process α(t) varies adiabatically from α(0) = 0 to α(t1) = 1. It
is convenient to understand the braiding procedure for MF op-
erators in the Heisenberg representation γj (t) = U †(t)γjU (t),
where the U is the unitary time-evolution operator U (t) =
T e−i

∫ t

0 H (τ )dτ (which is a time-ordered exponential). The
operators γj (t) can be computed from the Heisenberg equation
of motion γ̇j (t) = i[H (H )(t),γj (t)]. The Hamiltonian [Eq. (3)]
describing the evolution of γj (t) can be written compactly in
terms of an effective B field [Bj (t)] as

H (H )(t) =
∑

a,b,c=1,2,3

εabcBa(t)γb(t)γc(t), (4)

where εabc is the antisymmetric Levi-Civita tensor. The time-
dependent B field given by

B(t) = [1 − α(t)]ζ23(1,0,0) + α(t)ζ1,2(0,0,1). (5)

The Heisenberg equation of motion for γa(t) takes the form

γ̇a = 2εabcBb(t)γc(t). (6)

This equation of motion is identical to that of the spin
operators σa(t) of a spin-1/2 particle in a time-dependent
magnetic field B(t) [with a Hamiltonian H (H )(t) = −B(t) ·
σ (t)]. Furthermore, the initial condition on the operator
γ (t) = γ1 corresponds to the spin operator σ (t) = σ1(0) in
an initial effective magnetic field B(0) = ζ23(1,0,0) that is
aligned or antialigned with σ1. Thus, after a time evolution
under an adiabatically varying magnetic field, the spin (and
correspondingly the MF) remains aligned or antialigned with
the final magnetic field B(t1) = ζ12(0,0,1) at time t = t1. This
leads to the expression

γ3(t1) = sgn(ζ12ζ23)γ1(0). (7)

Thus the transfer of the tunneling amplitude from the segment
2–3 to the segment 1–2 leads to transport of the MF from
position 1 to position 3. The hopping of MFs between sites
described by Eq. (7) is identical to the motion of regular
fermionic operators under that action of tunneling. We will
represent this process by the MF trajectory

1
2−→ 3. (8)

The result in Eq. (7) is consistent with a somewhat different
approach suggested by Kitaev.32

IV. MFs AS DEFECTS IN DIMER LATTICES

In the previous section, we saw that to transport a single MF
from one position to another it was necessary to make use of
another pair of MFs which were coupled by a weak tunneling
so that they were not strictly zero-energy MFs. The single
MF being exchanged had to be a true zero-energy MF with
no tunneling, while the pair of MFs with tunneling between
them may be thought of as a gapped MF dimer. Exchanges of
true zero-energy MFs requires a generalization of this picture
to include several isolated MFs which are not coupled to any
other MF by tunneling. As is clear from Fig. 1(b), such a
process also requires a supply of gapped pairs of MFs (i.e., MF
dimers). In this paper, we will consider a system of nanowires
with end MFs, most of which are paired up by tunneling
into MF dimers as shown in Fig. 2(a). If all MF sites are
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FIG. 2. (Color online) (a) Configuration of TS nanowires in
a square dimer lattice with 2 isolated MFs. MFs are effectively
bound to defects (unpaired sites) on the dimer lattice. Tunneling
between different TS segments fuses TS wires into isolated effective
“topological wires” shown in green (gray) blocks with MF end modes.
(b) MF transfer processes analogous to Fig. 1 can extend effective
TS wires and move MFs in dimer lattice in a way analogous to
Alicea et al. (Ref. 26). (c) and (d) Similar transfer processes can
be used to switch the MF end modes between different effective
“topological wires.” All operations of the MF square lattice either
exchange, contract or switch ends of different “topological wires.”

completely paired up, then the system has no true zero-energy
MFs and no topological degeneracy or non-Abelian statistics.
Therefore we consider a system, where, in addition to the
MF dimers, there are a few isolated MFs that are unpaired
by tunneling. If one considers a regular lattice of nanowires
so the the end MFs live on the vertices of a square lattice
(Fig. 2), a system of dimerized MFs forms a dimer covering
of the lattice, while isolated MFs are associated with defects
(unpaired sites) in the MF dimer lattice. As seen by comparing
Figs. 2(a) and 2(b), the transport of MFs on the dimer lattice
is obtained by changing the dimerization pattern on the dimer
lattice analogous to Fig. 1(b).

The MFs on the dimer lattice can also be thought of as the
end points of topological wires. To see this we define effective
“topological wires,” shown by green (gray) boxes in Fig. 2,
by considering TS wire segments coupled by tunneling as a
single topological wire. This identification relates our proposal
in a direct way to the proposal of Alicea et al.26 However, the
details of the physical implementation remain different and the
dimer implementation presented in this paper will allow us to
directly use Eq. (7) to determine the form of the braid matrix in
Eq. (2). The continuous processes required by Alicea et al. for
exchanging MFs were extending and contracting topological
wire segments together with an operation that we will refer
to as exchanging the ends of different topological wires. This
process required bringing together a pair of topological wires
in a trijunction and effectively takes a pair of topological
wires with end points γ1,2 and γ3,4 and creates a new pair
of wires with end points γ1,3 and γ2,4. All these processes can
be accomplished in a MF dimer lattice by repeated application
of the process shown in Fig. 1 associated with Eq. (7). The
analog of the extension and contraction process in a dimer
lattice is shown in Figs. 2(a) and 2(b), while the end switching
process is shown in Figs. 2(c) and 2(d).

V. NON-ABELIAN STATISTICS OF MFs IN NANOWIRES

In this section, we show explicitly that exchange of MFs
in any dimer lattice can always be described by an equation
of the form of Eq. (2). Unpaired MFs can be exchanged via
discrete tunneling operations of the form shown in Fig. 1(b).
Since the physical positions of the MFs are exchanged by the
correct sequence of MF transfers, the resulting transformation
of the MFs at the end of the transformation t = tfinal has the
general form

γ1(tfinal) = λγ2(0), γ2(tfinal) = λ̃γ1(0). (9)

However, consistency with non-Abelian statistics also require
us to prove that λλ̃ = −1. If λλ̃ = −1, the exchange trans-
formation can be represented by the operator U of the form
Eq. (2).

To show λλ̃ = −1, let us label the unpaired MFs, which
are to be exchanged as 1 and 2, and take all other MFs as
paired, (2n − 1,2n) for n = 2, . . . ,N . The positions of the
MFs following each step (labeled by the index p) of the
exchange process, which permutes the positions of the MFs,
can be represented by the function πp(j ), where j = 1, . . . ,2N

is the MF index. After each step p, the MF coordinates are
updated from πp−1 to πp according to the relation

πp(j ) = πp−1[Cp(j )], (10)

where Cp is a cyclic (clockwise or anticlockwise) permutation
of the MFs ap, 2np − 1 and 2np corresponding to Eq. (7). Here
we choose ap to be one of the unpaired MFs, 1 or 2, and np > 1
such that MF dimer (2np − 1,2np) is paired. The equation of
motion for the unpaired Majorana operators corresponding to
Eq. (7) is

γπp+1(ap)(tp+1) = λpγπp(ap)(tp), (11)

where

λp = sgn
(
ζπp+1(2np−1)πp+1(2np)ζπp(2np−1)πp(2np)

)
. (12)

The total sign λλ̃ picked up by the unpaired MFs is the product
λλ̃ = ∏

pλp. To calculate this product we define a sequence
Qp = sgn(∏n>1ζπp(2n−1),πp(2n)). From Eq. (12) it follows that
Qp+1 = λpQp, so that

Qfinal = λλ̃Qp=0. (13)

Note that since each cyclic permutation Cp contains an
even number of exchanges (i.e., is an even permutation), the
permutations πp at each step (including the final permutation
πfinal), which is a product of Cp’s, is also an even permutation.

Since the Hamiltonian is required to return to its initial
configuration, the MFs at positions (2n − 1,2n) must be
paired by tunneling for n > 1. This requires that πfinal is
composed of a pair exchange of the positions of MF dimers
(2n − 1,2n) ↔ (2n′ − 1,2n′) together with possible internal
flips (2n − 1 ↔ 2n) of the dimers. Since πfinal is an even
permutation, and dimer exchanges are even permutations,
the number of internally flipped dimers (2n − 1 ↔ 2n) in
πfinal is even. Moreover, the unpaired pair of MFs (1,2) is
flipped in πfinal. Thus an odd number of the paired MF dimers
(2n − 1 ↔ 2n) must be flipped for n > 1. Each such dimer
flip changes the sign of Qfinal, since ζ2n−1,2n = −ζ2n,2n−1 for
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n > 1. This leads to the relation Qfinal = −Qp=0 = λλ̃Qp=0,
proving the consistency condition for non-Abelian statistics,
i.e., λλ̃ = −1.

VI. EXCHANGE AROUND A TRIANGULAR LOOP

A specific realization of the non-Abelian statistics in
nanowire systems is provided by a triangular loop geometry
shown in Figs. 3 and 4. The triangular loop consists of one end
(A2,B2 and C2) of each of three TS segments (A, B, and C)
connected by NTS segments to form a triangle. The other ends
are labeled A1, B1, and C1. The MFs to be exchanged, referred
as 1 and 2, are assumed to be localized at two of these six
ends of TS segments. Each of the steps for the MF exchange
(shown in Figs. 3 and 4) consists of moving exactly one MF
from one position to the other (shown by dotted arrows) by
adiabatically turning off the tunneling in some wire segment
and increasing it in an adjoining segment as discussed before.

The procedure to exchange the MFs 1 and 2 at the ends
of different TS segments through the trijunction takes place
in four steps shown in Fig. 3. The signs associated with
the exchange λ and λ̃ can be determined by following the
trajectories of the MFs 1 and 2 and applying Eqs. (7) and (9).
From Fig. 3, it is clear that the sequence of positions followed
by the MFs 1 and 2 are

MF 1: A2
C2−→
(3)

B2,

(14)
MF 2: B2

C2−→
(2)

C1
C2−→

(4)≡(1)
A2,

respectively. Here we show only the MF that is moved in
each step, which is numbered in Fig. 4 as (j = 1, . . . ,4)
[marked below the arrows in Eq. (14)]. The MF motion is
shown using the notation defined in Eq. (8) so that the sign can
be calculated using Eq. (7). Applying Eq. (7), the parameters
λ and λ̃ simplify to

λ = −λ̃ = sgn(ζA2B2 )χ, (15)

where χ = sgn(ζA2B2ζB2C2ζC2A2 ) is defined to be the chirality
of the trijunction.27

FIG. 3. (Color online) MFs 1 and 2 at the ends of different TS
segments are exchanged. This is achieved by switching tunnelings
on and off on TS and NTS segments in four steps going from a state
shown in one panel to the next panel. The dotted arrow shows the
motion of MF from the previous panel. The labeling for the sites
A1,A2, B1,B2, and C1,C2 is shown in (1).

FIG. 4. (Color online) MFs 1 and 2 at the ends of the TS segment
on the left leg are exchanged in seven steps similar to Fig. 3. Step
(7) transfers state shown in (6) back to (1) with the effect that the
Majoranas 1 and 2 are interchanged.

Similarly MFs at the ends of the same TS segment can be
exchanged using six steps shown in Fig. 4. From Fig. 4, it is
clear that the sequence of positions followed by the MFs 1 and
2 are

MF 1: A1
A2−→
(3)

C2
B2−→
(4)

B1
B2−→

(7)≡(1)
A2,

(16)
MF 2: A2

C2−→
(2)

C1
C2−→
(5)

B2
A2−→
(6)

A1,

respectively. Step (7) is not explicitly shown in Fig. 4, since it
is equivalent to (1). Applying Eq. (9), the parameters λ and λ̃

simplify to

λ = −λ̃ = sgn
(
ζA1A2

)
χ, (17)

where χ is the junction chirality.
Thus, using Eqs. (17) and (9), we obtain the the result that

the unitary time evolution of the MFs γ1 and γ2 under exchange
can be described by the unique braid matrix

U = e
π
4 χsgn(ζ12)γ1γ2 , (18)

where ζ12 is the tunneling amplitude of the segment separating
γ1 and γ2. The quantities ζ12 and χ for a specific network are
calculated in the Appendix.

VII. CONCLUSION

Non-Abelian statistics for MFs at the ends of TS nanowire
segments can be realized by introducing time-varying gate-
controllable tunnelings between MFs in a nanowire system to
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exchange the end MFs. Similar to the previous proposal for
braiding MFs in 1D wires, our system can also be embedded
in 3D, leading to the possibility of non-Abelian statistics
in 3D. The isolated MFs being exchanged in the tunneling
geometry considered in this paper may be thought of as
defects in a dimer lattice, i.e., sites that are unpaired by
tunneling. Alternatively, this system may also be thought of
as a discretized implementation of the continuous nanowire
network proposal of Alicea et al.26 However, the discrete
implementation discussed in this paper allows us to compute
the braid matrix explicitly in terms of MF overlaps. The
non-Abelian braid matrix for exchange around a triangular
loop geometry is given by a product of the fusion channel of the
MFs ζ1,2 and the junction chirality χ . The fusion channel ζ1,2

is simply the tunneling matrix element between the MFs being
exchanged and the junction chirality is the product of tunneling
terms around the triangular junctions. Thus the braid matrix in
the tunneling geometry considered in this paper is completely
determined in terms of microscopic tunneling parameters by
Eq. (18), making nanowire systems well-controlled platforms
to realize non-Abelian statistics.
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APPENDIX: CALCULATION OF TUNNELING MATRIX
ELEMENTS FOR A SPECIFIC NANOWIRE SYSTEM

In the main text of the paper we saw how controlling the
tunneling between MFs can be used to generate transport of
Majorana fermions from one point to another and eventually
generate exchanges and braids that are useful for TQC. The
sign of the resulting exchange was found to be determined
by the signs of various tunneling matrix elements. While
the existence of non-Abelian statistics is demonstrated in the
paper in general, the signs of the tunneling matrix elements
themselves are depend on the microscopic details of the
system.

In this Appendix, we calculate the tunneling matrix ele-
ments between the various MFs at a junction for a network
of orthogonal wires on a superconducting substrate as shown
in Fig. 5. A Zeeman potential is applied at 45◦ to the wires.
The wires in the TS phase (shown in dark blue), which support
MFs (shown as orange disks) at their ends, are taken to have a
Rashba spin-orbit coupling generated from interaction with the
superconducting substrate. The Bogoliubov de Gennes (BdG)
Hamiltonian for the wire along x is given by

HBdG = [ − η∂2
x − μ(x)

]
τz + Vzσ · B̂ + ıα∂xσyτz + �τx

(A1)

FIG. 5. (Color online) Schematic of orthogonal nanowire system
on a superconductor (shown as a light rectangle) that generates
tunneling of MFs (shown as light orange disks). The entire system is
subject to an in-plane magnetic field to generate Zeeman coupling.
Nanowire segments in the TS phase are shown as dark blue rectangles
with end MFs. Tunneling is generated between MF T and MF L by
conventional tunneling across a nearly depleted nanowire in the NTS
phase. The tunneling can be calculated using the Bardeen tunneling
formula (Ref.33) as the matrix element of the current operator in the
middle of the wire (black dotted line). Similarly tunneling is generated
between MF L and MF R by lowering the topological gap so that the
wave functions have significant overlap at the middle of the wire
(black dotted line).

and for the wire along y is given by

HBdG = [ − η∂2
y − μ(y)

]
τz + Vzσ · B̂ − ıα∂yσxτz + �τx.

(A2)

The direction of the Zeeman field is B̂ = (x̂ + ŷ)/
√

2. Follow-
ing the spin rotation and phase transformations in Ref. 20, for
negative Rashba coupling α < 0, the Majorana wave functions
at the left and the right ends of the x wires have the form

φL =
(

u(x)eıφ/2

ıσyu(x)e−ıφ/2

)
and φR = ıσx

(
u(−x)e−ıφ/2

ıσyu(−x)eıφ/2

)
,

(A3)

respectively, where φ = sin−1 VZ

�
√

2
and u(x) is a real 2-spinor.

Note that in this geometry there is now an additional condition
for the wire to be gapped, i.e.,

√
�2 + μ2 < VZ < �

√
2. This

constraint implies π
4 < φ < π

2 . The Majorana wave functions
for the Majorana fermions at the bottom and top ends of the
wires parallel to the y axis have the form

φB =Q

(
u(y)e−ıφ/2

ıσyu(y)eıφ/2

)
and φT = ıQσx

(
u(y)eıφ/2

ıσyu(y)e−ıφ/2

)
,

(A4)

respectively, where Q = e−ıπσz/4.
Transport of MFs is generated by introducing tunneling into

the system of MFs shown in Fig. 5. The junction chirality χ

defined in the paper depends only on the tunneling from three
end MFs, MF{L,R,T } with wave functions φL,R,T . Let us
start by considering the MF overlap across the NTS segments
(shown as red dashed lines in Fig. 5), which is simplest to
understand in the limit of low negative chemical potential
μ = −|μ| where |μ| � VZ,�. Physically, this corresponds to
a wire that is nearly depleted of electrons and only acts as
a tunnel barrier. In such a case, the Majorana wave function

094505-6
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in the NTS wire has the usual exponentially decaying form
�(x) = �(xI )e−γ |x−xI | as in a barrier, where γ ∼ √

2m|μ|
and xI is the position of the interface between the TS and NTS
wire segments. The tunneling matrix elements ζij between two
MFs at xI,1 = −a/2 and xI,2 = a/2 across the NTS wire can
be calculated from the matrix elements of the current operator
and the wave functions in the middle of the wire33 (x = 0 as
shown by the dark dotted lines in Fig. 5)

ζ = 1

2
[�†

1(0)τz∂x�2(x)|x=0 − ∂x�
†
1(x)|x=0τz�2(0)]

− iα�
†
1(0)σyτz�2(0) ∼ −γ e−γ a�

†
2

(
− a

2

)
τz�1

(
a

2

)

= −ρ�
†
2

(
− a

2

)
τz�1

(
a

2

)
, (A5)

where ρ = γ e−γ a is the overall tunneling strength and we
have assumed λ � α. In this limit, the overlap between a
pair of Majorana wave functions �1 = [u1(x),ıσyu

∗
1(x)]T and

�2 = [u2(x),ıσyu
∗
2(x)]T is given by M = 2ıρ Im(u†

1u2). This
is purely imaginary and manifestly antisymmetric as expected.
Furthermore, since the fundamental spinor u(x) in terms of
which each of u1,2 are written is real, we can write it as u =
(cos θ, sin θ )T , where the parameter θ depends on VZ,μ,α,
etc. With the help of these relations it is easy to tabulate the
Majorana tunneling matrix as an antisymmetric matrix for the
states in the order (L,R,T ) as

ζ = ı
ρ√
2

⎛
⎜⎜⎝

0
√

2 cos φ sin 2θ sin 2θ

∗ 0 (sin φ + cos φ cos 2θ )

∗ ∗ 0

⎞
⎟⎟⎠ ,

(A6)

where the elements in the ∗ have been left empty since
they are determined by the antisymmetry constraint. The
junction chirality χ in the previous section used only the

Majorana modes L,T ,R and is calculated using the expression
χ = ζRLζLT ζT R = ρ3 cos2 φ sin2 2θ [cos 2θ + tan φ], which is
always positive, since tan φ > 1 for the Zeeman direction B̂ =
(x̂ + ŷ)/

√
2 and negative Rashba coupling α < 0. Changing

the Zeeman potential to B̂ = (x̂ − ŷ)/
√

2 flips the chirality.
Changing the sign of the Rashba coupling α requires us
to change φL → ı(u(x)eıφ/2, − ıσyu(x)e−ıφ/2). Since all the
other wave functions are derived from symmetry transforma-
tions applied to φL, the rest of the calculation goes through
as is, with the only difference that u(x) changes to ıu(x).
Therefore the final result for the chirality of the junction is
independent of the Rashba coupling.

The signs acquired by MFs on exchange is dependent
also on the tunneling between the MFs MF L,R across a TS
segment. The tunneling amplitude between Majorana fermions
on the same topological segment is well controlled and can be
calculated in the limit of a long topological wire (wire length
L > α/VZ). In this limit, the MFs only overlap in the limit
where the gate potential is tuned so that the wire is driven
toward a phase transition by tuning μ near to μ =√

V 2
Z−�2. The

relevant slowest decaying spinor component then determines
the tunneling matrix elements and is given by u(x) = [VZ +
sgn(α)

√
V 2

Z−μ2,−μ]T exp[− x
|α| (

√
V 2

Z−μ2−�)]. The tunneling matrix

element is given by M ∼ −iα�
†
Lσyτz�R = −iα Re[u†

LσyuR].
Substituting u, we find the overlap to simplify to M ∝
−iα cos φe−2L/ξ , where ξ = |α|/(

√
V 2

Z−�2−μ). Thus the sign
of ζL,R is determined by the sign of the Rashba spin-orbit
coupling α. Using these results together with Eq. (A6), one
can check the physically reasonable result that changing the
sign of the Rashba coupling α flips the sign of the MFs on
interchange.

Thus, provided care is taken to ensure the conditions
for the braid discussed in this Appendix, the sign of both
clockwise exchanges is positive for positive Rashba coupling
α and negative otherwise. For a given Rasbha coupling the
sign of the braid can be altered by considering anticlockwise
braids.
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