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Nondeterministic ultrafast ground-state cooling of a mechanical resonator
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We present a feasible scheme for the cooling of a mechanical resonator via projective measurements on an
auxiliary flux qubit which interacts with it. We find that ground-state cooling can be achieved with several
random-time-interval measurements. The cooling efficiency hardly depends on the time intervals between any
two consecutive measurements. The cooling scheme is also robust against environmental noise.
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I. INTRODUCTION

In the quantum regime, ground-state cooling of a small
thermal object is an intriguing challenge and one of the most
desirable quantum technologies. Physically, the ground-state
cooling process can be formulated as a transformation from
a thermal state of the small object into its ground state. The
transformation is irreversible and cannot be performed when
the object is isolated.

A mechanical resonator (MR) is a small macroscopic
mechanical object, which can behave as a single-mode
harmonic oscillator with a high frequency and a high quality
factor. The physical realization of its quantum ground state,
usually coupled to an auxiliary setup, has become more
and more important in ultrahigh-precision measurements,
classical to quantum transitions, preparations of nonclassical
states, and quantum information processing.1–3 Throughout
the years, a considerable number of optomechanical4–13

and electromechanical14–19 schemes have been proposed for
achieving ground-state cooling of MRs. Examples are bang-
bang cooling through a Cooper pair box15 or single-shot
state-swapping cooling via a superconductor.18 Recently, some
of us13 proposed a ground-state cooling scheme of an MR in
an optomechanical system by controlling the optical drives.
The best-studied ground-state cooling protocol for MRs is
sideband cooling4–6,8–12 designed originally for cooling atomic
spatial motion. Theoretically, an MR could be cooled down to
its ground state in the resolved sideband limit, i.e., reach a
mean phonon number less than 1. Sideband cooling is now
widely used for MR cooling experiments, and its recent record
for the mean phonon number is about (or less than) 3.8.19

Since ground-state cooling of MRs is difficult to achieve, new
cooling approaches are required.

This work presents an alternate protocol for MR cooling
using projective measurements on an auxiliary qubit. While
it may be used in any stage of the cooling process of an
MR, our protocol is aimed at ground-state cooling. Our
study starts with cooling, and it uses repeated equal-time-
interval measurements on the qubit, introduced for purification
of quantum states20 or measurement-based entanglement
generation.21,22

While repeated equal-time-interval measurements work
well for ground-state cooling, we find, unexpectedly, that
cooling efficiency is significantly better when measurements
are taken randomly. The ground state can be reached in several
random-time-interval measurements in a very short time. We
give an explanation for this unexpected phenomenon. These
results suggest that our protocol is completely robust against
measurement operational errors. In addition, the scheme is also
robust against environmental noise.

II. MODEL

We employ a gradiometer-type flux qubit23–25 as our
auxiliary qubit, though our scheme may be applicable to any
two-level system coupled to an MR. Figure 1 is a schematic
diagram of our cooling setup. The doubly-clamped MR (the
red bar in Fig. 1) is embedded in a flux-qubit circuit, which is
composed of three superconducting loops with four Josephson
junctions (JJs). An in-plane magnetic field B0 induces qubit-
MR coupling via a Lorentz force.26 The top-right blue (bottom
green) part is to measure (operate) the qubit, as described later.

The Hamiltonian of the flux qubit can be written as

Hq = h̄�

2
σx + h̄ε

2
σz, (1)

where σz and σx are the Pauli matrices in the basis of two
persistent current states |↑〉 and |↓〉.27,28 Here, h̄� is the
tunneling amplitude between the two states. The bias energy
h̄ε depends linearly on the external flux bias and in our case is
set to zero by pretrapping one flux quantum �0 in the loop.23,24

The MR is modeled as a single-mode harmonic oscillator
with a high-Q mode of frequency ωm and an effective mass
m. The entire system is characterized by the Hamiltonian26

H = Hq + h̄ωma†a − h̄g(a + a†)σz, (2)

where a and a† are annihilation and creation operators,
respectively, for the MR. The last term denotes the interaction
between the MR and the flux qubit. The coupling constant
is g = B0IpL0x0/h̄, with B0 the magnitude of the in-plane
magnetic field, Ip the magnitude of the persistent current in
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FIG. 1. (Color online) Schematic diagram of the circuit. The
top-left part (red) is the coupled-flux-qubit-MR system, where each
cross denotes a Josephson junction, and the bar denotes a doubly-
clamped MR. The interaction between the MR and the flux qubit
is modulated by an in-plane magnetic field B0. The top-right part
(blue) is a Josephson bifurcation amplifier (JBA) formed by a dc
superconducting quantum interference device (SQUID) shunted by
a capacitance. The bottom part (green) is a bias to control the qubit
energy gap and the coupling strength between the JBA and the qubit.

the loop, L0 the length of the MR, and x0 = √
h̄/(2mωm) the

zero-point displacement of the MR.
Here we consider an MR with fundamental mode frequency

ωm/2π ∼ 100 MHz. The qubit is tuned into resonance or near
resonance with the MR by monitoring the tunneling �.24,29

The coupling constant g/2π , e.g., of the order of MHz, is
much smaller than the qubit frequency, such that the rotating
wave approximation can be used to reduce the Hamiltonian
(2) to the standard Jaynes-Cummings (JC) one (h̄ = 1),

H = ωma†a + �

2
σ̃z + g(aσ̃+ + a†σ̃−), (3)

where σ̃z,± are the Pauli operators in the new basis of ground
and excited states, |g/e〉 = (|↓〉 − / + |↑〉)/√2.

The operator N̂c = a†a + |e〉〈e| in the JC model is con-
served, such that H in Eq. (3) can be represented by the
direct sum of a one-dimensional block in the basis |0,g〉
and two-dimensional submatrices in pairs of bases |n,g〉 and
|n − 1,e〉, when n � 1. The Hamiltonian (3) can therefore be
diagonalized,

H = −�

2
|0,g〉〈0,g| +

∑

n�1

∑

s=±
εs
n|ns〉〈ns|, (4)

where the dressed eigenstates are

|n+〉 = cos θn|n − 1,e〉 + sin θn|n,g〉,
(5)

|n−〉 = sin θn|n − 1,e〉 − cos θn|n,g〉
and the corresponding eigenvalues are

ε±
n = (

n − 1
2

)
ωm ± 1

2

√
(� − ωm)2 + 4g2n. (6)

Here θn satisfies the equation

tan 2θn = 2g
√

n

� − ωm

, (7)

for n � 1.

III. UNITARY EVOLUTION AND REPEATED
MEASUREMENTS

Initially, we prepare the whole system in a separable state,
ρ0 = |g〉〈g| ⊗ ρm. Here ρm is the thermal state of the MR
(or could also be an arbitrary state, where the MR ground
state |0〉 is included). We then perform repeated but random
unequal-time-interval measurements (UTIMs) on the flux
qubit. The whole system evolves under the JC Hamiltonian
(3) in between the measurements. The j th measurement is
assumed to take place at the random time instant tj = jτ + δtj ,
where τ is a given time interval, δtj s are random variations
in time generated by uniformly distributed random numbers
in the region (−τ/2,τ/2), and t0(= δt0 ≡ 0) is the initial
time. When all δtj ≡ 0, the repeated process is reduced
into equal-time-interval measurements (ETIMs) formulated
in Ref. 20. After N such ETIMs on the qubits, and if all
measurement outcomes are |g〉, the density matrix of the MR
becomes

ρ(τ )
m (N ) = V N

g (τ )ρmV †N
g (τ )/P (τ )

g (N ), (8)

where

P (τ )
g (N ) = Tr

[
V N

g (τ )ρmV †N
g (τ )

]
(9)

is the survival probability.20,21 Here

Vg(τ ) ≡ 〈g|e−iHτ/h̄|g〉 (10)

is a non-Hermitian effective evolution operator only acting on
the MR.

Here Vg(τ ) for the model (3) is diagonal in the basis {|n〉},

Vg(τ ) =
∑

n�0

λn(τ )|n〉〈n|, (11)

where the eigenvalues are

λ0 = ei�τ/2 (12)

and

λn = e−i(n−1/2)ωmτ (cos �nτ + i sin �nτ cos 2θn) (13)

with

�n =
√

(� − ωm)2/4 + g2n, (14)

for n � 1. By carefully selecting the time interval τ , such that
sin2 �nτ 
= 0 (for n � 1), all the values

|λn(τ )| =
√

1 − sin2 �nτ sin2 2θn (15)

can be made less than 1, while |λ0(τ )| is always equal to 1.
In the general case of the UTIMs, one has in the large-N

limit

Vg(τ1)Vg(τ2) · · · Vg(τN ) =
∑

n�0

N∏

j=1

|λn(τj )||n〉〈n| → |0〉 〈0| ,

(16)

where τj = τ + δtj − δtj−1 is the unequal time interval, and
|λ0(t)| = 1 � |λn(t)| for n � 1 and arbitrary time t . All the
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density matrix elements of the MR will vanish, except that of
ground state |0〉,

ρ(τ )
m (N ) =

∑

n�0

N∏

j=1

∣∣λ2
n(τj )

∣∣ρ(n)
m |n〉〈n|/P (τ )

g (N )

→ |0〉〈0|, for N → ∞, (17)

where ρ(n)
m ≡ 〈n|ρm|n〉 and the survival probability

P (τ )
g (N ) =

∑

n�0

N∏

j=1

∣∣λ2
n(τj )

∣∣ρ(n)
m → ρ(0)

m . (18)

It is shown above, for both ETIMs and UTIMs, that
repeated measurements can drive the evolution from the initial
state (e.g., the thermal state) to the ground state of an MR.
The process has the same features as those of known ground-
state cooling methods and is an alternate method for ground-
state cooling of an MR. Furthermore, distinct from usual
dynamical cooling schemes, this alternate cooling method is
based on repeated nondynamical measurements.

IV. NUMERICAL RESULTS AND ANALYSIS

Consider a 2π × 100 MHz nanomechanical resonator with
a quality factor Qm = 105 (γm/2π = 200 Hz), coupled to
a flux qubit with a tunneling splitting �  ωm. The MR
is initially at its thermal equilibrium state at the ambient
temperature T = 20 mK, and the corresponding mean phonon
number is n̄(0) = 1/[exp(h̄ωm/kBT ) − 1] = 3.69. Figure 2
shows, for ETIMs, the mean phonon number n̄(N ), the survival
probability P (τ )

g (N ), and the fidelity F (τ )
g (N ) ≡ 〈0|ρ(τ )

m (N )|0〉
as a function of N , the number of measurements. The lines
with red triangles in Fig. 2 are for the resonant case, � = ωm,
and the lines with gray squares correspond to the nonresonant
case, � = 1.1ωm. Ground-state cooling can be reached in
both cases. Figure 2 shows that while ground-state cooling
requires 60 measurements [n̄(N = 60) ≈ 10−4], the mean
phonon number decreases 90% with only five measurements.

The ideal ETIMs, with time interval τ , may be difficult
technically since it requires accurate control of measurement
time intervals. Figure 3 shows, for UTIMs, the same physical
quantities as Fig. 2 for the � = ωm case, but with the higher
bath temperature T = 40 mK and randomly selected time
intervals τj . The mean phonon number is n̄(0) = 7.84, initially.
It is noticeable that ground-state cooling can be achieved
much more efficiently for the UTIMs than for the ETIMs.
It is a remarkable advantage for experimentalists to achieve
ground-state cooling of MRs with random time intervals.

The physical reason is clear. In general, for a fixed n (� 1),
the smaller the maximal value �n = max{|λn(τj )|}j=1,...,N

the faster the term
∏N

j=1 |λ2
n(τj )||n〉〈n| decays with N . For

ETIMs, it is unavoidable that �n (n � 1) exists very close to
one, since for a given finite time interval τ the periodical
function cos(�nτ ) versus �n runs across 0 several times.
The corresponding component |n〉〈n| therefore decays very
slowly. In particular, the component |n〉〈n| will not decay with
N for ETIMs when �n = 1. However, for random UTIMs,
the corresponding

∏N
j=1 |λ2

n(τj )||n〉〈n| decays faster since
∏N

j=1 |λ2
n(τj )| < �2N

n for any n � 1.

FIG. 2. (Color online) (a) The average phonon number n̄(N )
after N ETIMs for the initial phonon number n̄(0) = 3.69. (b)
The corresponding survival probability P (τ )

g (N ) and fidelity F (τ )
g (N )

(inset). The lines with red triangles denote the resonant case � = ωm.
The lines with gray squares denote the nonresonant case � = 1.1ωm.
Here g = 0.04ωm and τ = 10/ωm.

Our cooling scheme is completely robust against measure-
ment operational errors or randomness. It is also robust against
relaxation effects of the MR and the qubit. Our UTIMs can
cool an MR of frequency ωm/2π ∼ 100 MHz, initially at a
thermal state with mean phonon number � 10 and a quality
factor Qm = 105, in the time interval 10τ ≈ 100/ωm, within
10 measurements—two orders of magnitude smaller than the
MR’s relaxation time, ∼1/[n̄(0)γm] ≈ 10000/ωm. It can also
be less than the relaxation time (in the 10 μs range) of the qubit
we considered. However, since the final survival probability is
proportional to the initial population probability at the ground
state, our UTIMs are more suitable for further cooling based
on a precooled MR at a thermal-like state with a smaller mean
phonon number ∼10, e.g., by other cooling methods, such as
sideband cooling.

We should comment that an equal-time-interval
measurement-based cooling of an MR is proposed in
Ref. 31 using a Cooper pair box as the auxiliary, where the
measurement effect is averaged out, but there is no explicit
analytical expression for the process. However, we find that
method fails to achieve the MR cooling for our model after a
considerable number of ETIMs. We should also remark that
in the well-known sideband cooling the MR is coupled to a
high-frequency auxiliary with the faster damping rate. The
energy flows from the MR to the auxiliary and is then quickly
lost to the bath. In contrast, the frequencies or the damping
rates of the MR and the auxiliary qubit are of the same order
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FIG. 3. (Color online) (a) The average phonon number n̄(N ),
(b) the survival probability, and [inset in (b)] the fidelity, after
N measurements in the resonant case � = ωm. Lines with red
triangles denote ETIMs (τ = 8/ωm) and lines with blue circles denote
UTIMs.30 Here the initial phonon number is n̄(0) = 7.84, and the
coupling strength is g = 0.04ωm.

in our model. Our scheme is nondeterministic and is based on
repeated nondynamical measurements.

V. IMPLEMENTATION OF MEASUREMENTS ON THE
FLUX QUBIT

Our UTIMs on the flux qubit can be implemented by a
Josephson bifurcation amplifier (JBA) in a fast and nondestruc-
tive way. As shown in Fig. 1, a JBA32 (blue part) is coupled
to the flux qubit inductively as the measurement device. The
JBA consists of a dc superconducting quantum interference
device (SQUID) shunted by a capacitance C, subject to a
microwave drive IRF cos(ωdt + φA). The JBA-SQUID loop
contains two JJs of identical critical current IA0 and different
phase differences, ϕA1 and ϕA2, respectively. The current in the
loop is IA = ĪA(�A) cos ϕA, with �A, the flux bias in the JBA
SQUID, set by external coils, ĪA(�A) = 2IA0 sin(π�A/�0),
and ϕA = (ϕA1 + ϕA2)/2. The JBA circuit forms a driven
resonator with nonlinear Josephson inductance.

Since the JBA is positioned symmetrically with respect to
qubit loops 1 and 2, the two loops are coupled to the JBA with
equal mutual inductance, M1 = M2. Due to the gradiometer
design, the total qubit flux is decoupled from the JBA.23,24

However, the JBA still couples to qubit loop 3 through its
influence on �3. If πM3〈IA〉 � �0, this influence can be
approximated as a linear coupling to the σ̃z operator of the flux

qubit,33,34 that is, an extra interaction term between the qubit
and the measurement device HI = λ(�3b)σ̃z cos ϕA. Here
the coupling coefficient is λ(�3b) = −(πM3ĪA/�0)κ(�3b)
with κ(�3b) = 2α0 sin[π (�3b/�0)].(d�/dα)|α=ᾱ and ᾱ =
2α0 cos(π�3b/�0), where α0 is the ratio between the Joseph-
son energy of the smaller junctions and that of the two bigger
junctions in the flux qubit, and �3b is the total flux bias
of loop 3. Thus an external on-chip bias current IB3 (green
part in Fig. 1) can be used to monitor the coupling strength
λ(�3b).

Under a strong microwave drive, the Josephson energy of
the junction, −EJA cos ϕA, is expanded beyond the harmonic
approximation and the classical dynamics can be described
by a Duffing oscillator.35 For a certain range of drive
conditions, the nonlinear oscillator exhibits bistable behavior
with hysteresis.32,35 The two possible stable states corre-
spond to different oscillation amplitudes and phases, which
can be distinguished by transmitted or reflected microwave
signals.36–38 Switching between the two stable states happens
when the driving power reaches a threshold. The switching
probability depends on the value of the nonlinear inductance,
which in our case depends on the states of the qubit. This
occurs because the effective Josephson energy of the junctions
of the JBA is modified by the interaction HI as EJA(σ̃z) =
ĪA�0/2π − λ(�3b)σ̃z. Therefore, by measuring the phase of
the transmitted microwave signal, the state of the qubit is
collapsed to one of the eigenstates of its free Hamiltonian, σ̃z

in our case.
In practical UTIMs, the measurement time, which is about

50 ns, should be considered. This is not a problem when
measurements are performed as follows. First, the qubit-MR
interaction is switched off through the in-plane magnetic field
B0. Then a measurement pulse with readout and latching
plateau is sent to the JBA to read out the qubit state and induce
the projection to either |g〉 or |e〉 state. After this projection,
the qubit-MR interaction is switched on again. The process is
repeated until the MR reaches its ground state. An alternative
way to perform the measurement is to bias the qubit away from
the degeneracy point and bias it back after the measurement.
Although this will introduce an additional complication to the
operations, the measurement fidelity could be higher since the
coupling between the JBA and the qubit is stronger.

VI. CONCLUSION

We propose an ultrafast feasible scheme to cool an MR to
its ground state via random-time-interval projective measure-
ments on an auxiliary flux qubit. The measurement scheme
is almost independent of the initial state of the MR. It works
when the MR couples with the qubit either on-resonance or
off-resonance, and it even works when the coupling g becomes
time dependent. The cooling process is robust since it can be
accomplished in a much shorter time than the relaxation times
of the MR and the qubit.

We expect that our scheme will reduce experimental
constraints since there are no requirements for control on the
time intervals of measurements. In principle, the MR can be
cooled to an arbitrarily low temperature with an arbitrarily
small mean phonon number, within a very short time.
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