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Circuit influence on Cooper-pair current in solid-state entanglers
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We study the effects of the circuit impedance on tunneling of Cooper pairs from a superconductor into two
normal-metal leads. We derive the expressions for the crossed and direct Andreev current and consider the limits
of ballistic and diffusive electron motion in the electrodes. The derived analytic expressions show that voltage
cross correlations, induced by the capacitive coupling of normal-metal leads, narrow the region where the crossed
Andreev current dominates over the direct Andreev current, thereby reducing the efficiency of the entangler.
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I. INTRODUCTION

Hybrid nanostructured devices, consisting of a supercon-
ductor that is tunnel coupled to a normal metal, a semicon-
ductor, or a topological insulator, have received considerable
attention recently due to the rich novel physics involved as
well as possible applications. They have been investigated
as possible detectors of Majorana fermions,1,2 detectors
of magnetization switching of single magnetic molecules,3

nanomechanical resonators,4 accurate current sources,5 as
well as generators of mobile Einstein-Podolsky-Rosen (EPR)
pairs.6–8 The interesting new phenomena in these devices
result from the interplay between the electronic states on each
side of the interface between the two materials. In particular,
in the case of the superconductor–normal-metal interface at
subgap conditions, that is, at low temperatures and applied
voltages compared to the superconducting energy gap, the
relevant transport mechanism is Andreev reflection.9,10 In this
process, an electron incident from the normal-metal side is
retroreflected as a hole with the creation of a Cooper pair
on the superconductor side. If two normal-metal leads are
connected to a superconductor via tunnel junctions separated
by a distance that is of the order of the superconducting
coherence length, the Cooper pair can split in a process
termed “crossed Andreev reflection,”7,8,11–16 producing two
electrons that are separated in orbital space and entangled
in spin space. Such EPR pairs are natural candidates for
the solid-state implementation of quantum key distribution
protocols due to weak coupling of the spin degrees of freedom
to the environment, resulting in long coherence lengths and
decoherence times.17,18 Due to difficulties associated with
the decoherence of electrons in the solid state, before the
advent of nanofabrication tools, the original experiments
with EPR pairs were done with polarization-entangled pho-
tons, including demonstration of the violation of Bell’s
inequalities.19 This has not yet been done with electrons.
On the other hand, experiments with electrons have an
advantage over those with photons because the coincidence
rate can be achieved without the need to synchronize the
arrival times. This has enabled the recent demonstration
of orbital entanglement in a fermionic Hanbury-Brown–
Twiss two-particle interferometer using cross-correlation
measurements.20 Besides the fundamental importance of
verifying Bell’s inequalities in solid-state systems, electronic

EPR pairs offer possibilities for future technologies based on
quantum cryptography,21 teleportation,22,23 and information
processing,24 all of which could be integrated with existing
electronics.

For the fabrication of more elaborate devices, as well
as large-scale integration purposes, it is essential to con-
sider the effects of the circuit layout on the Cooper-pair
splitting process. In this paper we consider a solid-state
entangler, schematically represented in Fig. 1. We include
linear impedances at each branch of the three-port device,
as well as the cross capacitance between the normal-metal
leads. For close spacing between the leads, this stray capac-
itance cannot be neglected, since it gives rise to correlations
between voltage fluctuations on different junctions. We find
that these cross correlations reduce the efficiency of the
entangler.

II. METHOD AND RESULTS

The Hamiltonian of our system is given by

H = H0 + HT , (1)

where the unperturbed part,

H0 = HS + HL + HEM, (2)

HS =
∑
k,σ

Ekγ
†
k,σ γk,σ , HL =

∑
i=1,2;k,σ

ε
(i)
k c

(i)†
k,σ c

(i)
k,σ , (3)

HEM =
∑

q

h̄ω(q) b†qbq, (4)

consists of the terms describing the superconductor HS

(with quasiparticle operators describing the excitations out
of the BCS ground state related to electron annihilation
and creation operators via the Bogoliubov transforma-
tions, i.e., ck,σ = ukγk,σ + σvkγ

†
−k,−σ , u2

k = 1 − v2
k = (1 +

ξk/Ek)/2, Ek = (ξ 2
k + �2)1/2), normal-metal leads HL, and

the electromagnetic environment HEM. This last term describes
the three Ohmic circuit elements and a cross capacitance
between the leads, corresponding to the circuit schematically
represented in Fig. 1. The tunneling term is treated as a
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FIG. 1. Electrical circuit diagram of the system studied; the solid
lines indicate the superconductor.

perturbation, and is given by

HT =
∑
i=1,2

Hi, Hi = H+
i + H−

i , H−
i = (H+

i )†,

(5)
H+

i =
∑

σ

∫
dr1dr2T

(i)(r1,r2)ψ (i)†
σ (r1)	σ (r2)e−iφi ,

where the field operators for the normal leads ψ (i)
σ (r) and the

superconductor 	σ (r) are given by

ψ (i)
σ (r) = 1√

V (i)

∑
k

c
(i)
k,σ eik·r, (6)

	σ (r) = 1√
V (S)

∑
k

ck,σ eik·r, (7)

and the phase φi consists of the classical and quantum parts

φi = e

h̄
V t + φ̃i . (8)

In the transition matrix approach,12 the current consisting of
Cooper pairs is given by

I = 4πe

h̄

∑
f,i

|〈f |T (εi + iη)|i〉|2ρiδ(εf − εi), (9)

where η → 0+, and the transition matrix is given by

T (ε) = HT

∞∑
n=0

(
1

ε − H0
HT

)n

, (10)

and ρi = 〈i|ρ|i〉 is the stationary occupation probability of
the initial state |i〉. The current in the above expression (9),
I = ICA + IDA, consists of the crossed Andreev current (where
electrons from a Cooper pair tunnel into different leads),
and the direct Andreev current (both electrons tunnel into
the same lead). The lowest-order contribution to the current
comes from Cooper-pair tunneling, since we consider low
temperatures, kBT � �, and therefore assuming that there are
no quasiparticles on the superconductor. The crossed Andreev
term is given by

ICA = 2e

h̄4

∫ ∞

−∞
dt

∫ ∞

0
dt ′

∫ ∞

0
dt ′′e−η(t ′+t ′′)

×
∑
i 	=i ′,
j 	=j ′,

〈H−
j (t − t ′′)H−

j ′ (t)H+
i (t ′)H+

i ′ (0)〉, (11)

where the tunnel Hamiltonian terms are expressed in the
interaction picture, and the expectation value is taken with

respect to the density matrix of the unperturbed system. By
substituting (5) into (11), we obtain

〈H−
j (t − t ′′)H−

j ′ (t)H+
i (t ′)H+

i ′ (0)〉

=
∑

σ

∫
dr1, . . . ,dr8T

(j )∗(r1,r2)T (j ′)∗(r3,r4)T (i)(r5,r6)

× T (i ′)(r7,r8)
[− F∗

σ (r4,r2,t
′′)F−σ (r6,r8,t

′)

×G(i)>
σ (r1,r5,t−t ′−t ′′)G(i ′)>

−σ (r3,r7,t)δi,j δi ′,j ′

+F∗
σ (r4,r2,t

′′)Fσ (r6,r8,t
′)G(j )>

σ (r1,r7,t − t ′′)

×G(i)>
−σ (r3,r5,t−t ′)δi ′,j δi,j ′

]〈eiφj (t−t ′′)eiφj ′ (t)e−iφi (t ′)e−iφi′ (0)〉,
(12)

where the Green’s functions in the leads, G(i)>
σ (r,r′,t), and the

anomalous Green’s function in the superconductor, Fσ (r,r′,t),
are introduced as

G(i)>
σ (r,r′,t) = 〈

ψ (i)
σ (r,t)ψ (i)†

σ (r′,0)
〉
, (13)

Fσ (r,r′,t) = 〈	−σ (r,t)	σ (r′,0)〉. (14)

By assuming that the junctions are point-contact-like (i.e., their
linear dimension is much larger than the Fermi wavelength,
and much smaller than the superconducting coherence length;
with the separation between junctions being much larger than
the linear dimension of the junctions) and the tunnel matrix
element T (i)(r1,r2) is nonzero only near the junction i, that is,

T (i)(r1,r2) ∼ t
(i)
0 δ(r1 − r(i))δ(r2 − r(i)), (15)

where t
(i)
0 = T (i)

√
V (i)V (S), we can write∑

i 	=i ′

j 	=j ′

〈H−
j (t − t ′′)H−

j ′ (t)H+
i (t ′)H+

i ′ (0)〉

=
∑
i 	=j,σ

∣∣t (i)
0

∣∣2∣∣t (j )
0

∣∣2[G(j )>
σ (t − t ′′)G(i)>

−σ (t − t ′)Fσ (r(i),r(j ),t ′)

×F∗
σ (r(i),r(j ),t ′′)〈eiφj (t−t ′′)eiφi (t)e−iφi (t ′)e−iφj (0)〉

−G(i)>
−σ (t−t ′− t ′′)G(j )>

σ (t)Fσ (r(i),r(j ),t ′)F∗
−σ (r(j ),r(i),t ′′)

×〈eiφi (t−t ′′)eiφj (t)e−iφi (t ′)e−iφj (0)〉], (16)

where

G(i)>
σ (t) = 〈ψ (i)

σ (r(i),t)ψ (i)†
σ (r(i),0)〉 = −i

ν(i)π

2β sinh
(

πt
βh̄

) ,

(17)

Fσ (r(i),r(j ),t)

= σ

V (S)

∑
k

ukvk[e−iEkt/h̄+ik·δrij −2f (Ek) cos(Ekt/h̄)eik·δrij ],

where ν(i) is the density of states per volume of the lead i at
the Fermi level, β = 1/kBT , δrij = r(i) − r(j ), and f (ε) is the
Fermi function. By substituting (16) into (11), we get

ICA = 2e
∣∣t (1)

0

∣∣2∣∣t (2)
0

∣∣2

h̄4

∑
i 	=j,σ

∫ ∞

−∞
dt

∫ ∞

0
dt ′

∫ ∞

0
dt ′′eieV (2t−t ′−t ′′)/h̄

×{
G(j )>

σ (t−t ′′)G(i)>
−σ (t−t ′)Fσ (r(i),r(j ),t ′)F∗

σ (r(i),r(j ),t ′′)
× exp[−Jij (−t ′′) + Jij (t − t ′ − t ′′) + Jj (t − t ′′)
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+ Ji(t − t ′) + Jij (t) − Jij (t ′)] − G(i)>
−σ (t − t ′ − t ′′)

×G(j )>
σ (t)Fσ (r(i),r(j ),t ′)F∗

−σ (r(j ),r(i),t ′′) exp[−Jij (−t ′′)

+ Ji(t−t ′−t ′′)+Jij (t−t ′′)+Jij (t−t ′)+Jj (t)−Jij (t ′)]
}
,

(18)

where

Jij (t) = 〈 [φ̃i(t) − φ̃i(0)]φ̃j (0)〉

= e2

2πh̄

∫ +∞

−∞

dω

ω
�[Zij (ω)]

{
coth

(
βh̄ω

2

)

× [cos(ωt) − 1] − i sin(ωt)

}
, (19)

where Zij (ω) is the cross impedance of the circuit in the
absence of electron tunneling. The expression for Ji(t) is
obtained from (19) by replacing Zij (ω) with the effective
circuit impedance Zi(ω) as seen from the tunnel element i.25

These impedances are in turn obtained by performing the
star-triangle transformation and using Kirchhoff’s rules for
the circuit in Fig. 1. Hence, one can derive the short time
behavior of the phase-phase correlations Ji(t) ∼ −iE(i)

c t/h̄

(for �it � 1), and Jij (t) ∼ −iE
(ij )
c t/h̄ (for �ij t � 1). The

expressions for the charging energies and characteristic
frequencies are given in the Appendix. This short time
behavior of the correlation functions enables us to obtain
the expression for the crossed Andreev current in the high-
bias regime, eV  h̄ max(�i,�ij ), and �  (eV − Ēc) 
h̄ max(�i,�ij ), where Ēc = (E(1)

c + E(2)
c )/2 + E(12)

c ,

ICA = eπ

h̄
�(1)�(2)S2�(eV − Ēc)(eV − Ēc),

�(i) = πν(i)ν(S)
∣∣t (i)

0

∣∣2
, S = sin(kF δr12)

kF δr12
e
− δr12

πξ0 , (20)

where �(i) is the dimensionless tunnel conductance of the
junction i (normalized by e2/h̄), and ξ0 is the Cooper-pair
coherence length. When both electrons tunnel into the same
branch i, we get

I
(i)
DA = eπ

h̄
�(i)2

S2�
(
eV − 2E(i)

c

)(
eV − 2E(i)

c

)
. (21)

In the low-bias regime, eV � �,h̄ min(�i,�ij ), we can use
the long time behavior of the phase-phase correlations, Jk(t) ∼
−2zk[ln(i�kt) + γ ], zk = R̄k/RK , where k = i for direct and
k = ij for cross correlations, and where γ = 0.577 is the
Euler’s constant, to obtain the following for the crossed
Andreev current:

ICA = e2π

h̄
V �(1)�(2)S2

ae
−2γ (z1+z2)

× �2(1 + 2z12)

�[2(1 + z1 + z2 + 2z12)]

(2eV)2(z1+z2+2z12)

�4z12 (h̄�1)2z1 (h̄�2)2z2
,

Sa = sin(kF δr12)

kF δr12

2
1
2 −z12

√
π�(1 + z12)

×
(

δr12

πξ0

) 1
2 +z12

K− 1
2 −z12

(
δr12

πξ0

)
, (22)

where Kν(x) is the modified Bessel function of the sec-
ond kind. When both electrons forming a Cooper pair

tunnel into the same branch i, in the low-bias limit, eV �
�,h̄ min(�i,�ij ), and assuming �  h̄�i , E(i)

c < �, using
the long time behavior of Ji(t), we get

I
(i)
DA = e2π

h̄
V �(i)2

⎛
⎝ 4�

π

√
�2 − E

(i)2
c

tan−1

√
� + E

(i)
c

� − E
(i)
c

⎞
⎠

2

× e−8γ zi

�(2 + 8zi)

(
2eV

h̄�i

)8zi

, (23)

where we assumed that electrons tunnel from the same point
in the superconductor, δr12 = 0. For � � h̄�i , we get

I
(i)
DA = e2π

h̄
V �(i)2

P (zi)
(2eV)8zi

(h̄�i)4zi (�)4zi
,

(24)

P (zi) = e−4γ zi

π�(2 + 8zi)

[
�(1 + 2zi)�

(
1
2 + zi

)
�(1 + zi)

]2

.

The above results, given by Eqs. (20)–(24), reduce to those
obtained in Ref. 7, in the limit R1 = R2 ≡ R, C1 = C2 ≡ C,
and RS/R = CS/C = 0.

The above considerations of ballistic electron motion can
be generalized to include the disorder effects by expanding
the field operators, instead of in the plane waves as in (6)
and (7), into the complete set {χk(r)} of one-electron wave
functions that satisfy the associated Schrödinger equation with
the random impurity potential. In this case we obtain the
following for the crossed Andreev current [see Fig. 2(a)]:

ICA = 4e

h̄4

∑
i 	=j

∫
dζdζ ′dξdξ ′ �(ζ,ζ ′; ξ,ξ ′)

× [1 − f (ξ )][1 − f (ξ ′)]D(ζ,ζ ′; ξ,ξ ′), (25)

where the function �(ζ,ζ ′; ξ,ξ ′) contains the information on
geometry-dependent propagation:8,26

�(ζ,ζ ′; ξ,ξ ′)=
∫

dr1, . . . ,dr8 T (i)∗(r1,r2)T (i)(r5,r6)

× T (j )∗(r3,r4)T (j )(r7,r8)K∗
ζ (r4,r2)Kζ ′(r6,r8)

×L
(i)
ξ (r1,r5)L(j )

ξ ′ (r3,r7), (26)

where the spectral functions are given, in terms of the
advanced and retarded Green’s functions, by Kζ (r4,r2) =
(GA

ζ − GR
ζ )/2πi. The function D(ζ,ζ ′; ξ,ξ ′) contains the

information on the electromagnetic environment,

D(ζ,ζ ′; ξ,ξ ′)

= u(ζ )v(ζ )u(ζ ′)v(ζ ′)
∫ +∞

−∞
dt

∫ ∞

0
dt ′

∫ ∞

0
dt ′′ei(2eV−ξ−ξ ′)t/h̄

× ei[−E(ζ ′)+ξ−eV]t ′/h̄e−Jij (−t ′′)−Jij (t ′)[ei[E(ζ )+ξ−eV]t ′′/h̄

× eJi (t−t ′−t ′′)+Jij (t−t ′′)+Jij (t−t ′)+Jj (t) + ei[E(ζ )+ξ ′−eV]t ′′/h̄

× eJij (t−t ′−t ′′)+Jj (t−t ′′)+Ji (t−t ′)+Jij (t)]. (27)

The impurity-averaged spectral functions in the normal-metal
leads are short ranged, with maximum value attained for

the coinciding arguments, L
(i)
ξ (r,r) = ν(i)/2. We assume that

tunneling is local, r2k−1 ≈ r2k for k = 1, . . . ,4, and for the
interference effect in the superconducting electrode to be
pronounced, we require r4 ≈ r6,r2 ≈ r8. Averaging of the
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(a) (b)

FIG. 2. Diagrams representing processes contributing to the
subgap conductance. Double-arrowed lines represent anomalous
propagators in the superconducting electrode, single-arrowed lines
indicate the electron propagators in the normal-metal electrodes, and
wiggly lines represent the phase correlators. Cooperon averaging over
disorder (gray area) is performed (a) in the superconducting electrode,
contributing to the crossed Andreev current, and (b) over disorder
in the normal-metal electrode, contributing to the direct Andreev
current.

spectral functions in the superconducting electrode produces
a long-ranged function (with respect to Fermi wavelength),

K∗
ζ (r,r′)Kζ ′(r′,r) = ν(S)

4π
[P̂ (S)(r,r′,ζ − ζ ′)

+ P̂ (S)(r,r′,ζ ′ − ζ )], (28)

where the Cooperon P̂ (S)(r,r′,ζ ) satisfies the diffusion equa-
tion. After averaging, the function � in (26) can be written
as

� = h̄

16π3e4ν(S)

∫
S(1)

dr
∫

S(2)
dr′g(1)(r)g(2)(r′)

×
∫ +∞

−∞
dt ei(ζ−ζ ′)t/h̄ P (S)(r,r′,|t |), (29)

where g(i)(r) is the conductance per unit area of the junction
i, and the function P (S)(r,r′,t), being the Fourier transform
of P̂ (S), describes the average probability that a particle
evolves from r to r′ in time t . For the environment of Fig. 1,
at low voltages eV � �, we obtain the following for the
function D:

D = h̄3π
�2

[E(ζ )E(ζ ′)]2(1+zij ) e
−2γ (zi+zj ) �2(1 + 2zij )

�[2(zi + zj + 2zij )]

× (2eV − ξ − ξ ′)2(zi+zj +2zij )−1

(h̄�i)2zi (h̄�j )2zj
�(2eV − ξ − ξ ′). (30)

By substituting (29) and (30) into (25), we obtain

ICA = e−2γ (z1+z2)

e3ν(S)

�2(1 + 2z12)

�[2(z1 + z2 + 2z12 + 1)]

× (2eV)2(z1+z2+2z12)+1

(h̄�1)2z1 (h̄�2)2z2�4z12

∫
S(1)

dr
∫

S(2)
dr′g(1)(r)g(2)(r′)

×
∫ ∞

0
dt P (S)(r,r′,t)I2(t�/h̄),

(31)

I(x) = 2
1
2 −z12

√
π�(1 + z12)

x
1
2 +z12K−1/2−z12 (x).

For the large superconducting electrode, such that L2/D 
h̄/�, where L is the characteristic dimension of the electrode,
we can use the probability for free diffusion in (31), which
is in d dimensions given by P (S) = e−|r−r′ |2/4Dt/(4πDt)d/2.
In the absence of disorder, the probability is given by P (S) =
δ(|r − r′| − υt)/Ad (|r − r′|), where υ is the group velocity
and Ad (R) = 2πd/2Rd−1/�(d/2) is the surface area of the
d-dimensional sphere. For d = 3, we recover the expression
(22), with the the sinusoidal term averaged over the Fermi
wave vector directions. For the case of small-area junctions,
and for z1 = z2 ≡ z, ω1 = ω2 ≡ ωz, and z12 = 0, we can write
the crossed Andreev current as

ICA = e2

h̄2ν(S)

e−4γ z�(1)�(2)V

�(4z + 2)

(
2eV

h̄ωz

)4z

P̄ (S)

(
|r − r′|,2�

h̄

)
,

(32)

where P̄ (S) is the Laplace transform of P (S). Depending
on the dimensionality, we have, in the diffusive regime,
P̄ (S)

d=3 = e−√
2δr/ξ (S)

/4πDδr , P̄ (S)
d=2 = K0(

√
2δr/ξ (S))/2πD,

and P̄ (S)
d=1 = e−√

2δr/ξS

ξ (S)/2
√

2D, where ξ (S) = √
h̄D/�

(with D being the diffusion constant). In Ref. 27, the
imbalance between the elastic cotunneling and crossed
Andreev current observed in Ref. 14 was explained in terms
of the spacial symmetry considerations of electromagnetic
modes excited in the superconductor by the tunneling
electron. The dominance of elastic cotunneling over the
crossed Andreev current at low temperatures and voltages
was observed by cross-correlation measurements in Ref. 28.
We compare here the above result for the crossed Andreev
current with the elastic cotunneling of Ref. 29. If we assume
that the superconducting electrode is an island with charging
energy E(S)

c , and separate the corresponding pole from the
impedance in the phase correlators in (27), we obtain that
the cross Andreev current is vanishing for eV < 2E(S)

c , while
no such blockade of tunneling exists for elastic cotunneling
[formulas (15) and (16) in Ref. 29], and therefore elastic
cotunneling is dominant at low voltages. By assuming that the
characteristic diffusion time is short, so that the probability
P (S) is uniformly spread over the whole island, we obtain,
from (32),

ICA = e2�(1)�(2)δ

2h̄�(4z + 2)�
e−4γ zV

(
2eV

h̄ωz

)4z

, (33)

where δ denotes the average energy level spacing of the
superconducting electrode. If instead of the voltage source
connected to the superconducting electrode as in Fig. 1, voltage
source Vi is connected to the normal-metal electrode i, we
should replace V in (33) by (V1 + V2)/2, and divide the
expression by 2 in order to consider current in one branch
only. This expression for the current then coincides with the
elastic cotunneling in Ref. 29 (where one should replace V by
V1 − V2, and further assume that E(S)

c � �).
The direct Andreev current into the lead i, I

(i)
DA, is obtained

from (25) by placing j = i in (26) and (27). Apart from
the diagram in Fig. 2(a), there are two more contributions
corresponding to interference originating from the normal
electrode, as well as interference occurring in both normal
and superconducting electrodes. However, the phase of two
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electrons moving in the normal lead decays on the scale
of ξ (i) = √

h̄D/eV, which at subgap conditions is much
larger than the corresponding length in the superconducting
electrode ξ (S). Therefore we only need to take into account
the contribution of the diagram shown in Fig. 2(b). In the low-
impedance limit eV � � � h̄�i , we obtain the expression for
I

(i)
DA, which can be obtained from the above formula (31) by

replacing z1 = z2 = z12 by zi , g(1) = g(2) by g(i), ν(S) by ν(i),
andP (S) byP (i). In the high-impedance limit eV � h̄�i � �,
we obtain

I
(i)
DA = 4

e3ν(i)

e−8ziγ

�(8zi + 2)

(2eV)8zi+1

(h̄�i)8zi

∫
S(i)

drdr′g(i)(r)g(i)(r′)

×
∫ ∞

0
dt Y2

(
t�/h̄,E(i)

c /�
)
P (i)(r,r′,t),

(34)

Y(a,b) = 1

π

∫ ∞

0
dx

cos(xa)√
1 + x2(

√
1 + x2 − b)

.

For the case of point-contact tunnel junctions in the ballistic
regime, Eq. (26) becomes � = �(i)2

/(4π )2, and after substi-
tuting in (31), we recover (23) and (24), in the high- and
low-impedance cases, respectively.

III. CONCLUSION

We derive the expressions for the crossed and direct An-
dreev currents for an arbitrary electromagnetic environment,
and consider the cases of ballistic and diffusive limits for
electron motion. For the small superconducting electrode, the
crossed Andreev current is blocked at low voltages and zero
temperature, while in the elastic cotunneling case, the charging
energy of the island only shifts the energy of the virtual
state, without blocking the transport. At voltages above this
gap and in the Ohmic environment, the two currents become
equal functions of the relevant combination of voltage sources
applied to the normal-metal electrodes (V1 + V2 for crossed
Andreev current, and V1 − V2 for elastic cotunneling).

Equations (20) and (21) show that in the high-voltage
regime, capacitive coupling reduces the voltage region, Ēc <

eV < 2E(i)
c , where the crossed Andreev current dominates

over the direct Andreev current. This is due to the appearance
of the E(12)

c term in Eq. (20), which is directly proportional to
the cross capacitance CS . For the observation of entanglement
in this limit, high-Ohmic leads, such as those successfully
fabricated in metrology applications,30,31 are essential to
ensure Coulomb blockade.

It is of interest to consider the case of reflectionless
tunneling, occurring for high transparency barriers due to
disorder32 or geometry.33 In the present approach, that would
require performing the summation to infinite order in (10),
which is similar to the approach taken in Ref. 34.
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APPENDIX

By performing the integration in (19), with �[Zi(ω)] =
(a0 + a2ω

2)/(1 + b2ω
2 + b4ω

4), we obtain the short time
behavior �it � 1, of Ji(t) ∼ −iE(i)

c t/h̄, where the charging
energy is given by

E(i)
c =e2(a0

√
b4+a2)

√
b2+

√
b2

2 − 4b4 −
√

b2 −
√

b2
2 − 4b4

2
√

2b4

√
b2

2 − 4b4

.

(A1)

The expressions for the coefficients, a0, . . . ,b4, are lengthy
polynomials in the linear circuit elements of Fig. 1, and for
the sake of brevity are not provided. However, they can be
obtained straightforwardly from the total impedance seen from
the tunnel junction i:

Zi(ω) =
[
iωCi + 1

Za(ω)
+ 1

Zeq(ω)

]−1

,

Za(ω) = ωRj (Cj + CS) − i

iω2CjCSRj

, (A2)

Zeq(ω) = [1 + iωRj (Cj + CS)]

×
(

RS

1 + iω[Rj (Cj + CS) + RSCj ]

+ Ri

1 + iω[Rj (Cj + CS) + RiCS]

)
.

By substituting �[Zij (ω)] in (19), we obtain the short time
behavior �ij t � 1, of Jij (t) ∼ −iE

(ij )
c t/h̄, where the charging

energy is given by

E(ij )
c = e2

(C1C2 + C1CS + C2CS)/CS

. (A3)

The characteristic frequencies are given by

�i = 1

R̄iC̄i

, R̄i = Ri + RS,

C̄i = 1/(Ri + RS)3/2
[
R2

i (R1 + R2)C2
S − 2R1R2RSC2CS

+ (Ri + RS)3C2
i + R2

S(Rj + RS)C2
j

+ 2(Ri + RS)(R2
i CS + R2

SCj )Ci

]1/2
,

�ij = 1

R̄ij C̄ij

, R̄ij = RS,

C̄ij = 1

R
3/2
S

[
C2

1RS(R1 + RS)2 + C2
2RS(R2 + RS)2

−C2
SR1R2(R1+R2)−CSC1R1(R1R2+R2RS − R1RS)

−CSC2R2(R1R2 + R1RS − R2RS)

+C1C2RS(R1R2 + R1RS + R2RS + 2R2
S)

]1/2
.
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