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Magnetic exchange interactions in BaMn2As2: A case study of the J1- J2- Jc Heisenberg model

D. C. Johnston,1,2 R. J. McQueeney,1,2 B. Lake,3,4 A. Honecker,5 M. E. Zhitomirsky,6,7 R. Nath,1,* Y. Furukawa,1,2

V. P. Antropov,1 and Yogesh Singh1,†
1Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA

2Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
3Hahn-Meitner-Institut, Glienicker Straße 100, D-14109 Berlin, Germany

4Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany
5Institut für Theoretische Physik, Universität Göttingen, D-37077 Göttingen, Germany

6Service de Physique Statistique, Magnétisme et Supraconductivité, UMR-E9001 CEA-INAC/UJF, 17 rue des Martyrs,
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BaMn2As2 is unique among BaT2As2 compounds crystallizing in the body-centered-tetragonal ThCr2Si2

structure, which contain stacked square lattices of 3d transition metal T atoms, since it has an insulating
large-moment (3.9 μB/Mn) G-type (checkerboard) antiferromagnetic (AF) ground state. We report measurements
of the anisotropic magnetic susceptibility χ versus temperature T from 300 to 1000 K of single crystals of
BaMn2As2, and magnetic inelastic neutron scattering measurements at 8 K and 75As nuclear magnetic resonance
(NMR) measurements from 4 to 300 K of polycrystalline samples. The Néel temperature determined from the
χ (T ) measurements is TN = 618(3) K. The measurements are analyzed using the J1-J2-Jc Heisenberg model for
the stacked square lattice, where J1 and J2 are, respectively, the nearest-neighbor (NN) and next-nearest-neighbor
intraplane exchange interactions and Jc is the NN interplane interaction. Linear spin wave theory for G-type AF
ordering and classical and quantum Monte Carlo simulations and molecular field theory calculations of χ (T )
and of the magnetic heat capacity Cmag(T ) are presented versus J1, J2, and Jc. We also obtain band-theoretical
estimates of the exchange couplings in BaMn2As2. From analyses of our χ (T ), NMR, neutron scattering, and
previously published heat capacity data for BaMn2As2 on the basis of the above theories for the J1-J2-Jc

Heisenberg model and our band-theoretical results, our best estimates of the exchange constants in BaMn2As2

are J1 ≈ 13 meV, J2/J1 ≈ 0.3, and Jc/J1 ≈ 0.1, which are all antiferromagnetic. From our classical Monte
Carlo simulations of the G-type AF ordering transition, these exchange parameters predict TN ≈ 640 K for spin
S = 5/2, in close agreement with experiment. Using spin wave theory, we also utilize these exchange constants
to estimate the suppression of the ordered moment due to quantum fluctuations for comparison with the observed
value and again obtain S = 5/2 for the Mn spin.
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I. INTRODUCTION

The observations of superconductivity up to 56 K in several
classes of Fe-based superconductors in 2008 (Refs. 1–4) have
reinvigorated the high-Tc field following the discovery of high-
Tc superconductivity in the layered cuprates 25 years ago.5,6

Interestingly, the Fe atoms have the same layered square lattice
structure as the Cu atoms do. Even though the maximum Tc of
the Fe-based materials is far below the maximum Tc of 164 K
for the cuprates,7 the Fe-based materials have generated much
interest because the superconductivity appears to be caused
by a magnetic mechanism4 as also appears to be the case in
the cuprates. One of the many motivations for carrying out
detailed measurements on the Fe-based materials is to see if
these studies can clarify the superconducting mechanism in
the high-Tc cuprates for which a clear consensus has not yet
been reached despite 25 years of intensive research.

Many studies of the magnetic properties of the Fe-based
superconductors have been carried out.4,8 For the FeAs-based
materials such as Ba1−xKxFe2As2 with the body-centered-
tetragonal ThCr2Si2 structure, the magnetic susceptibility χ

increases approximately linearly with increasing temperature
above Tc or above the Néel temperature TN of the non-
superconducting parent compounds up to at least 700 K.9,10

In a model of local magnetic moments on a square lattice
with strong antiferromagnetic (AF) Heisenberg interactions,
this type of behavior is explained as being due to the
measurement temperature (T ) range being on the low-T side
of a broad maximum in χ (T ) at higher temperatures.6 On the
other hand, many magnetic measurements of the FeAs-based
superconductors have been explained in terms of itinerant
magnetism models, and indeed the consensus is pointing in
this direction, although this view is not universal.4

In this context it is very useful to have a benchmark
compound with the same ThCr2Si2-type structure and similar
composition as many of the Fe-based superconductors, but
for which a local moment model must be used to explain the
magnetic properties. Such a compound is BaMn2As2 because
it has an insulating ground state.11,12 The crystal structure
of BaMn2As2 is shown in Fig. 1.13 It is a small-band-gap
semiconductor11,12 with an activation energy of 30 meV.11

The electronic structure calculations of An et al.12 for the
predicted conventional G-type (checkerboard) AF state give
a small band gap of 0.1–0.2 eV, qualitatively consistent
with the experimental value of the activation energy11 that
is expected to be a lower limit to half the band gap. The
anisotropic χ of single crystals was previously measured
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FIG. 1. (Color online) Crystal and magnetic structures of
BaMn2As2 (Ref. 13). The crystal structure is body-centered-
tetragonal ThCr2Si2-type in which the Mn atoms form a square
lattice within the ab plane, the axes of which are rotated by 45◦

with respect to the a and b unit cell axes. The Mn atoms in adjacent
layers are directly above or below each other along the c axis. The
magnetic structure is a G-type antiferromagnetic structure in which
the magnetic moments of nearest-neighbor spins are antiparallel both
in the ab plane and along the c axis. The ordered moment at T = 0
is 3.9(1) μB/Mn.13

at T � 400 K.11 These data indicate that the compound
is in a collinear AF state at these temperatures, with the
ordered moment direction along the c axis and with a TN

significantly above 400 K. From subsequent magnetic neutron
powder diffraction measurements, the Néel temperature was
determined to be TN = 625(1) K and the AF structure was
found to be a conventional G-type (checkerboard) structure in
all three directions, as shown in Fig. 1, with an ordered moment
direction along the c axis in agreement with the χ (T ) data and
with an ordered moment μ = 3.9(1) μB/Mn at 10 K, where
μB is the Bohr magneton.13 These characteristics are radically
different from those of the similar FeAs-based metallic parent
compound BaFe2As2 with the same room temperature crystal
structure. BaFe2As2 has a much smaller ordered moment μ ≈
0.9 μB/Fe and much smaller TN = 137 K than BaMn2As2,
the structure of BaFe2As2 distorts to orthorhombic symmetry
below a temperature TS ≈ TN instead of remaining tetragonal
as in BaMn2As2, the ordered moment direction is in the
ab plane instead of along the c axis, and the in-plane AF
structure is a stripe structure (see the bottom panel of Fig. 2
below) instead of G type.4 These large differences between
the magnetic properties of BaMn2As2 and BaFe2As2 evidently
arise because BaMn2As2 is a local moment antiferromagnet,
whereas BaFe2As2 is an itinerant antiferromagnet.

An intriguing aspect of the in-plane electrical resistivity
ρ(T ) data for BaMn2As2 single crystals is that above ∼100 K
the slope of the resistivity versus temperature changes from
negative (semiconductor-like) to positive (metal-like).11,12 The
ρ(T ) of a material can be written in an effective single carrier

model as

ρ(T ) = 1

e n(T )μ(T )
, (1)

where e is the magnitude of the electron charge, and n(T ) and
μ(T ) are, respectively, the effective conduction carrier density
and the effective carrier mobility, respectively. Thus, a positive
temperature coefficient of resistivity can be obtained for a
band semiconductor if the increase in carrier concentration
with increasing temperature is slower than the decrease
in mobility with increasing temperature. Our 75As nuclear
magnetic resonance (NMR) measurements in Sec. XI were,
in fact, initially motivated in order to address this issue. As
stated in that section, we found no evidence for a Korringa
contribution to the 75As nuclear spin-lattice relaxation rate
that would have indicated metallic behavior, and indeed we
could interpret the data from 50 to 300 K in terms of a local
moment insulator model. Furthermore, there is no evidence
from the previously published neutron diffraction,13 resistivity,
or heat capacity11,12 measurements for any phase transition
from a band insulator at low temperatures to a metal at high
temperatures. Thus, in the absence of experimental data to the
contrary, our present interpretation of the positive temperature
coefficient of resistivity above ∼100 K is as discussed below
Eq. (1) above.

A related Mn-based compound is Sr2Mn3As2O2, which
consists of Mn2As2 layers that are the same as in BaMn2As2,
alternating along the c axis with MnO2 layers with the same
structure as the CuO2 layers in the layered cuprate super-
conductor parent compounds.14 Due to geometric frustration
effects, the Mn spins in the MnO2 layers do not show any
obvious long-range magnetic ordering for T � 4 K, but the
Mn spins in the Mn2As2 layers show long-range G-type AF
ordering below TN = 340 K with a low-temperature ordered
moment μ = 3.50(4) μB/Mn.14,15 Thus, in both BaMn2As2

and Sr2Mn3As2O2, the Mn spins in the Mn2As2 layers exhibit
the same G-type AF structure and significant reductions in the
ordered moments from the value μ = gSμB = 5 μB/Mn that
would be expected for the high-spin S = 5/2 d5 Mn+2 ion
with spectroscopic splitting factor g = 2.

The main goal of the present work was to determine the
magnitudes of the exchange interactions in the fiducial com-
pound BaMn2As2 and their signs, that is, AF or ferromagnetic
(FM). Experimentally, we extend the single-crystal anisotropic
χ (T ) measurements from 300 to 1000 K, significantly above
TN. We also report inelastic magnetic neutron scattering
measurements at 8 K and 75As NMR measurements from
4 to 300 K on polycrystalline samples. We analyze these
data using the J1-J2-Jc Heisenberg stacked square spin-lattice
model for which we develop extensive theory. This model
has also been investigated recently by other groups.16–23 We
calculate the spin wave dispersion relations for this model.
We report classical and quantum Monte Carlo simulations
and molecular field theory calculations of χ (T ) and the
magnetic heat capacity Cmag(T ). We extract the values of J1,
J2, and Jc by fitting our experimental data for BaMn2As2

by these theoretical predictions for the J1-J2-Jc model. From
our classical Monte Carlo simulations of the heat capacity of
coupled layers, we derive a formula for TN versus the exchange
parameters which yields a TN very close to experiment
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from the independently derived exchange constants, which
indicates that the spin on the Mn ions is 5/2. We also
utilize these exchange constants to determine from spin wave
theory the suppression of the ordered moment due to quantum
fluctuations for comparison with the observed value and again
arrive at the estimate of S = 5/2 for the spin of the Mn+2

ions when the additional expected suppression of the ordered
moment due to hybridization and/or to charge and/or magnetic
moment amplitude fluctuations, which arise from both on-site
and intersite interactions, are taken into account. Finally,
we report band-theoretical calculations of J1, J2, and Jc for
BaMn2As2.

The applicability of the local moment Heisenberg model
to a specific compound depends on the degree of varia-
tion of atomic magnetic moments and interatomic exchange
parameters found from electronic structure calculations for
the relevant magnetic ordering configurations. Such variations
are usually found to be small in magnetic insulators. In the
case of BaMn2As2, our band theory analysis in Sec. XII
indicates that insulating character is conserved for both the
Néel and stripe antiferromagnetic structures, as observed,
with a tiny metallicity appearing in the ferromagnetic case.
As noted above, An et al. previously estimated that the
band gap is 0.1–0.2 eV from electronic structure calculations
for G-type AF order in BaMn2As2.12 Moreover, our direct
calculations of the atomic magnetic moment and exchange
couplings for different spin configurations demonstrate that
the ordered moment variations do not exceed 10%–12%, while
the exchange coupling variation is only about 5%. The largest
change appears for the ferromagnetic state, which, due to its
high energy, is expected to contribute little to thermodynamic
properties. Finally, our determination of a self-consistent
set of antiferromagnetic exchange coupling parameters in
BaMn2As2 from both static and dynamic experiments confirms
the validity of our analyses in terms of the local moment
Heisenberg model.

The remainder of the paper is organized as follows. The
experimental details for the sample preparation and character-
ization of BaMn2As2 and for the various measurements are
given in Sec. II. The J1-J2-Jc Heisenberg model is introduced
and defined in Sec. III. The inelastic neutron scattering
measurements of polycrystalline BaMn2As2 and the analysis
of these data are presented in Sec. IV. This includes the
presentation of spin wave theory for the J1-J2-Jc model of
the G-type antiferromagnet in Sec. IV A that is used to fit
the neutron data and to later obtain an estimate of the spin
wave contribution to the heat capacity at low temperatures
in Sec. VIII B and to analyze the 75As nuclear spin-lattice
relaxation NMR data below TN in Sec. XI B. The high-
temperature anisotropic magnetic susceptibility measurements
of single crystals of BaMn2As2 are presented in Sec. V. The
predictions of molecular field theory (MFT) and related topics
for the J1-J2-Jc Heisenberg model are given in Secs. VI and
VII and the Appendices. Comparisons of the MFT predictions
with our experimental χ (T ), Cp(T ), and ordered moment
μ(T ) data for BaMn2As2 are given in Sec. VIII. In this
section we also calculate the spin wave contribution to the
heat capacity at low temperatures assuming a negligible
anisotropy gap in the spin wave spectrum and compare this
contribution with the experimental heat capacity data at low

temperatures. Classical and quantum Monte Carlo simulations
of TN, χ (T ), and Cmag(T ) in the J1-J2-Jc Heisenberg model are
presented in Sec. IX and comparisons with the experimental
TN and χ (T > TN) data are carried out in Sec. X. The
NMR measurements and analysis are given in Sec. XI, and
our band-theoretical estimates of the exchange couplings in
BaMn2As2 are presented in Sec. XII. Our spin wave theory
results for the suppression of the ordered moment are given in
Sec. XIII. From a comparison with the experimental ordered
moment, we infer that the spin on the Mn ions is 5/2. A
summary of our results and of our most reliable values of the
J1, J2, and Jc exchange constants and of the spin value derived
for the Mn ions in BaMn2As2 is given in Sec. XIV.

II. EXPERIMENTAL DETAILS

A 25-g polycrystalline sample of BaMn2As2 was prepared
by solid state synthesis for inelastic neutron scattering (INS)
measurements. Stoichiometric amounts of Ba dendritic pieces
(Aldrich, 99.9%), Mn powder (Alfa Aesar, 99.9%), and As
chunks (Alfa Aesar, 99.9%) were ground and mixed together
in a He-filled glovebox, pelletized, placed in a 50-mL Al2O3

crucible with a lid and sealed in a quartz tube under a 0.5 atm
pressure of Ar gas (99.999%). The tube was placed in a box
furnace and heated at a rate of 50 ◦C/h to 575 ◦C and kept
there for 24 h. The furnace was then heated at 100 ◦C/h
to 800 ◦C and kept there for 48 h before cooling to room
temperature by turning off the furnace. The quartz tube was
opened inside the glovebox and the product was ground and
mixed thoroughly and pelletized again. The pellet was placed
in the same crucible and sealed again in a quartz tube. The
quartz tube was heated in the box furnace at 100 ◦C/h to
850 ◦C and kept there for 24 h and then heated at 100 ◦C/h to
900 ◦C and kept there for 24 h, followed by furnace cooling
at ∼300 ◦C/h to room temperature. The resulting product
was ground and pelletized and the above heat treatment was
repeated. The resulting product was characterized by x-ray
powder diffraction and the majority phase (≈83%) was found
to be the desired ThCr2Si2 structure. The major impurity phase
was identified to be tetragonal Ba2Mn3As2O. BaMn3As2O is
an insulator, shows low-dimensional magnetic behavior with
a broad maximum in χ (T ) at 100 K and antiferromagnetic
ordering at ≈75 K.24,25 From x-ray diffraction measurements
the weight fraction of this impurity phase in the INS sample
was estimated to be ≈17%. The INS spectra at 8 K and at
100 K (not shown) exhibited no noticeable differences. Since
100 K is well above the purported ordering temperature of
the impurity phase, this eliminates any concern for serious
contamination of the magnetic INS data by this phase.

About 20 g of the above material was used for INS
measurements. About 5 g of the polycrystalline material was
used to grow single crystals. About 3 g of polycrystalline
BaMn2As2 and 20 g of Sn flux (Alfa Aesar, 99.999%) were
placed in an Al2O3 crucible and sealed in a quartz tube. The
crucible was heated at 250 ◦C/h to 1000 ◦C and kept there
for 24 h and then cooled at 5 ◦C/h to 575 ◦C and kept there
for 5 h at which point the Sn flux was centrifuged off to give
isolated single crystals of typical dimension 5 × 5 × 0.2 mm3.
Energy-dispersive x-ray (EDX) measurements using a Jeol
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scanning electron microscope confirmed the composition of
the crystals to be BaMn2As2.

For the INS measurements, the powder sample of mass
≈20 g was characterized for phase purity by x-ray powder
diffraction as discussed above. The INS measurements were
performed on the Pharos spectrometer at the Lujan Center of
Los Alamos National Laboratory. Pharos is a direct geom-
etry time-of-flight spectrometer and measures the scattered
intensity over a wide range of energy transfers h̄ω and angles
between 1◦ and 140◦ allowing determination of the scattered
intensity S(Q,ω) over large ranges of momentum transfer h̄Q

and h̄ω. The powder sample was packed in a flat aluminum can
oriented at 135◦ to the incident neutron beam, and INS spectra
were measured with incident energies Ei of 150 and 200 meV.
The data were measured at a temperature T = 8 K, well
below the antiferromagnetic ordering temperature of 625 K.13

The time-of-flight data were reduced into h̄ω and scattering
angle (2θ ) histograms and corrections for detector efficiencies,
empty can scattering, and instrumental background were
performed.

The high-temperature anisotropic χ (T ) measurements of a
BaMn2As2 single crystal took place in a physical properties
measurement system (PPMS, Quantum Design, Inc.) at the
Laboratory for Magnetic Measurements at the Helmholtz
Zentrum Berlin für Materialien und Energie. For these mea-
surements the vibrating sample magnetometer option was
used. Data were collected with the magnetic field applied both
parallel and perpendicular to the Mn layers. For field pointing
within the ab plane a sample of mass 15.31 mg was used. The
sample had to be cut for field parallel to c and the sample weight
was 12.058 mg. For all measurements a constant magnetic field
H = 3 T was used while the temperature was varied between
300 and 1000 K. To achieve these temperatures an oven setup
provided as an option by Quantum Design was utilized. The
crystal was fixed on a zirconia sample stick containing a
wire system that acts as a heating element. The sample was
glued on the stick with heat-resistant cement and wrapped in
low-emissivity copper foil to minimize the heat leak from the
hot region to the surrounding coil set. The measurements took
place with heating rates of between 1 and 2 K per minute.
The magnetic moment of the empty sample holder, 7.63 mg
of cement and of the copper foil was measured separately and
subtracted from the data.

The NMR measurements were carried out on a polycrys-
talline sample using the conventional pulsed NMR technique
on 75As nuclei (nuclear spin I = 3/2 and gyromagnetic ratio
75γ /2π = 7.2919 MHz/T) in the temperature range 4 � T �
300 K. The measurements were done at a radio frequency of
about 52 MHz. Spectra were obtained by sweeping the field at
fixed frequency. The 75As nuclear spin-lattice relaxation rate
1/T1 was measured by the conventional single saturation pulse
method.

III. THE J1- J2- Jc HEISENBERG MODEL

A bipartite spin lattice is defined as consisting of two
distinct spin sublattices in which a given spin on one sublattice
only interacts with nearest-neighbor (NN) spins on the other
sublattice. In the FeAs-based superconductors and parent
compounds, when the magnetism is analyzed in a local

J1

J2

G-Type AF Ordering

Stripe-Type AF Ordering

a

b

c

FIG. 2. (Color online) Collinear commensurate in-plane mag-
netic structures in the J1-J2-Jc model for the square lattice antiferro-
magnet. The top panel shows the G-type (Néel or checkerboard) AF
structure where nearest-neighbor spins are aligned antiparallel. The
bottom panel shows stripe-type ordering, along with the definitions
of the in-plane exchange constants J1 and J2. A J2 interaction is
present for both diagonals of each square. According to Eqs. (4),
the G-type in-plane ordering is favored if J2 < J1/2, whereas the
stripe-type ordering is favored if J2 > J1/2. By examining the
bottom panel, one sees that the stripe magnetic structure consists
of two interpenetrating G-type magnetic structures, each respectively
consisting of next-nearest-neighbor spins.

moment model, the magnetic lattice is found not to be
bipartite.4 In addition to the in-plane (J1) and out-of-plane
(Jc) NN intersublattice interactions, in-plane diagonal next-
nearest-neighbor (NNN) intrasublattice interactions J2 are also
present along both diagonals of each square, as shown in
Fig. 2. The spin Hamiltonian in the J1-J2-Jc Heisenberg model
is

H = J1

∑
NN

Si · Sj + J2

∑
NNN

Si · Sj

+ Jc

∑
c

Si · Sj + gμBH
∑

i

Sz
i , (2)

where Si is the spin operator for the ith site, g is the spectro-
scopic splitting factor (g factor) of the magnetic moments, μB

is the Bohr magneton, and H is the magnitude of the magnetic
field which is applied in the +z direction. Throughout this
paper, a positive J corresponds to an antiferromagnetic
interaction and a negative J to a ferromagnetic interaction.
The indices NN and NNN indicate sums restricted to distinct
spin pairs in a Mn layer, while the index c indicates a sum
over distinct NN Mn spin pairs along the c axis. This is the
minimal model needed to explain our INS results below for
BaMn2As2.

The classical energies of collinear commensurate ordered
spin configurations in this model with H = 0 are analyzed as
discussed in Ref. 4. We consider four competing magnetic
structures in the J1-J2-Jc model. One is the simple FM
structure. The other three are two AF stripe structures and
the G-type (Néel) structure shown in Fig. 2. By definition, the
NN spins in alternate layers are aligned antiferromagnetically
in the G-type AF ordered state, whereas the stripe state can
have either AF or FM spin alignments along the c axis which
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depend on the sign of Jc. The classical energies of these states
for H = 0 are4

EFM = NS2(2J1 + Jc + 2J2),

Estripe = NS2(−2J2 ± Jc), (3)

EG = NS2(−2J1 − Jc + 2J2),

where N is the number of spins S and a factor of 1/2
has been inserted on the right-hand sides to avoid double-
counting distinct pairs of spins. The ± signs in the expression
for the stripe phase arise due to the possibilities of either
antiferromagnetic (−sign) or ferromagnetic (+sign) alignment
of adjacent spins along the c axis. From these expressions, the
in-plane G-type AF magnetic structure observed in BaMn2As2

is lower in energy than the stripe structure if

J1 > 0, J1 > 2J2 (G-type AF). (4)

In order that G-type AF ordering occurs along the c axis, one
also requires that

Jc > 0 (G-type AF). (5)

These results place restrictions on the exchange coupling
parameter space that is relevant to the G-type AF ordering
observed in BaMn2As2. Equations (4) and (5) require both J1

and Jc to be positive (antiferromagnetic), but J2 can have either
sign as long as it satisfies the second of Eqs. (4). The compound
BaFe2As2, on the other hand, has an in-plane stripe-AF state
at low temperatures (and with the ordered moment in the ab

plane instead of along the c axis as in Fig. 1 for BaMn2As2),4

which in a local moment model requires J1 < 2J2 according to
Eqs. (3). The in-plane stripe phase can be considered to consist
of two interpenetrating G-type AF sublattices, where in this
case a sublattice consists of all NNN spins of a given spin and
which are connected by an antiferromagnetic interaction J2

(see the bottom panel of Fig. 2).

IV. INELASTIC NEUTRON SCATTERING (INS)
MEASUREMENTS AND ANALYSIS

Figures 3(a) and 3(b) show images of the INS data
taken at the base temperature of 8 K which share similar
features at each incident energy. Unpolarized inelastic neutron
scattering contains contributions from both magnetic and
phonon scattering. The magnetic scattering intensity falls off
with Q (or scattering angle 2θ ) due to the magnetic form
factor, while phonon scattering intensity increases like Q2.
One can then observe a large contribution from magnetic
scattering between 60 and 80 meV, presumably due to spin
wave excitations in the magnetically ordered phase, whose
intensity only appears at small Q. On this intensity scale,
strong phonon scattering is apparent below approximately
40 meV.

This separation of magnetic and phonon scattering is more
clearly shown by plots of the Q dependence of the scattering
averaged over different energy ranges, as shown in Fig. 4.
For an energy range from 30 to 40 meV, the scattering is
dominated by a large phonon contribution, whose intensity
is proportional to Q2, and a large constant background due
to multiple scattering and other background contributions.
Q-dependent oscillations arise from the powder averaging of
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FIG. 3. (Color online) Inelastic neutron scattering data from a
powder sample of BaMn2As2 as measured on the Pharos spectrometer
with incident energies (a) Ei = 150 meV and (b) Ei = 200 meV.
The white lines delineate scattering angles of 7◦ and 30◦ where
the magnetic scattering was estimated. Panels (c) and (d) show
calculations of the polycrystalline averaged spin wave scattering
using a Heisenberg model. The calculations in (c) and (d) are identical;
however, panel (c) shows the trajectories of the angle summation
limits for Ei = 150 meV and (d) for Ei = 200 meV.

the coherent phonon scattering and weak magnetic scattering.
At the higher energy ranges between 60 and 90 meV, the Q2

phonon contributions are gone and magnetic scattering appears
superimposed on a constant background. The magnetic scat-
tering intensity falls off with Q as the magnetic form factor for
the Mn2+ ion and is no longer visible above ∼6 Å−1. Similar
to the phonon cross section, Q-dependent oscillations in the
magnetic scattering occur due to coherent scattering of spin
waves.

The spin wave spectrum can be obtained by averaging
the low-Q (low 2θ ) data to improve statistics. However, the
magnetic scattering, especially below ∼50 meV, must be
separated from the phonon scattering and other background
contributions. The pure phonon signal can be estimated from
the high-angle spectra, where magnetic scattering is absent.
The magnetic scattering component can then be estimated
by subtracting the high-angle data (averaged from 2θ = 50◦–
90◦) from low-angle data (averaged from 2θ = 7◦–30◦ and
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FIG. 4. (Color online) Q dependence of the inelastic neutron
scattering intensity averaged over several energy ranges with incident
energies (a) Ei = 150 meV and (b) Ei = 200 meV. The red lines
show calculations of the polycrystalline averaged spin wave scattering
using the J1-J2-Jc Heisenberg model.

indicated by the white lines in Fig. 3) after scaling by a constant
factor. These spectra are shown in Fig. 5 and show a strong
and broad magnetic peak at ∼70 meV. At energies below
50 meV, the subtraction of the phonon intensity is subject to
error since the phonon intensity may not scale uniformly to
low Q due to coherent scattering effects and also due to the
different Debye-Waller factors for each atomic species. It is
difficult to quantify this error without detailed phonon models;
however, most of the magnetic scattering occurs above the
phonon cutoff. Thus, the errors introduced are only a problem
below 50 meV and the isolated magnetic data in this energy
range can contain large errors.

A. Spin waves in the J1- J2- Jc Heisenbeerg model for
a G-type antiferromagnet

1. Spin wave theory

In order to analyze the Q and ω dependence of the magnetic
spectra, we utilize a model of the spin wave scattering in
BaMn2As2. Spin waves in insulators such as BaMn2As2 with
the ThCr2As2 structure can be described by the Heisenberg

FIG. 5. (Color online) Energy dependence of the inelastic neutron
scattering intensity averaged over a scattering angle range from 7◦ to
30◦ with incident energies (a) Ei = 150 meV and (b) Ei = 200 meV.
The magnetic intensity was extracted from the total scattering
as described in the text. The red lines show calculations of the
polycrystalline averaged spin wave scattering using the J1-J2-Jc

Heisenberg model.

Hamiltonian (2) except that here we set the magnetic field H

in the last term to zero.
The spin wave dispersions for the G-type AF structure are

obtained from a Holstein-Primakoff spin wave expansion of
the Heisenberg model. When the single-ion anisotropy is zero,
the dispersions with respect to the body-centered-tetragonal
(bct) I4/mmm unit cell containing two formula units of
BaMn2As2 are

[
h̄ω(q)

2SJ1

]2

=
{

2 + Jc

J1
− J2

J1
[2 − cos(qxa) − cos(qya)]

}2

−
{

cos

[
(qx + qy)

a

2

]
+ cos

[
(qx − qy)

a

2

]

+ Jc

J1
cos

(
qzc

2

)}2

, (6)

where a = 4.15 and c = 13.41 Å are the lattice parameters of
the bct unit cell at our measurement temperature of 8 K.13

In the absence of an anisotropy-induced energy gap in
the spin wave spectrum, the long-wavelength spin wave
energies are described for an orthogonal (cubic, tetragonal,
or orthorhombic) antiferromagnetically ordered spin lattice by
the generic dispersion relation

Eq = h̄ω(q) = h̄

√
v2

aq
2
x + v2

bq
2
y + v2

c q
2
z , (7)

where va , vb, and vc are the spin wave velocities (speeds)
along the respective axes. In our case of tetragonal symmetry
we have

Eq = h̄ω(q) = h̄

√
v2

ab

(
q2

x + q2
y

) + v2
c q

2
z , (8)

where vab ≡ va = vb. For G-type AF ordering of a spin lattice
with our bct unit cell, these velocities are derived from the
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dispersion relation in Eq. (6) as

h̄vab = 2J1Sa

√(
1 − 2J2

J1

) (
1 + Jc

2J1

)
,

(9)

h̄vc =
√

2J1Sc

√
Jc

J1

(
1 + Jc

2J1

)
.

From the first of Eqs. (9) the in-plane spin wave velocity
vab decreases with increasing J2, consistent with expectation
since, according to Fig. 2, a positive (AF) J2 is a frustrating
interaction for G-type AF ordering. Indeed, vab vanishes when
J2 = J1/2, which is the classical criterion in Eq. (4) for the
transition between the G-type and stripe-type in-plane AF
ordering arrangements.

In order to make contact with previous spin wave calcula-
tions for isotropic and anisotropic primitive orthogonal spin
lattices, one can change unit cell variables to those of the
primitive tetragonal (pt) spin lattice containing one spin at
each lattice point with lattice parameters a′ and c′. Referring
to the bct structure with lattice parameters a and c in Fig. 1,
the pt spin-lattice parameters are related to these according to

a =
√

2 a′, c = 2 c′. (10)

Furthermore, the pt unit cell is rotated about the c axis by 45◦
with respect to the bct unit cell, so the pt wave vectors q ′

x , q ′
y ,

and q ′
z are related to those with respect to the bct cell qx , qy ,

and qz by

qx + qy =
√

2 q ′
x, − qx + qy =

√
2 q ′

y, qz = q ′
z. (11)

With these conversion expressions, the dispersion relation in
Eq. (6) becomes[

h̄ω(q′)
2SJ1

]2

=
{

2 + Jc

J1
− 2J2

J1
[1 − cos(q ′

xa
′) cos(q ′

ya
′)]

}2

−
[

cos(q ′
xa

′) + cos(q ′
ya

′) + Jc

J1
cos(q ′

zc
′)
]2

.

(12)

Our dispersion relation (12) is identical to that in Refs. 21
and 22 derived from linear spin wave theory for the J1-J2-Jc

model. Also, Eq. (12) with J2 set to zero is identical to that in
Eq. (5) of Ref. 26 and in Eq. (3) of Ref. 27 for the anistropic
simple cubic G-type bipartite antiferromagnet.

Using Eqs. (10), for the primitive tetragonal spin lattice the
spin wave velocities in Eqs. (9) become

h̄va′b′ = 2
√

2J1Sa′
√(

1 − 2J2

J1

) (
1 + Jc

2J1

)
,

(13)

h̄vc′ = 2
√

2J1Sc′
√

Jc

J1

(
1 + Jc

2J1

)
.

In a simple cubic bipartite spin lattice with one spin per lattice
point and isotropic interactions with c′ = a′, Jc/J1 = 1, and
J2 = 0, the spin wave velocity is isotropic with magnitude
h̄v′ = 2

√
3J1Sa′, which is the same as given previously in

Table I of Ref. 26, where a′ was set to unity and is the standard
well-known result when magnetocrystalline anisotropy is
negligible.28

FIG. 6. (Color online) The spin wave dispersion of the J1-J2-
Jc model along various symmetry directions for three different
combinations of the exchange parameters: J2/J1 = 0 and Jc/J1 = 1
(top black curve); J2/J1 = 0 and Jc/J1 = 0.1 (middle red curve);
and J2/J1 = 0.25 and Jc/J1 = 0.1 (bottom blue curve). Energies
are reported in units of SJ1. The � point in the Brillouin zone
corresponds to wave vector q = 0. The q values corresponding
to the high-symmetry M, X, and N points are given in Table I.
These wave-vector directions are written with respect to the lattice
translation vectors of the I4/mmm chemical unit cell. The labels 	,
F, U, Y, 
, and � correspond to high-symmetry lines in reciprocal
space. In the far right-hand panel, the energy versus the spin wave
density of states is shown for J2/J1 = 0 and Jc/J1 = 1 (top gray
region) and J2/J1 = 0.25 and Jc/J1 = 0.1 (bottom blue region).

2. Application of spin wave theory to BaMn2As2

Spin wave dispersions using the bct notation in Eq. (6)
are plotted in Fig. 6 (in units of SJ1) for three different
combinations of the exchange ratios J2/J1 and Jc/J1. The
notations in Fig. 6 and Table I for labeling the zone bound-
ary reciprocal space positions are given by Kovalev.29 The
magnetic excitation wave-vector q values are in reciprocal
lattice units given by (H,K,L) r.l.u. This is a shorthand for q
expressed in inverse length units of the bct chemical unit cell
according to

q = 2πH

a
â + 2πK

a
b̂ + 2πL

c
ĉ.

TABLE I. Energies of various van Hove singularities in the spin
wave density of states of G-type antiferromagnets with NN (J1), NNN
(J2), and interlayer (Jc) exchange interactions.

q Label van Hove singularity energy

(001) EM 4SJ1

√
2 Jc

J1(
1
2 , 1

2 ,0
)

EX 2SJ1

√(
2 + Jc

J1
− 4 J2

J1

)2
−

(
Jc

J1

)2

(
1
2 ,0, 1

2

)
EN 2SJ1

(
2 + Jc

J1
− 2 J2

J1

)
(

1
2 , 1

2
1
2

)
EP 2SJ1

(
2 + Jc

J1
− 4 J2

J1

)
(

3
4 , 1

4 ,0
)

E′ 2SJ1

√(
2 + Jc

J1
− 2 J2

J1

)2
−

(
1 − Jc

J1

)2
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In the I4/mmm bct unit cell notation, the magnetic propagation
vector for G-type AF ordering is τG = (1,0,1), which gives
τG = (0,0,0) when translated by a reciprocal lattice vector to
the � point in the Brillouin zone. This corresponds to the
more familiar G-type wave vector τ ′

G = ( 1
2 , 1

2 , 1
2 ) in the pt cell

according to the transformation q′ = (H+K
2 ,H−K

2 ,L
2 ), where

H,K,L are referred to the I4/mmm crystallographic unit cell,
as shown in Eqs. (11).

For J2 = 0 and Jc/J1 = 1 (the top black curve in Fig. 6), the
dispersion is that of an isotropic G-type antiferromagnet (sim-
ilar to LaFeO3)27 with a maximum spin wave energy of 6SJ1.
For the layered BaMn2As2 structure, Jc is expected to be much
weaker than J1. When J2 = 0 and Jc/J1 = 0.1 (the middle red
curve in Fig. 6), the maximum spin wave energy is reduced
to ∼4SJ1 and the zone boundary M-point spin wave at q =
(001) is strongly reduced. If we now turn on antiferromagnetic
NNN interactions with J2/J1 = 0.25 (the bottom blue curve
in Fig. 6), we observe a further softening of the spin wave
spectrum, most notably at the X point. When J2 > J1/2, the
G-type ordering becomes unstable and the stripe-AF order is
the new ground state with ordering wave vector at the X point
as discussed above in Sec. III, and our spin wave expressions
are no longer applicable. The spin wave theory for the stripe
phase in the Fe-based superconductor parent compounds with
the ThCr2As2 structure is reviewed in Ref. 4.

The powder-averaged spin wave scattering is closely
associated with the spin wave density of states [SWDOS,
g(ω)]. The SWDOS is the distribution of spin wave energies
and is determined by the summation over all wave vectors in
the Brillouin zone (q),

g(ω) =
∑

q

δ [h̄ω − h̄ω (q)] . (14)

The SWDOSs versus energy h̄ω are shown on the right-hand
side of Fig. 6. It is observed that the SWDOS remains sharply
peaked when J2 = 0 and that J2 acts to broaden the SWDOS.
Table I indicates the energies of the various extremal features
in the SWDOS (van Hove singularities) for ratios J2/J1

and Jc/J1 that are associated with zone boundary spin wave
energies.

B. Calculations of the scattered intensity

When performing an INS experiment on a powder, the re-
sulting INS intensities arise from the averaging of the inelastic
scattering structure factor S(Q,ω) over all orientations of the
crystallites. Despite the orientational averaging, the spectra
can show evidence of the spin wave dispersions, especially at
low angles (within the first Brillouin zone) and in the vicinity
of the first few magnetic Bragg peaks. Due to the weighting
of the spin wave modes by coherent scattering intensities,
the Q-averaged intensity, S(ω), as shown in Fig. 5 does not
necessarily give the SWDOS. This is only true in the incoherent
scattering approximation, which does not apply to the case
of scattering from a magnetically ordered system. Therefore,
model calculations of the powder-averaged spin wave intensi-
ties are necessary for accurate comparison to the data.

Numerical calculations of the spin waves in the Heisenberg
model give not only the dispersion relation ωn(q) for the nth
(degenerate) branch [as shown in Eq. (6)], but also the spin
wave eigenvectors, Tni(q), for the ith spin in the magnetic unit

TABLE II. Parameters of the Heisenberg model in Eq. (2) for
BaMn2As2 determined from magnetic inelastic neutron scattering
measurements at a temperature of 8 K. The Mn positions i in the
top two rows refer to the crystallographic I4/mmm unit cell with
lattice parameters a = 4.15 and c = 13.41 Å at 8 K. The moment
direction is along the c axis. The spin S of the Mn atoms is not
independently determined from the measurements. Only the products
of S with the exchange constants Ji can be modeled. All exchange
parameters are positive (antiferromagnetic). Also shown are the low-
energy spin wave velocities in the ab plane vab and along the c axis vc,
each multiplied by h̄, calculated from the exchange constants using
Eqs. (9).

i σi di

1 +1 (0,0,0)
2 −1

(
1
2 , 1

2 ,0
)

Exchange constant Value Value (K)

SJ1 (33 ± 3) meV 380
J1 (S = 2, 5/2) 16.5, 13.2 meV 190, 150
SJ2 (9.5 ± 1.3) meV 110
J2 (S = 2, 5/2) 4.8, 3.8 meV 55, 44
SJc (3.0 ± 0.6) meV 35
Jc (S = 2, 5/2) 1.5, 1.2 meV 18, 14
S(2J1 + Jc) 69 meV 800
2J1 + Jc (S = 2, 5/2) 18.0, 14.4 meV 400, 320
J2/J1 0.29 ± 0.05
Jc/J1 0.09 ± 0.02

Spin wave velocity Value (meV Å)

h̄vab 180
h̄vc 190

cell. The dispersion and associated eigenvectors can be used to
calculate the spin wave structure factor for unpolarized neutron
energy loss scattering from a single-crystal sample, Smag(Q,ω),
given by

Smag(Q,ω) = 1

2
(γ ro)2

[
1 + (μ̂ · Q)2

Q2

]

×
∑

n

∣∣∣∣∣
∑

i

Fi(Q)σi

√
SiTni(q)e−iQ·di

∣∣∣∣∣
2

× [n(ω) + 1] δ[ω − ωn(q)], (15)

where the ith spin with magnitude Si pointed in direction μ̂ is
located at position di and σi = ±1 is the direction of the spin
relative to the quantization axis μ̂ for a collinear spin structure,
as shown in the top two rows of Table II. The vector q = Q − �τ
is the spin wave wave vector in the first Brillouin zone. Finally,
the function n(ω) is the temperature-dependent Bose factor and
Fi(Q) = 1

2gifi(Q)e−Wi (Q) is a product of the spectroscopic
splitting factor (g factor), magnetic form factor, and Debye-
Waller factor for the ith spin, respectively. The constant
(γ ro)2 = 290.6 mb allows calculations of the cross section
to be reported in absolute units of [mb sr−1 meV−1 (formula
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unit)−1]. ForBaMn2As2, all Mn ions in the magnetic cell are
equivalent. The structure factor can then be written

Smag(Q,ω) = 1

2
(γ ro)2SF 2(Q)

[
1 + (μ̂ · Q)2

Q2

]

×
∑

n

∣∣∣∣∣
∑

i

σiTni(q)e−iQ·di

∣∣∣∣∣
2

× [n(ω) + 1] δ[ω − ωn(q)]. (16)

In the calculations, we use the isotropic magnetic form factor
for Mn found in the International Crystallography Tables30 and
the Debye-Waller factor is set equal to unity. The differential
magnetic cross section that is measured in the inelastic neutron
scattering experiments is proportional to the structure factor.

To compare Heisenberg model spin wave results to the
powder INS data, powder-averaging of Smag(Q,ω) is per-
formed by Monte Carlo integration over 25 000 Q vectors lying
on a constant-Q sphere, giving the orientationally averaged
Smag(Q,ω) which depends only on the magnitude of Q. By a
comparison of the total S(Q,ω) in Fig. 3, the Q cuts in Fig. 4,
and the energy spectra in Fig. 5, we arrive at the following
parameters: SJ1 = 33 meV, SJ2 = 9.5 meV (J2/J1 = 0.29),
and SJc = 3 meV (Jc/J1 = 0.09), as summarized in Table II.
Figures 3(c) and 3(d) show that calculations of Smag(Q,ω) at
8 K using these parameters compare well to the corresponding
data in Figs. 3(a) and 3(b) and show clearly the coherent
scattering of the powder-averaged spin waves. The most
obvious coherent scattering feature is the necking down of
acoustic spin waves in the vicinity of allowed magnetic Bragg
reflections. The first two observed magnetic Bragg peaks
are at Q = (101) and (103). Additional coherent scattering
features can also be seen for zone boundary spin waves,
where intensities tend to peak in between the allowed magnetic
Bragg peaks. Figure 3 enforces the general agreement of the
Heisenberg model calculations of the spin wave intensity with
neutron scattering measurements.

More quantitative estimates of the agreement of the calcu-
lated spin waves and the data are shown in Figs. 4 and 5. The
calculations can be summed over scattering angles in order
to compare the equivalent angle-summed data, as shown in
Fig. 5. The success of the Heisenberg model in estimating the
measured spin wave intensities is better observed by plotting
constant energy Q cuts, as shown in Fig. 4. The plots show Q

oscillations of the experimental magnetic spin wave scattering
above a background due mainly to phonon scattering and
background/multiple scattering. A constant background and
incoherent phonon scattering intensity (proportional to Q2)
are added to the calculated spin wave scattering in order to
compare to the measured data. The agreement confirms the
adequacy of the parameters.

The low-energy spin wave velocities in the ab plane vab

and along the c axis vc calculated from the exchange constants
in Table II using Eqs. (9) are shown in Table II for our
measurement temperature of 8 K. Remarkably, in spite of
the layered nature of the spin lattice, the ab-plane and c-axis
spin wave velocities are seen to have nearly the same value
h̄vab ≈ h̄vc ≈ 180–190 meV Å. For comparison, the spin
wave velocities in the AFe2As2 compounds are in the ranges
h̄vab ≈ 280–570 meV Å and h̄vc ≈ 57–280 meV Å.4

0.0

0.5

1.0

1.5

2.0

0 200 400 600 800 1000

Temperature (K)

χ
c

χ
ab

T
N

(a)

BaMn
2
As

2

1.45

1.50

1.55

1.60

1.65

1.70

580 600 620 640 660 680

Temperature (K)

T
N
 = 618(3) K

(b)

FIG. 7. (Color online) (a) Magnetic susceptibility χ versus
temperature T of single crystals of BaMn2As2 with the applied
magnetic field parallel to the c axis (χc) and to the ab plane (χab). The
individual symbols are the data previously reported in Ref. 11. The
solid curves are the present data obtained in an applied magnetic field
H = 3 T. The Néel temperature TN is indicated. (b) Expanded plot of
χc(T ) for temperatures around TN. The temperature of the maximum
slope of χc(T ) gives TN = 618(3) K.

V. MAGNETIC SUSCEPTIBILITY MEASUREMENTS

The anisotropic magnetic susceptibilites χ (T ) of a single
crystal of BaMn2As2 in an applied magnetic field H = 3 T are
shown in Fig. 7(a) for temperatures of 300 to 1000 K, together
with our previous data11 below 350 K. Our χab(T ) data
are consistent with the previous χab(T ) data over the temper-
ature range of overlap (300–400 K),11 but there is a difference
between the c-axis data sets over that overlap temperature
range for reasons that are not clear to us. The temperature of
the maximum slope of χc(T ) from Fig. 7(b) gives the Néel
temperature as TN = 618(3) K, nearly the same as the value
of 625(1) K determined from the previous magnetic neutron
diffraction measurements on a powder sample.13 Above TN,
the susceptibility is nearly isotropic and exhibits negative
curvature. The susceptibility appears to reach a maximum
at a temperature T max ≈ 1000 K, where the value of the
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TABLE III. Parameters describing the magnetic behaviors of
BaMn2As2. Here TN is the Néel temperature, χab is the magnetic
susceptibility with the magnetic field aligned in the ab plane, χc is
the magnetic susceptibility with the magnetic field aligned along the
c axis, and χave = (2χab + χc)/3 is the powder-averaged value of the
susceptibility. Our χ (T ) results and those of Ref. 11 are on single
crystals. The TN value listed for Ref. 13 was obtained from magnetic
neutron diffraction measurements on a powder sample.

Property Value Reference

χab (10 K) 1.50(2) × 10−3 cm3/mol 11
χc (10 K) 0.20(2) × 10−3 cm3/mol 11
TN 625(1) K 13
TN 618(3) K This work
χorb 0.20(2) × 10−3 cm3/mol This work
χab (TN) 1.66 × 10−3 cm3/mol This work
χc (TN) 1.60 × 10−3 cm3/mol This work
χave (TN) 1.64 × 10−3 cm3/mol This work
χspin (TN) 1.44 × 10−3 cm3/mol This work
χab (1000 K) 1.81 × 10−3 cm3/mol This work
χc (1000 K) 1.76 × 10−3 cm3/mol This work
χave (1000 K) 1.79 × 10−3 cm3/mol This work
χspin (1000 K) 1.59 × 10−3 cm3/mol This work

average susceptibility is χmax
ave = 1.79 × 10−3 cm3/mol and a

“mol” refers to a mole of formula units (f.u.) unless otherwise
stated. The values of the anisotropic susceptibilities at several
distinctive temperatures are summarized in Table III.

One can partition the measured susceptibility χ (T ) of a
material into spin χspin and orbital χorb parts. Generally, the
orbital part is independent of T but χspin does depend on T , so
one obtains

χ (T ) = χorb + χspin(T ). (17)

The χorb generally consists of paramagnetic Van Vleck and
diamagnetic core contributions, plus the Landau diamag-
netism of conduction electrons which is not significant in
semiconducting BaMn2As2. From Fig. 7(a), the measured
χ (T > TN) is (nearly) isotropic. Therefore, we infer that χorb

is isotropic at all T . For a collinear antiferromagnetic insulator
(semiconductor) such as BaMn2As2, one expects the spin
susceptibility parallel to the ordered moment direction, χc spin

in our case, to be zero at T → 0. From Fig. 7(a) we then obtain

χorb ≈ 0.20(2) × 10−3 cm3/mol, (18)

which we have included in Table III. Thus, the spin suscepti-
bility is given by

χspin(T ) = χ (T ) − χorb. (19)

We have listed the values of χspin at T = TN and T =
1000 K in Table III. It appears from Fig. 7(a) that χ (T ) reaches
a maximum at a temperature T max ≈ 1000 K. Then one obtains
from Table III the product

χmax
spin T max ≈ 0.80

cm3 K

mol Mn
. (20)

Note that this value is for a mole of spins, not a mole of
formula units. We use this value later when comparing theory
and experiment.

The temperature dependence of χ (T ) above TN in Fig. 7(a)
is opposite to that expected for a fully three-dimensional
antiferromagnet, where χ decreases rather than increases
above TN.31 However, the behavior we observe above TN

is common in low-dimensional antiferromagnets such as
the tetragonal cuprate compound Sr2CuO2Cl2, where the
intralayer magnetic coupling within the Cu+2 spin S = 1/2
square lattice is much stronger than the interlayer coupling.6

Such antiferromagnets exhibit a susceptibility with a broad
maximum and the corresponding onset of strong short-range
AF ordering at a temperature T max of order the mean-
field AF long-range transition temperature [see Eq. (41)
below]. However, for the compound Sr2CuO2Cl2 one estimates
T max ∼ 1500 K but it exhibits long-range AF ordering only at a
much lower temperature TN = 250 K 
 T max. The interlayer
coupling Jc is much smaller than the in-plane coupling Jab in
quasi-two-dimensional antiferromagnets. The suppression of
TN with respect to T max is due to fluctuation effects associated
with the low dimensionality of the system.

In the following we consider what can be learned about the
signs and strengths of the exchange interactions in BaMn2As2

from analysis of our experimental data on this compound in
terms of molecular field theory. Later in Sec. IX we develop
the theory for fitting the experimental data taking into account
the intralayer magnetic correlations that are present above TN,
which we then apply to fit the χ (T > TN) data in Fig. 7(a) in
Sec. X.

VI. MOLECULAR FIELD THEORY

We will be analyzing various experimental data for
BaMn2As2 using the Weiss MFT. To introduce the MFT, we
first consider the known results for a local magnetic moment
model on a bipartite spin lattice with equal numbers of spins
S in the two spin sublattices i and j interacting with the same
NN exchange constant J with the Heisenberg Hamiltonian

H = J
∑
NN

Si · Sj + gμBH
∑

i

Sz
i , (21)

where g is the spectroscopic splitting factor (g factor), μB is
the Bohr magneton, and H is the magnitude of the applied
magnetic field, which is in the z direction. For such a quantum
local moment system of identical spins interacting by NN
interactions, if the susceptibility in the absence of J follows
the Curie law χ0 = C/T , then in MFT the χ (T ) above the
magnetic ordering temperature follows the Curie-Weiss law31

χ = C

T + θ
, (22)

where the Curie constant C is

C = Ng2μ2
BS(S + 1)

3kB
, (23)

N is the number of spins, and kB is Boltzmann’s constant.
Taking N to be Avogadro’s number NA and g = 2 gives a
useful expression for the Curie constant per mole of spins as

C = 0.500 20 S(S + 1)
cm3 K

mol spins
. (24)
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The Weiss temperature θ is

θ = zJS(S + 1)

3kB
, (25)

where z is the coordination number of each spin. Here, positive
θ corresponds to the case when J is positive (AF interactions),
whereas a negative θ corresponds to the case when J is
negative (FM interactions). If θ is positive, then the magnetic
ordering temperature is TN = θ for AF ordering. On the other
hand, if θ is negative, then FM ordering occurs at the Curie
temperature TC = |θ |.

As discussed in Appendix A, the Curie-Weiss law is not
simply a mean-field expression.6,32–34 It arises from the first
(1/T ) term in the exact quantum mechanical high-temperature
series expansion of the nearest-neighbor two-spin correlation
function and is accurate in the limit that higher order 1/T n

terms in the two-spin correlation functions are negligible.
Thus, the Curie-Weiss law, and hence our scaling expressions
in Eqs. (82) and (87) below, begin to fail when 1/T 2 and higher
order terms in the two-spin correlation functions become
significant compared to the 1/T term with decreasing T .

Another important conclusion from Appendix A is that
the Weiss temperature in the Curie-Weiss law results from
all the spins that a given spin interacts with, irrespective of
the dimensionality of the spin lattice, of whether or not the
spin lattice is bipartite (see Sec. VII) or whether all those
interactions are the same, but where all spins are equivalent.
Thus, if there are different interactions present of a given spin
i with other spins j , in Eq. (25) for the Weiss temperature one
can make the replacement zJ → ∑z

j=1 Jij , where z is the total
number of spins that spin i has interactions with, giving the
Weiss temperature as

θ = S(S + 1)
∑z

j=1 Jij

3kB
. (26)

VII. THE J1- J2- Jc HEISENBERG MODEL TREATED
IN MOLECULAR FIELD THEORY

The Hamiltonian (2) represents a situation where there is
coupling both between the two spin sublattices and within
each sublattice, where the two sublattices 1 and 2 correspond
to the red (up-pointing) and blue (down-pointing) magnetic
moments in the top panel of Fig. 2, respectively. Consider a
specific spin i in sublattice 1. This spin i has four in-plane
NN in sublattice 2 coupled by J1 and two out-of-plane NN
in sublattice 2 coupled by Jc. Within the same sublattice 1,
spin i is coupled to four in-plane NNN by J2. Since there are
multiple exchange constants present from a given spin to its
NN and NNN spins, we have

10∑
j=1

Jij = 2(2J1 + Jc + 2J2)

and the Weiss temperature (26) becomes

θ = 2(2J1 + Jc + 2J2) S(S + 1)

3kB
. (27)

We cannot measure θ for BaMn2As2 because, according to
Fig. 7, the temperature range required for the susceptibility

measurments to be in the Curie-Weiss regime would be far
above 1000 K.

In MFT, the magnetic induction B = B k̂ seen by each
sublattice 1 and 2 is the sum of the applied field H = H k̂ and
the respective exchange field H = Hexch k̂; that is,

B1 = H + H1 exch,
(28)

B2 = H + H2 exch.

The MFT exchange field Hexch seen by each sublattice is,
respectively,

H1 exch = λsM1 + λdM2,
(29)

H2 exch = λdM1 + λsM2,

where λs is the net molecular field coupling parameter
for coupling within the same sublattice and λd is the net
molecular field coupling parameter for coupling between
the two different sublattices. We obtain in Eq. (35) below
expressions for these λ values in terms of the J parameters in
Hamiltonian (2).

We only consider here the limit of low applied fields H . In
MFT, the magnetization of each sublattice 1 and 2 is given by
the response to the applied field plus the exchange field as

M1(T ,H ) = χ0(T )B1

2
= χ0(T )

2
(H + λsM1 + λdM2),

(30)

M2(T ,H ) = χ0(T )B2

2
= χ0(T )

2
(H + λsM1 + λdM2),

where χ0(T ) ≡ limH→0 M/H is the temperature-dependent
spin susceptibility of the whole system in the absence of the
explicit exchange fields, the factors of 1/2 are there because
each sublattice only has half of the total number of spins, and
Mi is the z-axis magnetization of the system induced by a
magnetic field in the z direction with magnitude H . In the
paramagnetic state, M2 = M1 and Eqs. (30) yield

Mi(H,T ) = χ0(T )H/2

1 − (χ0/2)(λd + λs)
,

where i = 1,2. Since M = 2Mi , one obtains the spin suscep-
tibility χ (T ) = 2Mi/H as

χ (T ) = χ0(T )

1 − (χ0/2)(λd + λs)
. (31)

The inverse susceptibility is

1

χ (T )
= 1

χ0(T )
− λd + λs

2
. (32)

This is typical of molecular field theory, where the molecular
exchange field just shifts the inverse susceptibility up or
down by a temperature-independent amount that depends on
the sign and magnitude of the net molecular field coupling
constant. It is important to note, with respect to fitting
experimental data by molecular field theory, that the presence
of molecular fields cannot change the temperature of peaks
in the susceptibility χ0(T ) that is assumed in the absence
of explicit exchange couplings. For example, one could take
χ0(T ) to be the susceptibility of the isotropic square lattice
Heisenberg antiferromagnet such as in Fig. 17 below, which
has a broad peak at T ∼ J/kB. If one uses a molecular
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exchange field to magnetically couple the square lattice layers,
this molecular field cannot change the temperature of the broad
AF short-range ordering peak.

To determine the magnetic ordering temperature(s) Tm, we
set the applied field H to zero in Eqs. (30) and solve for
nonzero M1 and M2. For the general case one obtains

χ0(Tm)

2
(λs ± λd) = 1, (33)

so Tm depends on the assumed χ0(T ). From Eqs. (29), we see
that for G-type AF ordering, we need to have λd be negative,
so we take the minus sign in Eq. (33) to get

χ0(TN)

2
(λs − λd) = 1, (34)

where now Tm is the antiferromagetic ordering (Néel) temper-
ature TN. Now we can use the solution for a λ in terms of the
related J value(s) from Ref. 31 to get

λs = −
(

2

Ng2μ2
B

)
(4J2),

(35)

λd = −
(

2

Ng2μ2
B

)
(4J1 + 2Jc),

which yield

λs − λd =
(

2

Ng2μ2
B

)
(4J1 + 2Jc − 4J2). (36)

Inserting this expression into Eq. (34) for G-type antiferro-
magnets gives[

χ0(TN)

Ng2μ2
B

/
kB

]
4J1 + 2Jc − 4J2

kB
= 1. (37)

This is a constraint on the exchange parameters in BaMn2As2

in addition to those in Eqs. (4). If χ0(T ) is the spin
susceptibility per mole of spins, then N is Avogadro’s number
NA. Taking g = 2 we have

NAg2μ2
B

kB
= 1.500

cm3

mol
(38)

and Eq. (37) becomes

4J1 + 2Jc − 4J2

kB
= 1.500 cm3/mol

χ0(TN)
. (39)

In the following sections we assume that the spin suscepti-
bility in the absence of any explicit exchange fields follows a
Curie law, χ0(T ) = C/T . Then Eqs. (24) and (39) yield

2J1 + Jc − 2J2

kB
= 3TN

2S(S + 1)
, (40)

or

TN = 2(2J1 + Jc − 2J2)

3kB
S(S + 1). (41)

Substituting Eq. (41) into (36) gives

λs − λd = 6kBTN

Ng2S(S + 1)μ2
B

. (42)

It is useful to express differently how the NNN intrasublattice
interaction J2 affects TN. From Eq. (41), one obtains

TN(J2)

TN(J2 = 0)
= 1 − 2J2

2J1 + Jc

, (43)

which is independent of the spin S and only depends on the
ratio of the intrasublattice exchange constant J2 to the net
intersublattice exchange constant 2J1 + Jc. From Fig. 2 and
Eq. (43), an antiferromagnetic J2 > 0 is frustrating for G-type
AF ordering and hence lowers TN, whereas a ferromagnetic
J2 < 0 is nonfrustrating for G-type AF ordering and instead
enhances TN.

A. Néel temperature reduction factor f

One can define a Néel temperature reduction factor f for
antiferromagnets by

f = θ

TN
, (44)

where θ is the positive AF Weiss temperature in the Curie-
Weiss law in Eq. (22). For molecular field bipartite antifer-
romagnets with only nearest-neighbor interactions, f = 1.31

However, there are four classes of AF materials in which f can
be much different from unity: (1) materials in which fluctuation
effects associated with a low dimensionality (0, 1, or 2) of the
spin lattice are strong, (2) three-dimensional materials in which
geometric frustration for AF ordering occurs, (3) spin lattices
in which the signs of the exchange interactions of a spin with
its neighbors frustrate the ordering, and/or (4) spin lattices
that are not bipartite; that is, interactions between spins on the
same sublattice occur. In each of these classes of materials,
TN can be strongly suppressed, sometimes to T = 0, which
gives f � 1. Alternatively, it can occur that second neighbor
interactions can enhance TN but suppress |θ |, as we see below
in Eq. (45) if J2 is negative (ferromagnetic). It can occur that
a given compound belongs to more than one class.

One of us has discussed class (1) in the context of
low-dimensional copper oxide compounds such as quasi-two-
dimensional La2CuO4 containing a Cu2+ d9 spin-1/2 square
lattice and quasi-one-dimensional Sr2CuO3 containing Cu2+
d9 spin-1/2 chains.6 In these materials the AF correlation
length ξ grows with decreasing T . In La2CuO4, long-range
AF ordering occurs at TN ∼ π (ξ/a)2Jc/kB, where the number
of spins within an AF correlated area in the plane is
Nξ ∼ π (ξ/a)2, Jc is the interplane nearest-neighbor exchange
coupling constant, and a is the square lattice parameter. A large
number Nξ of spins within a correlated area amplifies the effect
of a small Jc. In Sr2CuO3, Nξ grows much more slowly with
decreasing T than in La2CuO4 because what is relevant here
is the number of spins within a correlation length rather than
within a correlation area, and the former is much smaller than
the latter at the same temperature. Hence, one expects f for
Sr2CuO3 to be much larger than for La2CuO4, as observed. The
ξ and the Weiss temperature θ are determined by the in-chain or
in-plane exchange coupling Jab � Jc, respectively, and hence
TN 
 θ for both compounds.

Ramirez has extensively discussed class (2).35 In frustrated
three-dimensional antiferromagnets, the susceptibility fol-
lows a Curie-Weiss-like temperature dependence down to
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temperatures much less than θ . One can describe the physics
in two equivalent ways. In one view, the AF correlation
length ξ does not grow as fast as one would predict from
the Curie-Weiss law where one expects ξ to diverge at the
mean-field TN = θ . An alternate equivalent explanation is
that because the Curie-Weiss law holds to low temperatures
T 
 θ , which results in f � 1, the coefficients of the higher
order 1/T n terms (n > 1) in the high-temperature series
expansions of the two-spin correlation functions in Eqs. (A4)
and (A5) in Appendix A are strongly suppressed in frustrated
antiferromagnets. BaMn2As2 likely belongs to classes (1), (3),
and (4).

Using Eqs. (27) and (41) which assume χ0 = C/T and
J1, Jc > 0, the ratio of the Weiss temperature to the Néel
temperature for G-type antiferromagnets in the J1-J2-Jc model
within MFT is

f = θ

TN
= 2J1 + Jc + 2J2

2J1 + Jc − 2J2
=

1 + 2J2
2J1+Jc

1 − 2J2
2J1+Jc

, (45)

which gives

2J2

2J1 + Jc

= f − 1

f + 1
. (46)

Thus, f depends on the sign and magnitude of the NNN in-
plane interaction J2. For an antiferromagnetic J2 > 0, one gets
f > 1, whereas for a ferromagnetic J2 < 0, one gets f < 1.
The constraint on J2 in Eqs. (4) that J2 < J1/2 still applies,
giving an upper limit (for which Jc = 0) of

f < 3 (for G-type AF ordering). (47)

Using Eq. (46), one can rewrite Eq. (43) as

TN(J2)

TN(J2 = 0)
= 2

f + 1
. (48)

In MFT in the paramagnetic state, the spin susceptibility
(22) follows the Curie-Weiss law χ (T ) = C/(T + θ ), and
χ (T ) reaches a maximum at T = TN. Therefore, we obtain
the product

χmax
spin T max = χmax

spin (TN)TN = C

TN + θ
TN

= C

TN(1 + f )
TN = C

1 + f

= 0.5002 S(S + 1)

1 + f

cm3 K

mol spins
, (49)

where we used Eq. (24) in the last equality. This gives

f = (0.5002 cm3 K/mol spins)S(S + 1)

χmax
spin T max

− 1. (50)

From Eqs. (40) and (49) one can solve for 2J1 + Jc and J2 to
obtain

2J1 + Jc

kB
= (3 cm3 K/mol)TN

8χmax
spin T max

,

(51)
J2

kB
= 2J1 + Jc

2kB
− 3TN

4S(S + 1)
.

Additional useful expressions include the following. From
Eqs. (27), (41), and (44) one obtains

2J1 + Jc = 3kBTN(f + 1)

4S(S + 1)
. (52)

Then from Eq. (46) one gets

2J2 = 3kBTN(f − 1)

4S(S + 1)
. (53)

Now using Eqs. (52) and (53) we can rewrite the molecular
field coupling constants in Eqs. (35) in the simple symmetric
forms

λs = −TN(f − 1)

C
, λd = −TN(f + 1)

C
, (54)

where C is the Curie constant in Eq. (23).

B. Anisotropic χ (T ) below TN

We would like to compare our experimental anisotropic
χ (T ) data below TN with the MFT predictions using the J1-J2-
Jc model. We discuss first the perpendicular susceptibility χ⊥
and then the parallel susceptibility χ‖, where χ⊥ refers to the
susceptibility with the applied magnetic field perpendicular
to the easy axis of the collinear antiferromagnetic structure
and χ‖ to the susceptibility when the applied magnetic field
is parallel to it. For BaMn2As2, χ‖ = χc and χ⊥ = χab. In
the Heisenberg model, above TN the susceptibility is isotropic
and hence χ‖ = χ⊥. Below TN, χ⊥ and χ‖ are no longer the
same.

Below TN of a collinear antiferromagnet, one always has
χ‖ < χ⊥ (see also Fig. 13 below). Since the magnetic energy
of the system at low fields is −(1/2)χH 2, if the field is aligned
along the ordered moment axis the spin system can lower its
energy via a “spin-flop” transition where the ordered moment
axis rotates to be perpendicular to the applied field. To prevent
this from happening, one needs to have an anisotropy energy
present that is not included in the Heisenberg Hamiltonian.
Otherwise one could never measure χ‖. An important example
of such an anisotropy energy is the axial single-ion anisotropy
energy with the form DS2

z (for S > 1/2) and D < 0, and/or
higher order forms, that arise from the spin-orbit interaction
of the magnetic moments with the crystalline electric field
of the lattice. Here we assume that an infinitesimal axial
anisotropy is present with sufficient magnitude to prevent
the ordered moment axis from flopping from the parallel
to the perpendicular orientation when we are measuring the
parallel magnetization in the limit of an infinitesmal field.
We do not further consider the spin-flop transition in this
paper.

The χ⊥(T ) and χ‖(T ) are derived for the J1-J2-Jc model at
T � TN in Appendix B. For the perpendicular susceptibility,
one obtains the constant value

χ⊥ = 1

|λd| = C

TN(1 + f )
= C

TN + θ
= χ (TN), (T � TN),

(55)

using f ≡ θ/TN. This result is similar to that for a bipartite
lattice,31 except in that case one has θ = TN, whereas in
our case we have θ = f TN with, in general, f �= 1 from
Eq. (45). The estimated values of f from Eqs. (60) below
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FIG. 8. (Color online) Parallel susceptibility χ‖ versus temper-
ature T through the Néel temperature TN for G-type AF ordering
using the J1-J2-Jc model in MFT for various values of f = θ/TN,
as listed, for spins (a) S = 1/2 and (b) S = 5/2. The order of the
curves from top to bottom is the same as in the figure legends. At
temperatures T > TN, χ is isotropic. For T < TN, the perpendicular
susceptibility is constant, χ⊥ = χ⊥(TN) (not shown). The G-type AF
state is unstable against the stripe-AF state for f > 3.

are ∼3–5 in BaMn2As2; that is, TN is much smaller than θ , but
within MFT the susceptibility still follows the Curie-Weiss law
χ = C/(T + θ ) down to TN. This interesting behavior is the
result of bond frustration for AF ordering (the antiferromag-
netic NNN interaction J2 frustrates the occurrence of G-type
AF ordering) and has been noted as a property of geometrically
frustrated antiferromagnets.35

The dependence of χ‖(T )/χ‖(TN) on t ≡ T/TN determined
by solving Eqs. (B13), (B14), and (B18) is shown in Figs. 8(a)
and 8(b) for spins S = 1/2 and S = 5/2, respectively, for
various values of f = θ/TN. The value f = 1 corresponds
to the conventional nonfrustrated bipartite stacked square spin
lattice as in the top panel of Fig. 2 with J2 = 0. Figure 8
shows that the presence of a nonzero diagonal coupling J2

has a strong influence on χ‖(T )/χ‖(TN). Complementary plots
of χ‖(T )/χ‖(TN) versus T/TN at fixed f = 0, 1, and 3 for
S = 1/2, 5/2, and 10 are shown in Fig. 9.
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FIG. 9. (Color online) Parallel susceptibility χ‖ versus tempera-
ture T through the Néel temperature TN for the J1-J2-Jc model in
MFT for spins S = 1/2, 5/2, and 10 and f = θ/TN values of (a) 0,
(b) 1, and (c) 3. The order of the curves in each panel from top
to bottom is the same as in the figure legends. The value f = 1
corresponds to the conventional bipartite lattice with J2 = 0.

C. Ordered moment versus temperature below TN

The ordered moment in the antiferromagnetic state of
BaMn2As2, which is the staggered moment μ

†
z in Eq. (B16),

has been previously measured, but not modeled.13 In
Appendix C we determine the MFT predictions on the basis
of the J1-J2-Jc model. In Fig. 10 are plotted the solutions
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FIG. 10. (Color online) Ordered moment μz ≡ μ†
z versus tem-

perature T from molecular field theory of the J1-J2-Jc model for a
collinear antiferromagnet for classical spins and for several quantum
spins as listed, where the saturation moment is μsat = gSμB. The
order of the curves from top to bottom is the same as in the figure
legend. Remarkably, the results are independent of J2.

of Eq. (C1) for the nonzero ordered moment μz ≡ μ
†
z versus

reduced temperature T/TN for classical spins and for four val-
ues of quantum spins. In contrast to quantum spins for which
μ
†
z approaches the respective saturation moment μsat = gSμB

exponentially fast for T → 0 due to an energy gap between the
ground state and the lowest excited states, the low-temperature
classical behavior is linear. This results in a magnetic heat
capacity Cmag → constant �= 0 as T → 0 for classical spins,
which violates the third law of thermodynamics, whereas for
quantum spins Cmag → 0 as T → 0 (see Fig. 11 below).

Interestingly, the parameter f = θ/TN that characterizes
the influence of J2 on the magnetism has disappeared from the
expression for μ

†
z(T ) in Eq. (B16) when the temperature scale

is normalized by TN. Thus, Eq. (C1) and the plots in Fig. 10
are identical to the corresponding MFT predictions for an AF
bipartite spin lattice with J2 = 0. However, in our case with
J2 �= 0, we must keep in mind that J2 has already manifested
its influence on the magnetism by changing TN.

D. Zero-field magnetic heat capacity Cmag and
entropy Smag below TN

The zero-field magnetic heat capacity Cmag(T ) is derived
in MFT in Appendix D as

Cmag(t)

R
= − 3S

S + 1
μ̄†

z(t)
dμ̄

†
z(t)

dt
, (56)

where t = T/TN is the reduced temperature and μ̄
†
z = μ

†
z/μsat

is the reduced ordered (staggered) moment. Since μ̄
†
z does

not explicitly depend on J2 as discussed above, neither does
Cave(T/TN), but rather implicitly via the dependence of TN on
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Classical
S = 10
S = 7/2
S = 5/2
S = 3/2
S = 1/2

T / T
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FIG. 11. (Color online) Magnetic component of the heat capacity
Cmag, divided by the molar gas constant R, versus the ratio of
the temperature T to the Néel temperature TN according to the
molecular field theory [Eq. (56)] of the J1-J2-Jc model for a collinear
antiferromagnet for classical spins and for several quantum spins as
listed. The order of the curves from top to bottom is the same as in
the figure legend. As in Fig. 10, the results are independent of J2.

J2. The μ̄
†
z(t) is determined by numerically solving Eq. (C1).

Inserting this result into (56), Cmag(T ) was calculated for
several spin values as plotted in Fig. 11. One observes a
triangular shape for Cmag(t) near TN for each S, which is
characteristic of the mean-field solution, with a discontinuous
increase (“jump”) in Cmag(T ) upon decreasing T through TN

given by36


Cmag(TN)

R
= 5

2

[
(2S + 1)2 − 1

(2S + 1)2 + 1

]
, (57)

where 2S + 1 is the Zeeman degeneracy in zero field for a spin
S. There is not a large range of 
Cmag possible upon varying
the spin S. From Eq. (57) one obtains


Cmag(TN)

R
= 3

2

(
S = 1

2

)
,


Cmag(TN)

R
= 5

2
(S = ∞) ,

consistent with Fig. 11.
The evolution in Fig. 11 of the low temperature Cmag(T )

with increasing spin S is interesting. It develops a hump at
a temperature that decreases with increasing S, until in the
classical limit S → ∞ the hump merges into the classical
finite-value behavior for T → 0. The hump is required in
order that the entropy of the disordered spin system increase
with increasing S (see below), since Cmag(T ) is bounded from
above by the classical prediction. For quantum spins, the heat
capacity approaches zero exponentially at sufficiently low
temperatures irrespective of the (finite) spin value, whereas for
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FIG. 12. (Color online) Magnetic entropy Smag/R for quantum
spins versus reduced temperature T/TN according to molecular field
theory for the quantum spins S indicated. The order of the curves from
top to bottom is the same as in the figure legend. In the disordered
state at T > TN, the magnetic entropy is the constant value Smag =
R ln(2S + 1) for each S, as indicated along the right-hand ordinate.

classical spins the heat capacity approaches a nonzero finite
value for T → 0.

The magnetic entropy Smag is determined from the magnetic
heat capacity via

Smag(t)

R
=

∫ t

0

Cmag(t)/R

t
dt. (58)

The magnetic entropy obtained from Eq. (58) and from the
data in Fig. 11 is plotted versus temperature for quantum
spins in Fig. 12. The constant values for T � TN as indicated
by the notations on the right-hand ordinate agree with the
values expected for disordered spins given by the molar
magnetic entropy Smag = R ln(2S + 1). For classical spins
the calculated entropy for T → 0 is Smag(T → 0+)/R =
limT →0 ln[T/(0 K)] = ∞, which violates the third law of
thermodynamics.

VIII. COMPARISON OF THEORETICAL PREDICTIONS
WITH EXPERIMENTAL DATA FOR BaMn2As2

A. Comparisons with molecular field theory

We expect the Mn+2 d5 ion in BaMn2As2 to have the
high-spin configuration with spin S = 5/2. On the other
hand, the observed ordered moment is μ = 3.9(1) μB/Mn
(Ref. 13), suggesting from the relation μ = gSμB with g = 2
that S = 2. Therefore, in the following we consider both of
these possibilities.

1. Néel temperature

Using Eq. (40) and TN = 625 K for BaMn2As2, one obtains

2J1 + Jc − 2J2

kB
= 156 K (S = 2)

(59)
= 107 K (S = 5/2).

2. Magnetic susceptibility

Inserting the experimental χmax
spin T max value from Eq. (20)

into (50) gives

f = 2.75 (S = 2),
(60)

= 4.47 (S = 5/2).

According to Eq. (47), the value of f for S = 5/2 is not
possible for G-type AF ordering and hence S = 5/2 is ruled out
by this criterion. The f value for S = 2 suggests that interlayer
coupling might have a significant effect on the observed mag-
netic susceptibility above TN. On the other hand, for the layered
cuprate La2CuO4 one has z = 4, J/kB = 1600 K, S = 1/2,
and TN = 325 K (Ref. 6), which yields a Weiss temperature
θ = 1600 K and f = 4.9, and the magnetism of this compound
is known to be described very well by two-dimensional
physics in the temperature range above TN (Ref. 6). As a
further comparison, the quasi-one-dimensional spin-1/2 chain
compound Sr2CuO3 has z = 2, J/kB = 2200 K, S = 1/2,
and TN = 5.4 K (Ref. 6), which yields θ = 1100 K and
f = 200. This large f value is the reason that Sr2CuO3 is often
considered to be a model quasi-one-dimensional Heisenberg
antiferromagnet.6

Again using the experimental χmax
spin T max value from

Eq. (20), Eqs. (51) yield

2J1 + Jc

kB
= 293 K (S = 2)

= 293 K (S = 5/2),
(61)

J2

kB
= 68 K (S = 2)

= 93 K (S = 5/2).

The above results, summarized in Table IV, are only approx-
imate qualitative constraints on the exchange parameters in
BaMn2As2, because they assume that the susceptibility follows
the Curie-Weiss law above TN, which Fig. 7 shows is not
accurate. In particular, if Jc/J1 ≈ 0.1, as determined from the
neutron scattering results and the theoretical predictions in
Sec. XII, one obtains unrealistically large J2/J1 = 0.50 and
0.67 for S = 2 and S = 5/2, respectively. The problem stems
from the fact that T max and TN do not coincide, which is an
inconsistency in the analysis.

A comparison of the MFT predictions below TN

of the anisotropic susceptibilities in Eqs. (55) and (B18) with
the experimental data from Fig. 7(a) is shown in Fig. 13. For
the MFT dashed-line predictions we used Eq. (17) with χorb =
0.2 × 10−3 cm3/mol and χspin(TN) = 1.35 × 10−3 cm3/mol.
We used the value TN = 625 K and the MFT parameter
f = 2.75 listed in Table IV for S = 2. The temperature
dependences of the MFT predictions for the anisotropic
susceptibilities are seen to be in semiquantitative agreement
with the experimental data. We do not consider the case
S = 5/2 because the large f = 4.47 > 3 in Eqs. (59) and
Table IV for S = 5/2 makes the G-type AF structure unstable
with respect to the stripe-AF structure in Fig. 2.
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TABLE IV. Parameters determined from a fit of magnetic suscep-
tibility data by molecular field theory of G-type antiferromagnetic
BaMn2As2 with NN (J1), NNN (J2), and interlayer (Jc) exchange
interactions.

Quantity S = 2 S = 5/2

f = θ/TN 2.75 4.47
(2J1 + Jc − 2J2)/kB (K) 156 107
(2J1 + Jc)/kB (K) 293 293
2J1 + Jc (meV) 25.2 25.2
S(2J1 + Jc)/kB (K) 586 733
S(2J1 + Jc) (meV) 50.5 63.2
J2/kB (K) 68 93
J2 (meV) 5.9 8.0
SJ2/kB (K) 136 233
SJ2 (meV) 11.7 20.1

3. Ordered moment

The theoretical MFT results for the ordered moment versus
temperature in Fig. 10 for S = 3/2 to S = 5/2 are nearly
the same, so we do not expect to be able to differentiate
between the two possibilities of S = 2 and S = 5/2 for the Mn
spins in BaMn2As2 on the basis of the observed temperature
dependence of the ordered moment. This expectation is
confirmed in Fig. 14 where we compare the MFT predictions
for S = 1/2, 2, and 5/2 from Eq. (C1) with the experimental
data from magnetic neutron diffraction measurements in Ref.
13. Although the overall temperature dependence of the data
agrees with MFT, the data are not quantitatively fitted by the
prediction for any particular fixed S value.

4. High-temperature magnetic heat capacity

Here we compare our experimental heat capacity Cp data
for BaMn2As2 single crystals at temperatures up to 350 K with
the prediction of MFT for the magnetic heat capacity Cmag at
high temperatures, that is, near room temperature. To do this
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FIG. 13. (Color online) Comparison of the MFT prediction below
TN of the anisotropic susceptibilities in Eqs. (55) and (B18) versus
temperature with the experimental data from Fig. 7(a).
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FIG. 14. (Color online) Ordered moment μz versus temperature
T measured for BaMn2As2 from Ref. 13 (solid red circles). The Néel
temperature TN and saturation moment μsat are given in the figure.
Also shown are the MFT predictions for quantum spins S = 1/2, 2,
and 5/2 from Eq. (C1) (solid and dashed curves), where the order of
the curves from top to bottom is the same as in the figure legend.

we need to estimate the lattice heat capacity contribution using
the Debye model.

The heat capacity at constant pressure Cp(T ) for a single
crystal of BaMn2As2, previously reported by Singh et al.,11 is
shown in Fig. 15 for the measured temperature range 2–350 K.
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FIG. 15. (Color online) Heat capacity C versus temperature
T . The experimental Cp(T ) data obtained for a single crystal of
BaMn2As2 (Ref. 11) are shown as the solid black circles. The lattice
heat capacity for a Debye temperature �D = 300 K is plotted versus
T as the solid red curve. The sum of the lattice heat capacity and the
magnetic heat capacity for spin S = 2 is shown as the dashed blue
curve.
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We fitted the data by the Debye function for the molar lattice
heat capacity of acoustic phonons at constant volume, given
by31

CDebye = 9nR

(
T

�D

)3 ∫ �D/T

0

x4ex

(ex − 1)2
dx, (62)

where n is the number of atoms per formula unit (n = 5 here)
for various values of the Debye temperature �D. In order
that CDebye(T ) does not lie above the experimental data over
any temperature range, the minimum value of �D is about
300 K, for which the Debye function is plotted as the solid red
curve in Fig. 15. The �D is evidently temperature-dependent
because the deviation of the curve from the experimental data
varies nonmonotonically with temperature. From the same set
of experimental Cp(T ) data,11 at low temperatures T � 5 K a
value �D = 246(4) K was deduced using the Debye T 3 law
[the low-temperature limit of Eq. (62)] given by31

CDebye = βDT 3, βD = 0.65(3)
mJ

mol K4
,

(63)

�D =
(

12π4Rn

5βD

)1/3

.

The experimental data at the highest temperatures lie above the
lattice heat capacity curve for �D = 300 K in Fig. 15, suggest-
ing the presence of one or more heat capacity contributions in
addition to that due to acoustic phonons.

We calculated the difference Cp − CV for the lattice heat
capacity for the compound BaFe2As2, where CV is the lattice
heat capacity at constant volume, according to the thermody-
namic relation Cp − CV = VMβ2

V(T )B(T )T , where VM is the
molar volume, βV is the volume thermal expansion coefficient,
and B is the bulk modulus. For the 200–300 K temperature
range, using the values βV ≈ 4.8 × 10−5 K−1 (Ref. 37),
B = 6.6 × 1012 dyne/cm2 (Ref. 38), and VM = 61.5 cm3/mol
(Ref. 4), we obtained Cp − CV = (9.3 mJ/mol K2)T . This
gives (Cp − CV)(300 K) = 2.8 J/mol K, which is about a
factor of two too small to account for the difference between
the data and the Debye curve. It was not possible to calculate
a value of Cp − CV specific to BaMn2As2 because βV(T ) and
B(T ) have not been measured for this compound.

The magnetic contribution Cmag(T ) to the heat capacity at
high temperatures was calculated using the MFT prediction in
Eq. (56). We chose to calculate it for spin S = 2 because the
S = 5/2 possibility was ruled out by the large value of f > 3
for spin S = 5/2 in Eq. (60). Using TN = 625 K, the Cmag(T )
from two moles of spins S = 2 per mole of BaMn2As2 was
added to the Debye heat capacity and is plotted as the dashed
blue curve in Fig. 15. Now the calculated curve lies above
the experimental data around room temperature, indicating
that the magnetic heat capacity is smaller than predicted by
MFT. The χ (T ) data in Fig. 7(a) appear to be approaching a
maximum at a temperature T max ≈ 1000 K that is far above
TN = 625 K, indicating the occurrence of strong short-range
AF ordering above TN (see also Sec. IX below). This removes
spin entropy and decreases Cmag below the value expected
from MFT at temperatures below TN. This may be the reason
for the suppression of Cmag(T ) in our measurements around
room temperature.

B. Comparison of experiment with spin wave heat capacity
theory at low temperatures in the J1- J2- Jc model

1. Theory

The lack of significant susceptibility anisotropy above TN

in Fig. 7 indicates that single-ion anisotropy is small. This
anisotropy, if present, gives rise to an energy gap in the spin
wave excitation spectrum. Here we assume that the anisotropy
gap is infinitesmally small and calculate the low-temperature
magnetic heat capacity of AF spin waves in the J1-J2-Jc model.
This is an extension of the standard treatment for simple cubic
spin lattices with isotropic NN exchange interactions.

The original 1952 papers by Anderson39 and by Kubo40

give a clear prescription of how to do this using a spin wave
model with two AF sublattices 1 and 2 containing a total of N

spins S. Their starting Heisenberg Hamiltonian is

H = J
∑
〈ij〉

Si · Sj , (64)

where there is only a single J and the sum is over distinct
nearest-neighbor spin pairs. In zero field and in the absence of
significant anisotropy the diagonalized spin wave Hamiltonian
contains the following term involving the excitation energies
of spin waves

E =
∑

q

(
n1qh̄ω1q + n2qh̄ω2q

)
, (65)

where q is the wave vector of a spin wave excitation, niq is
the occupation number of the mode for sublattice i, and the
two terms correspond to excitations on the two degenerate
spin wave branches ω1q and ω2q associated with the two spin
sublattices, respectively. Since n1qh̄ω1q = n2qh̄ω2q ≡ nqh̄ωq
are degenerate, the excitation energy of the system can be
written

E = 2
∑

q

nqh̄ωq. (66)

The thermal-average energy of the spin waves is then

Eave = 2
∑

q

h̄ωq

eh̄ωq/kBT − 1
, (67)

where 〈nq〉 = 1/(eh̄ωq/kBT − 1) is the Planck distribution func-
tion for the thermal-average number of quanta in an oscillator
at energy h̄ωq. One converts the sum into an integral over q
for a three-dimensional spin lattice via

∑
q

→ N

2

Vspin

(2π )3

∫ π/a

−π/a

∫ π/b

−π/b

∫ π/c

−π/c

dq, (68)

where Vspin is the volume per spin. The factor of N/2 arises
because each spin sublattice has N/2 spins. Then Eq. (67)
becomes

Eave = NVspin

(2π )3

∫ π/a

−π/a

dqx

∫ π/b

−π/b

dqy

×
∫ π/c

−π/c

dqz

h̄ωq

eh̄ωq/kBT − 1
. (69)

Note that the integration in Eq. (69) is over the entire
Brillouin zone of the primitive direct lattice (containing a
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single spin), not over the Brillouin zone of the magnetic
lattice. The reason for this important fact is that integrating
over the Brillouin zone of a primitive space lattice with one
spin in the basis sums up the response of a single spin, whereas
if one were to integrate over an antiferromagnetic Brillouin
zone, this zone would include the response of more than one
spin. Indeed, the average energy per spin calculated this way
does not depend on the type of magnetic ordering at all, even
if the magnetic ordering is ferromagnetic or incommensurate.
The only relevant difference between the thermal average
energy per spin of different magnetic ordering configurations
is the difference between the specific ωq functions and their
degeneracies over the Brillouin zone of the primitive space
lattice.

The dispersion relation for a general spin lattice is

h̄ωq = zJS

√
1 − γ 2

q , (70)

where

γq = 1

z

z∑
i=1

eiq·ri , (71)

z is the coordination number of a spin on one sublattice by
spins on the other sublattice, and ri is a vector from a spin
to one of its z neighbors. We now need to make a point that
will be illustrated using the spin wave spectrum of an isotropic
two-dimensional square spin-S lattice (z = 4). In this case
Eq. (71) yields

γq = 1
2 [cos(kxa) + cos(kya)]

and Eq. (70) gives the doubly degenerate dispersion relation
as

h̄ωq = 4JS

√
1 − [cos(kxa) + cos(kya)]2/4. (72)

This dispersion relation is plotted in Fig. 16. One sees
that ωq has doubly degenerate branches arising from zero
energy at the � point (0,0), as expected, but also at the
corners of the Brillouin zone at ( π

a
, π

a
) and equivalent points.

In a three-dimensional spin lattice with Jc �= 0, using the
dispersion relation in Eq. (12), one sees that the low-energy
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FIG. 16. (Color online) Spin wave dispersion relation h̄ω/4J1S

of the isotropic two-dimensional square lattice over the Brillouin
zone of the primitive tetragonal space lattice. The dispersion relation
is doubly degenerate everywhere. At low temperatures, there are two
distinct doubly degenerate spin wave branches that are relevant, one
at the � point at (0,0) and the other at ( π

a
, π

a
) (and equivalent points).

points of the dispersion relation move from the ( π
a
, π

a
,0) points

in the corners of the two-dimensional Brillouin zone to the
(π

a
, π

a
, π

c
) and equivalent points at the other four corners of the

three-dimensional Brillouin zone. Thus, in either case there is
another multiplicative factor of two to include in Eq. (69) if
we only integrate over the two degenerate � point branches
for T → 0.

Equation (69) is evaluated in Appendix E to yield the
magnetic heat capacity per mole of spins at low temperatures
due to the spin waves as

Cmag =
(

4π2Rk3
BVspin

15h̄3vxvyvz

)
T 3 (T 
 TN), (73)

where R is the molar gas constant, Vspin is the volume per
spin, and vx, vy, vz are the spin wave velocities along the
a, b, and c axes, respectively. This expression includes the
contribution of the low-energy spin waves at the Brillouin zone
corners and can be written in a form analogous to Eq. (63) for
phonons as

Cmag = βSWT 3, βSW = 2

(
2π2Rk3

BVspin

15h̄3vxvyvz

)
. (74)

By writing the Debye temperature in Eqs. (63) in terms of its
constituent quantities,31 one obtains the lattice heat capacity
coefficient βD per mole of atoms as

βD = 3

(
2π2Rk3

BVatom

15h̄3v3

)
, (75)

where v is the sound wave speed, assumed isotropic, and Vatom

is the volume per atom. This expression is similar to Eq. (74)
except that the prefactor is three instead of two, due to the three
sound wave polarization directions for each sound wave mode
(two mutually perpendicular transverse polarizations and
one longitudinal polarization), which are assumed to have the
same wave speed v in the Debye model.

2. Application of the spin wave theory for the magnetic heat
capacity to the J1- J2- Jc Heisenberg model and BaMn2As2

From the expressions for the spin wave velocities in the
J1-J2-Jc model in Eq. (9), one has

vxvyvz = v2
abvc

= 4
√

2(J1S)3a2c

h̄3

(
1 + Jc

2J1

)3/2(
1 − 2J2

J1

)√
Jc

J1
.

(76)

For BaMn2As2, there are two formula units, or four Mn atoms,
per unit cell with volume a2c. The volume per spin is thus

Vspin = a2c

4
. (77)

Dividing Eq. (76) by Eq. (77) gives

vxvyvz

Vspin
= 16

√
2(J1S)3

h̄3

(
1 + Jc

2J1

)3/2(
1 − 2J2

J1

)√
Jc

J1
.

(78)
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Inserting Eq. (78) into (74) gives

βSW = π2R

60
√

2(J1S/kB)3

×
[(

1 + Jc

2J1

)3/2(
1 − 2J2

J1

)√
Jc

J1

]−1

. (79)

From Table II, the exchange constants from the neutron
data are J1S/kB = 380 K, J2/J1 = 0.29 and Jc/J1 = 0.09.
Inserting these values into Eq. (79) gives the calculated value

βSW = 0.13 mJ/mol spins K4 for BaMn2As2. (80)

From Eq. (63), the observed β value per mole of Mn spins
is 0.325 mJ/mol spins K4. The calculated βSW value is thus
40% of the measured value, so the observed β value contains
a significant magnetic contribution if the anisotropy gap in the
spin wave spectrum is negligible. However, an anisotropy gap
would reduce the spin wave contribution to the heat capacity
to exponentially small values at low temperatures.

IX. MONTE CARLO SIMULATIONS OF THE MAGNETIC
SUSCEPTIBILITY AND MAGNETIC HEAT CAPACITY

IN THE J1- J2- Jc MODEL

Both our classical and quantum Monte Carlo simulations
were carried out within the framework of the J1-J2-Jc Heisen-
berg model introduced above in Sec. III. We have calculated
the magnetic heat capacity and magnetic spin susceptibility
versus temperature for various size lattices of quantum spins
S = 1/2, 1, 3/2, 2, and 5/2 and for the classical model. We
first motivate the scaling of the axes of our theoretical plots
of χ (T ), remark on the temperature regime over which this
scaling is expected to hold, and then present our Monte Carlo
simulation results. Then we compare our predictions for the
magnetic susceptibility with the experimental susceptibility
data for BaMn2As2 above TN in Fig. 7 to obtain additional
estimates of the exchange constants in this compound.

A. Scaling of the theoretical χ (T ) axes

Using Eqs. (23) and (25) in the Heisenberg “J model” for a
bipartite spin lattice with equal NN exchange, the Curie-Weiss
law (22) can be rewritten as

χJ

Ng2μ2
B

= 1
3kBT

JS(S+1) + z
. (81)

The quantity on the left-hand side of Eq. (81) is the theorist’s
definition of “χ”, which is the susceptibility per spin, in units
of 1/J , with gμB set equal to 1. On the right-hand side, we see
that if we use a temperature scale defined by kBT/[JS(S + 1)],
then all spin lattices with the same coordination number z but
with different J and/or S will all follow the same universal
curve at high temperatures. Therefore, in this paper we scale
the calculated susceptibilities when J2,Jc = 0 as

χJ1

Ng2μ2
B

versus
kBT

J1S(S + 1)
. (82)

This is the same scaling of the temperature axis as for the
magnetic heat capacity in Eq. (A10).

In the J1-J2-Jc model, according to Fig. 2 there are four
in-plane next-nearest-neighbor interactions

J2 = αJ1, (83)

two NN interactions along the c axis

Jc = γ J1, (84)

in addition to the z1 = 4 ≡ z nearest-neighbor interactions J1.
When these additional interactions are present, according to
Eq. (26) the Weiss temperature becomes

θ = zJ1(1 + α + γ /2)S(S + 1)

3kB
, (85)

and the form of the new Curie-Weiss law corresponding to
Eq. (81) is

χJ1(1 + α + γ /2)

Ng2μ2
B

= 1
3kBT

J1(1+α+γ /2)S(S+1) + z
. (86)

A more accurate high-temperature scaling is obtained in this
case by replacing J1 in Eq. (82) by J1 + J2 + Jc/2 = J1(1 +
α + γ /2) and scaling the data according to

χJ1(1 + α + γ /2)

Ng2μ2
B

versus
kBT

J1(1 + α + γ /2)S(S + 1)
.

(87)

The scalings in Eqs. (82) and (87) are expected to be
universal with respect to the spin and the exchange constants
only at “high” temperatures. Appendix A shows that the
calculations begin to deviate from the Curie-Weiss behavior
when 1/T 2 and higher order terms in the two-spin correlation
functions become significant compared to the 1/T terms with
decreasing T .

B. Classical Monte Carlo simulations

The classical Monte Carlo (CMC) simulations were per-
formed on periodic L × L clusters for Jc = 0 and for L ×
L × Lc clusters for Jc �= 0 using a hybrid algorithm that
combines Metropolis and over-relaxation sweeps.41 In order
to obtain statistically reliable data we have generated ∼105

configurations at each temperature and then averaged the
results over 50 independent annealing runs.

The spin Hamiltonian for our classical Monte Carlo
simulations is the classical analogue of the quantum spin
Hamiltonian (2), given by

Hclassical = J1S
2
∑
〈ij〉

Ŝi · Ŝj + J2S
2
∑
〈ik〉

Ŝi · Ŝk

+ JcS
2
∑
〈il〉

Ŝi · Ŝk + gμBH
∑

i

Sz
i , (88)

where S is the magnitude of the spin, Ŝ is a classical spin
unit vector, and Ŝi · Ŝk = cos θij . According to Eq. (88),
the exchange parameters Jα are always combined with the
classical spin magnitude S in the combination JαS2.

In the following, we first consider our simulations for Jc =
0 and then for Jc �= 0.
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FIG. 17. (Color online) (a) Normalized magnetic spin susceptibil-
ity χJ1/(Ng2μ2

B) versus normalized temperature kBT/[J1S(S + 1)]
for the classical spin S Heisenberg square lattice with Jc = 0 and
J2/J1 = −0.4 to 0.4, with S(S + 1) replacing S2. The lattice size is
80 × 80 in each case. (b) Expanded plot at low temperatures (open
circles) of the data for J2 = 0 in (a). The error bars are shown and
are inside the open circles. A linear fit to the data up to a reduced
temperature of 0.14 is shown as the solid straight line, and the dashed
line is an extrapolation of the fit. The coefficients of the fit are listed
in Eq. (89).

1. Jc = 0

The semiclassical magnetic spin susceptibilities χ versus
T for the square lattice calculated using CMC simulations on
80 × 80 spin lattices are shown in Fig. 17(a) for Jc = 0 and
J2/J1 = −0.4 to 0.4. Here, the term “semiclassical” means
that S2 in the final result of the classical simulations is
replaced by the quantum mechanical expectation value 〈S2〉 =
S(S + 1). This replacement allows the classical simulations to
merge smoothly with the quantum Monte Carlo simulations
(see Fig. 23 below). We carried out simulations of various
other L × L lattice sizes with L = 10–100 for J2/J1 = 0
and 0.2 and found that finite-size corrections to both the
calculated magnetic susceptibility and magnetic heat capacity
are negligible for L � 50.
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FIG. 18. (Color online) Normalized magnetic spin susceptibility
χ (J1 + J1)/(Ng2μ2

B) versus normalized temperature kBT/[(J1 +
J2)S(S + 1)] determined from classical Monte Carlo simulations for
the spin S Heisenberg square lattice with Jc = 0 and J2/J1 = −0.4
to 0.4, as indicated, with S(S + 1) replacing the classical S2. The
lattice size is 80 × 80 in each case. The axis scaling is superior at
high temperatures to that in Fig. 17(a). A plot of the Curie-Weiss law
in Eq. (86) is shown by the black dashed curve.

The χ (T ) data in Fig. 17(a) show two interesting trends.
First, at high temperatures the Curie-Weiss law C/(T + θ )
is obtained, in which the (positive) Weiss temperature θ is
proportional to the sum of all interactions of a given spin
with its neighbors according to Eq. (26). Thus, for a negative
(ferromagnetic) J2 that partially cancels the positive J1, the
susceptibility increases at a fixed T , and for a positive J2 it
decreases. Second, at low temperatures this trend is reversed.
A negative ferromagnetic J2 is nonfrustrating with respect
to J1 and reinforces the short-range ordering that causes the
peak in χ (T ). This moves the peak up in temperature and
suppresses the susceptibility in the short-range ordered state
at low temperatures below the peak temperature. The opposite
behavior is found for a positive AF J2 which is frustrating
with respect to J1. This J2 suppresses the short-range AF
ordering, which decreases the peak temperature and increases
the susceptibility below the peak temperature compared to the
case when J2 = 0.

These trends are illustrated in a different way if the best
high-temperature scaling for these plots, given in Eq. (87),
is used, as shown in Fig. 18. In addition, the Curie-Weiss
law from Eq. (86) is plotted in Fig. 18 as the blue dashed
line. From a comparison of the simulation data with the
Curie-Weiss prediction, one sees that the two-spin correlations
higher order than present in the Curie-Weiss regime (∼1/T )
begin to become observable on the scale of the figure for
T � 5(J1/kB)S(S + 1). According to Eq. (85), this latter value
is about four times the Weiss temperature θ , which has the
value 4/3 on the horizontal scale in Fig. 18.

The data in Fig. 17(a) for J2 = 0 were obtained down to a
reduced temperature of 0.01, as shown in the expanded plot
in Fig. 17(b). The lowest temperature data are linear in T . A
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FIG. 19. (Color online) Classical Monte Carlo (CMC) simula-
tions on 80 × 80 spin lattices of the magnetic heat capacity Cmag

divided by the molar gas constant R versus the scaled temperature
kBT/J1S(S + 1) for Jc = 0 and J2/J1 = −0.4 to 0.4 as shown.

linear fit yielded

χJ1

Ng2μ2
B

= 0.083 33(2) + 0.0218(3)
kBT

J1S(S + 1)
, (89)

as shown by the solid line in Fig. 17(b). According to
Takahashi’s modified spin wave theory for the AF square
lattice, the classical limit (A9) in Ref. 42 reads

χJ1

Ng2μ2
B

= 1

12
+ 1

24π

kBT

J1S2
+ O(T 3). (90)

The zero-temperature reduced susceptibility 1/12 ≈ 0.083 33
in Eq. (90) is the same as our value in Eq. (89) to within
the errors of our Monte Carlo data, but the theoretical initial
slope 1/(24π ) ≈ 0.013 26 is too small compared to our Monte
Carlo value in Eq. (89). On the other hand, in a 1/D expansion
where D is the dimensionality of the spins (D = 3 here), for the
classical square spin lattice at low T Hinzke et al.43 obtained

χJ1

Ng2μ2
B

= 1

12
+ 1

32

kBT

J1S2
. (91)

The zero temperature susceptibility is the same as our and
Takahashi’s value but Hinzke et al.’s initial slope is 1/32 =
0.031 25, which this time is larger than our Monte Carlo value
in Eq. (89). Thus, our value of the initial slope is bracketed by
the predictions of the modified spin wave theory and the 1/D

expansion.
The magnetic heat capacity is plotted in Fig. 19 according to

Eq. (A10) versus the scaled temperature for exchange constant
ratios J2/J1 = −0.4 to 0.4 on 80 × 80 spin lattices. The broad
peaks in the curves decrease in temperature with increasing
J2. This is understandable in terms of the enhancement of
short-range AF order for ferromagnetic (negative) J2, which
increases the temperature of the peak, and the frustration
effect for antiferromagnetic (positive) J2, which decreases the
temperature of the peak. The peak values and the temperatures
at which they occur are listed in Table V. It is interesting that
the variation in Cmag(T ) with J2 depends on the sign of J2, in

TABLE V. Parameters obtained from semiclassical (SC) Monte
Carlo and quantum Monte Carlo simulations of the magnetic heat
capacity Cmag(T ) for the square lattice with no interlayer coupling
(Jc = 0). Here Cmax

mag is the value of Cmag at a magnetic ordering peak,
T max is the temperature at which the maximum occurs, and SC means
we have replaced S2 with S(S + 1) in the temperature scaling of the
classical Monte Carlo data. Note that the value of T max is different
than the temperature of the maximum in the magnetic susceptibility.

S Lattice size J2/J1
Cmax

mag

R

kBT max

J1S(S+1)

1/2 32 × 32 0 0.4606(7) 0.801(2)
1 32 × 32 0 0.885(2) 0.690(4)

64 × 64 0 0.879(2) 0.700(3)
3/2 32 × 32 0 1.159(2) 0.674(1)
2 32 × 32 0 1.325(2) 0.673(1)

64 × 64 0 1.295(2) 0.684(2)
5/2 32 × 32 0 1.428(2) 0.673(2)

SC 80 × 80 −0.4 1.801(5) 1.055(3)
SC 80 × 80 −0.2 1.752(3) 0.861(3)
SC 80 × 80 −0.1 1.699(1) 0.777(2)
SC 80 × 80 0 1.666(1) 0.678(1)
SC 80 × 80 0.1 1.621(2) 0.575(1)
SC 80 × 80 0.2 1.567(2) 0.471(2)
SC 80 × 80 0.3 1.498(3) 0.352(3)
SC 80 × 80 0.4 1.378(3) 0.232(2)

contrast with expectation from the first term in the HTSE in
Eq. (A9) in which the uniform J appears as the square and is
hence independent of the sign. Thus, one cannot replace zJ 2

in Eq. (A9) with
∑

j J 2
ij . This constraint is not present when

calculating the Weiss temperature in the Curie-Weiss law from
Eq. (26), in which one includes the interactions of a given spin
with all of its neighbors algebraically and on the same footing.

2. Jc �= 0

The classical Monte Carlo simulations do not produce the
same results as the molecular field theory does because the
interaction between a spin and its neighbors is not approxi-
mated by the interaction of the spin with the average spin of
its neighbors as in the molecular field theory. In particular,
according to the Mermin-Wagner theorem,44 a Heisenberg
spin system in one or two dimensions, as in the J1-J2 model
with only intraplanar exchanges, should not show long-range
magnetic ordering at finite temperature. This theorem is
respected in our classical simulations, but not in molecular
field theory. On the other hand, when the simulations are
carried out with Jc �= 0, we find that long-range AF ordering
does occur, as expected. Because a uniform magnetic field does
not directly couple to the AF order parameter [the staggered
moment, see Eq. (B16)], these AF phase transitions have rather
subtle effects on the calculated uniform susceptibility. They are
much more clearly manifested in the magnetic heat capacity
which we also present and would also be clearly delineated in
calculations of the staggered susceptibility in which the applied
magnetic field has opposite directions for the two sublattices.

Throughout this section, we replace the classical variable S2

with its quantum-mechanical counterpart S(S + 1). We show
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FIG. 20. (Color online) (a) Magnetic heat capacity and
(b) magnetic susceptibility χ versus temperature T from classical
Monte Carlo simulations for the spin S Heisenberg square lattice with
J2/J1 = 0.1 and with Jc/J1 = 0, 0.02, 0.05, and 0.1, as indicated. The
order of the curves from top to bottom is the same as in the respective
figure legends. The lattice size in each case is 20 × 20 × 10.

our results in two formats. First, in Fig. 20 are shown the
magnetic heat capacity Cmag and the spherically averaged
magnetic susceptibility χ versus temperature T for fixed
J2/J1 = 0.1 and variable Jc = 0, 0.02, 0.05, and 0.1, where
J1, J2, and Jc are all antiferromagnetic. From Fig. 20(a),
one sees that Cmag(T ) for Jc = 0 just shows a broad peak
characteristic of short-range AF order. However, the Cmag

quickly and clearly shows a cusplike behavior with increasing
Jc at temperatures TN corresponding to long-range AF order.
Second, in Fig. 21 are shown Cmag(T ) and χ (T ) for fixed
Jc/J1 = 0.1 and variable J2/J1 = 0–0.4, where J1, J2, and Jc

are again all antiferromagnetic. For all combinations of J2/J1

and Jc/J1 we have studied, to within the errors the peak in Cmag

at TN coincides in temperature with the peak in d(χT )/dT on
the low-T side of the broad peak in χ (T ), in agreement with
the Fisher relation.32 We note that the TN and shape/magnitude
of Cmag at TN determined in our simulations may be affected
by finite size effects.

The temperatures TN of the peaks in Cmag(T ) and the values
of Cmag(TN) at the peak, versus the exchange constant ratios
J2/J1 and Jc/J1, are listed in Table VI and plotted in Figs. 22(a)
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FIG. 21. (Color online) (a) Magnetic heat capacity Cmag and
(b) spherically averaged magnetic susceptibility χ versus temperature
T from classical Monte Carlo simulations for the spin S Heisenberg
square lattice with J2/J1 = 0 to 0.4, as indicated, and with fixed
Jc/J1 = 0.1. The order of the curves from right to left is given in the
figure (a) legend. The lattice size in each case is 20 × 20 × 10.

and 22(b). For J2 = 0, our TN values are lower by �1% than
the values obtained by Yasuda et al. for Jc/J1 = 0.02, 0.05,
and 0.1.45 For J2 = 0, a good fit to TN versus Jc for various
spin values was obtained in Ref. 46 using the expression45

kBTN

J1S(S + 1)
= A

B − ln(Jc/J1)
, (92)

where different values of the constants A and B were required
for different spin values. We fitted the classical Monte Carlo
data for J2 = 0 in Fig. 22(a) using Eq. (92) and obtained a
good fit with the values

A = 7.70, B = 6.87, (93)

which are both about a factor of two larger than the respective
values A = 3.96 and B = 3.01 obtained in Ref. 46 for the
classical limit S = ∞. The fit is shown as the solid red curve
for J2/J1 = 0 in Fig. 22(a).

From Fig. 22(a), a positive antiferromagnetic J2 frustrates
the G-type AF ordering and depresses TN approximately
linearly with J2, and the TN for each Jc value extrapolates
to zero at J2/J1 ≈ 0.6, which is close to the value of 0.5
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TABLE VI. Temperatures TN of the magnetic ordering peaks in
the molar magnetic heat capacity Cmag and the values of Cmag(TN)
at the peak, versus the exchange constant ratios J2/J1 and Jc/J1,
obtained from classical Monte Carlo simulations. The TN and Cmag

values may be affected by finite size effects. Here R is the molar gas
constant.

J2/J1 Jc/J1 kBTN/[J1S(S + 1)] Cmag(TN)/R

0 0.02 0.717(2) 1.890(3)
0.05 0.773(1) 2.139(5)
0.10 0.842(1) 2.29(2)

0.1 0.02 0.611(1) 1.879(4)
0.05 0.667(1) 2.151(6)
0.10 0.735(1) 2.318(5)

0.12 0.06 0.661(1) 2.190(6)
0.2 0.02 0.502(1) 1.880(8)

0.05 0.557(1) 2.14(1)
0.10 0.619(1) 2.32(1)

0.3 0.02 0.390(1) 1.839(2)
0.05 0.439(1) 2.125(9)
0.10 0.497(1) 2.343(7)

0.4 0.02 0.263(1) 1.784(8)
0.05 0.313(1) 2.06(1)
0.10 0.360(1) 2.26(1)

from Eq. (4) at which one classically expects the G-type AF
order to become unstable with respect to the stripe-AF order.
Therefore, we fitted the dependence of TN on J2/J1 of all
the data for Jc/J1 = 0.02, 0.05, and 0.1 together using the
expression

TN(Jc, J2)

TN(Jc, J2 = 0)
= 1 −

(
J2/J1

R1

)R2

(94)

(not shown) and obtained the values

R1 = 0.644, R2 = 1.082. (95)

The fits are shown as the solid curves in Fig. 22(b). Thus, the
global function to fit all of our TN(Jc/J1, J2/J1) data is

kBTN

J1S(S + 1)
= A

B − ln(Jc/J1)

[
1 −

(
J2/J1

R1

)R2
]

. (96)

The fits for TN versus Jc at fixed J2/J1 = 0.1–0.4 are shown
as the solid curves in Fig. 22(a). We see that Eq. (96), together
with the four parameters in Eqs. (93) and (95), provide a good
global fit to all 15 TN(Jc/J1, J2/J1) data points in Fig. 22(a)
from our CMC simulations.

C. Quantum Monte Carlo simulations

1. Magnetic susceptibility

Our quantum Monte Carlo (QMC) simulations were carried
out with the ALPS47,48 directed loop application49 in the
stochastic series expansion framework50 using version ALPS

1.3. Up to about 1 × 109 sweeps were carried out for the
32 × 32 lattice and the sign-free situation J2 = 0. In order
to compensate for the sign problem introduced by J2 > 0 this
was increased to about 2 × 1011 sweeps on the 6 × 6 lattice for
J2 = 0.1. QMC simulations have been previously reported for
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FIG. 22. (Color online) Antiferromagnetic ordering temperature
TN versus (a) the interlayer coupling Jc for fixed values of J2/J1 and
(b) J2/J1 at fixed Jc/J1. In (b), the order of the curves from top to
bottom is the same as in the figure legend. The solid curves are a
global fit to all the data by Eq. (96), using the parameters in Eqs. (93)
and (95).

S = 1 over the temperature range 0.5 � kBT/J1S(S + 1) � 5
by Harada et al.51 We have extended these simulations to much
lower temperatures (see Fig. 24).

Our QMC simulations of the magnetic spin susceptibilities
versus temperature for the square lattice with quantum spins
1/2 to 5/2 with J2 = 0 are shown in Fig. 23(a), and for J2/J1 =
0.1 and S = 2 and 5/2 in Fig. 23(b). Various parameters
obtained from these and the above semiclassical data are
listed in Table VII as described in the caption. We checked
by comparison of the data for the 32 × 32 lattice with 64 × 64
lattice data for S = 1 and S = 2 (see Table VII) that the
32 × 32 lattice data in Figs. 23 and 24 (below) are close to the
thermodynamic limit; that is, finite size effects are smaller than
the size of the symbols (except probably the lowest temperature
datum for S = 1/2 in Fig. 24).

Hasenfratz and Niedermayer obtained the low-temperature
limit of the spin susceptibility of the Heisenberg antiferromag-
net on a square lattice from chiral perturbation theory, given
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FIG. 23. (Color online) Normalized magnetic spin susceptibility
χJ1/(Ng2μ2

B) versus normalized temperature kBT/[J1S(S + 1)] de-
termined from quantum Monte Carlo (QMC) simulations for quantum
Heisenberg square lattices with (a) J2/J1 = 0 and spins S = 5/2, 2,
3/2, 1, and 1/2, and (b) J2/J1 = 0.1 and spins S = 5/2 and 2. The
data for the semiclassical model (green) with J2/J1 = 0 and 0.1 are
included in the two panels, respectively. The lattice size for each
simulation is indicated in the respective figure.

by52

χ (T ) = 2χ⊥(0)

3

[
1 +

(
kBT

2πρS

)
+

(
kBT

2πρS

)2

+ · · ·
]
, (97)

where ρS is the spin wave stiffness, χ⊥(0) is the zero-
temperature perpendicular susceptibility given by

χ⊥(0)J1

Ng2μ2
B

= ρSJ1a
2

(h̄c)2
, (98)

c is the spin wave velocity, and a is the square lattice parameter.
The χ⊥(0) and ρS depend on the spin S and were calculated
using spin wave theory (SWT) by Hamer et al. as53

χ⊥(0)J1

Ng2μ2
B

= 1

8
− 0.034 446 959 42

S

+ 0.002 040 06(7)

S2
+ O(S−3) (99)
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FIG. 24. (Color online) Normalized QMC magnetic spin suscep-
tibility χJ1/(Ng2μ2

B) versus normalized temperature kBT/[J1S(S +
1)] data (symbols) at low temperatures from Fig. 23(a) for spins
S = 1/2 (bottom), 1, 3/2, 2, and 5/2 (top). The error bars for
the QMC data are also plotted. The corresponding Hasenfratz-
Niedermayer + spin wave theory predictions (HN + SWT) for the
low-temperature behaviors (Refs. 52 and 53) are also shown for these
spin values as solid curves.

and
ρS

J1
= S2 − 0.117 628 254 4 S − 0.010 207 987 3

− 0.003 16(2)

S
+ O(S−2). (100)

The low-temperature QMC data from Fig. 23(a) are shown
in Fig. 24 together with the above predictions of Hasenfratz
and Niedermayer (HN) combined with the SWT results of
Hamer et al. The lowest-temperature QMC data for spins 1/2
to 5/2 in Fig. 24 are all seen to be in good agreement with the
HN + SWT predictions. High-resolution calculations of χ (T )
from the literature for the S = 1/2 square lattice Heisenberg
antiferromagnet also confirm the form of Eq. (97).54,55 For
S = 1 our value of χ (0) from Fig. 24 disagrees with the value
0.071 97 given in Ref. 46. It was claimed in Ref. 42 that on the
basis of spin wave theory, the next-order term above the T 1

term in Eq. (97) isO(T 3), as in Eq. (90) above, in disagreement
with Eq. (97). However, the next higher order term is indeed
the T 2 term.56

2. Magnetic heat capacity

The magnetic heat capacity Cmag versus temperature data
from our QMC simulations for the square lattice with only
NN interactions (J2 = Jc = 0) are shown in Fig. 25 for spins
S = 1/2, 1, 3/2, 2, and 5/2. Also shown for comparison
are our CMC heat capacity data for J2 = Jc = 0 from
Fig. 20(a) and the first term in the HTSE Cmag ∝ 1/T 2

for the magnetic heat capacity from Eq. (A9) using the
nearest-neighbor coordination number z = 4. The CMC and
QMC data exhibit this HTSE behavior for temperatures T �
2J1S(S + 1)/kB. The values of the heat capacities of the peaks
in the simulation data for the spin values S = 1 to S = 5/2
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TABLE VII. Calculated values of (i) the maximum spin susceptibilities χmax and (ii) the temperatures T max at which they occur for different
lattice sizes, J2/J1 values, and quantum and semiclassical S values; (iii) the product χmaxT max/3C where C is the Curie constant per mole
of spins in Eq. (23); (iv) the value of the product χmaxT max for the listed S assuming g = 2; and (v) the value of the product for an alternate
semiclassical value of S = 5/2 assuming g = 2. By “semiclassical” (SC) is meant that S2 in the final result of the classical calculation is
replaced by the quantum mechanical expectation value 〈S2〉 = S(S + 1). In the last column is listed the molecular field Néel temperature TN,
normalized by J1S(S + 1)/kB, according to Eq. (41).

χmaxT max χmaxT max

S Lattice size J2/J1 Jc/J1
χmaxJ1
Ng2μ2

B

kBT max

J1S(S+1)
χmaxT max

3C
(cm3 K/mol) (cm3 K/mol) kBTN

J1S(S+1)

1/2 32 × 32 0 0 0.09370(3) 1.248(3) 0.1169(3) 0.1316(4) 1.33
1 32 × 32 0 0 0.10438(5) 1.090(3) 0.1138(3) 0.3415(11) 1.33

64 × 64 0 0 0.10424(3) 1.085(3) 0.1131(4) 0.3394(11)
3/2 32 × 32 0 0 0.10790(3) 1.050(4) 0.1133(5) 0.638(3) 1.33
2 32 × 32 0 0 0.10952(4) 1.030(4) 0.1128(5) 1.016(4) 1.33

64 × 64 0 0 0.10957(6) 1.038(5) 0.1137(6) 1.024(6)
5/2 32 × 32 0 0 0.11040(3) 1.018(3) 0.1144(8) 1.50(1) 1.33

2 6 × 6 0.1 0 0.10882(6) 0.966(5) 0.1051(6) 0.946(6) 1.20
5/2 6 × 6 0.1 0 0.10966(6) 0.959(4) 0.1052(5) 1.381(6) 1.20

S = 2 S = 5/2
SC 80 × 80 −0.4 0 0.11115(5) 1.453(4) 0.1615(5) 1.454(5) 2.121(8) 1.87
SC 80 × 80 −0.2 0 0.11173(5) 1.225(4) 0.1369(5) 1.232(5) 1.797(8) 1.60
SC 80 × 80 −0.1 0 0.11210(4) 1.120(3) 0.1256(4) 1.130(4) 1.649(5) 1.47
SC 80 × 80 0 0 0.11235(3) 0.999(2) 0.1122(3) 1.011(3) 1.470(4) 1.33
SC 80 × 80 0.1 0 0.11274(3) 0.876(3) 0.0988(4) 0.889(3) 1.297(5) 1.20
SC 20 × 20 × 10 0.1 0.02 0.11216(6) 0.874(5) 0.0980(6) 0.883(6) 1.287(8) 1.21
SC 20 × 20 × 10 0.1 0.05 0.1113(1) 0.878(7) 0.0977(9) 0.880(8) 1.28(1) 1.23
SC 20 × 20 × 10 0.1 0.1 0.1098(1) 0.896(5) 0.0984(6) 0.886(6) 1.29(1) 1.27
SC 20 × 20 × 10 0.12 0.06 0.11126(8) 0.853(7) 0.0949(9) 0.854(8) 1.25(1) 1.21
SC 80 × 80 0.2 0 0.11325(2) 0.750(2) 0.0849(3) 0.765(2) 1.115(3) 1.07
SC 20 × 20 × 10 0.2 0.02 0.11275(5) 0.749(10) 0.0844(12) 0.76(1) 1.11(1) 1.08
SC 20 × 20 × 10 0.2 0.05 0.11187(10) 0.755(10) 0.0845(12) 0.76(1) 1.11(1) 1.10
SC 20 × 20 × 10 0.2 0.1 0.11029(5) 0.767(7) 0.0846(8) 0.762(7) 1.11(1) 1.13
SC 80 × 80 0.3 0 0.11391(3) 0.616(2) 0.0702(3) 0.632(3) 0.921(3) 0.93
SC 20 × 20 × 10 0.3 0.02 0.1134(10) 0.614(10) 0.070(1) 0.63(2) 0.91(3) 0.95
SC 20 × 20 × 10 0.3 0.05 0.11257(7) 0.627(7) 0.0706(8) 0.635(8) 0.93(1) 0.97
SC 20 × 20 × 10 0.3 0.1 0.1108(10) 0.652(7) 0.072(2) 0.65(1) 0.95(2) 1.00
SC 80 × 80 0.4 0 0.11509(4) 0.468(2) 0.0539(3) 0.485(2) 0.707(3) 0.80
SC 20 × 20 × 10 0.4 0.02 0.1147(10) 0.468(7) 0.054(2) 0.48(1) 0.70(2) 0.81
SC 20 × 20 × 10 0.4 0.05 0.1136(10) 0.467(10) 0.053(2) 0.48(1) 0.70(2) 0.83
SC 20 × 20 × 10 0.4 0.1 0.11175(5) 0.497(3) 0.0555(4) 0.500(3) 0.729(5) 0.87

and the temperatures at which they occur are listed in Table V
above.

We checked finite-size effects associated with the QMC
data by simulating Cmag for 64 × 64 S = 1 and S = 2 lattices
for comparison with the 32 × 32 lattices in Fig. 25. On the
scale of the figure, the 64 × 64 data (not shown) were close
to the 32 × 32 lattice size data. For example, the peak heights
differ by less than 2% between the simulations for the different
size lattices (see Table V).

According to Eq. (41), the Néel temperature in MFT occurs
in Fig. 25 at a value of 4/3 on the horizontal scale and with a
heat capacity jump on cooling below TN given by Eq. (57) as

Cmag/R = 3/2 for S = 1/2 and = 5/2 for S = ∞. The data
in Fig. 25 are very different from these MFT predictions due
to the presence of short-range magnetic ordering and the lack
of long-range magnetic ordering44 in these two-dimensional
spin lattices at finite temperatures.

The expression of Hasenfratz and Niedermayer for the
low-temperature magnetic heat capacity of the Heisenberg
antiferromagnet on a square lattice from chiral perturbation
theory, per mole of spins, is52

Cmag = 6 ζ (3)R

π (h̄v/a)2
(kBT )2 + O(T 4), (101)

where ζ (x) is the Riemann zeta function with ζ (3) ≈ 1.202 06
and a is the length of an edge of the square lattice unit cell.
The spin wave velocity v for the AF Heisenberg square lattice
is53,57

h̄v

a
= 2

√
2SJ1

[
1 + 0.157 947 421

2S
+ 0.021 52

(2S)2
+ O(S−3)

]
.

(102)

094445-26



MAGNETIC EXCHANGE INTERACTIONS IN . . . PHYSICAL REVIEW B 84, 094445 (2011)

0.0

0.5

1.0

1.5

0 1 2 3

 CMC 80 x 80
 S = 5/2
 S = 2
 S = 3/2
 S = 1
 S = 1/2
 HTSE

k
B
T / J

1
S(S + 1)

QMC  32 x 32
   J

2
 = J

c
 = 0

FIG. 25. (Color online) Magnetic heat capacity Cmag divided
by the molar gas constant R versus normalized temperature
kBT/[J1S(S + 1)] for the square lattice with only nearest-neighbor
couplings J1 (exchange constants J2 = Jc = 0). Quantum Monte
Carlo (QMC) data (solid circles) for spins S = 1/2 (bottom), 1, 3/2,
2, and 5/2 (top) are shown, together with classical Monte Carlo
(CMC) data from Fig. 20(a) (solid black curve at the top) and the first
term in the high-temperature series expansion HTSE for the magnetic
heat capacity from Eq. (A9) using z = 4 (dashed black curve). The
error bars for the QMC data are also plotted, and the lines connecting
the data points are guides for the eye. The order of the Monte Carlo
data from top to bottom is the same as in the figure legend.

From Eqs. (101) and (102) one obtains

CmagS
2

R(kBT/J1)2
= 3 ζ (3)

4π

[
1 + 0.157 947 421

2S
+ 0.021 52

(2S)2

]−2

+ D(S)

(
kBT

J1

)2

≡ A(S) + D(S)

(
kBT

J1

)2

. (103)

The factor A(S) is 0.2063, 0.2441, 0.2578, 0.2649, and 0.2692
for S = 1/2, 1, . . . , 5/2, respectively. Figure 26 shows our
low-temperature Cmag(T ) data for S = 1/2, 1, and 3/2 plotted
according to Eq. (103). The approximate extrapolated zero-
temperature values are in accord with the above A(S) values
to within the data error bars. After setting A(S) to the above re-
spective fixed values, the initial slopes were estimated by fitting
the data by Eq. (103), yielding D(S) = 1.8, 0.31, and 0.14 for
S = 1/2, 1, and 3/2, respectively, as shown by the respective
dotted lines in Fig. 26. The slope D decreases significantly
with increasing S but remains positive from S = 1/2 up to
S = 3/2. The sign of D(S) was indeed predicted by Hofmann
to be positive using the effective Lagrangian method.58

X. COMPARISON OF MONTE CARLO SIMULATIONS OF
THE MAGNETIC PROPERTIES WITH EXPERIMENT

A. Néel temperature

Using Eq. (96), we can predict the Néel temperature from
the values J1S/kB = 380 K, J2/J1 = 0.29, and Jc/J1 = 0.09
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FIG. 26. (Color online) Low-temperature magnetic heat capacity
Cmag times S2 divided by the molar gas constant R and T 2 versus
normalized temperature squared, (kBT/J1)2, for the square lattice
with only nearest-neighbor couplings J1 (exchange constants J2 =
Jc = 0). Quantum Monte Carlo (QMC) data (solid symbols) for spins
S = 1/2, 1, and 3/2 are shown, together with error bars. The dotted
lines are fits of the data by Eq. (103) assuming the specific A(S) y

intercepts given in the text below Eq. (103). Only the slopes D(S)
were fitted. The fitting ranges of T 2 were 0–0.06 for S = 1/2, 0–0.25
for S = 1, and 0–0.5 for S = 3/2.

in Table II obtained from the fit of the inelastic neutron
scattering data by spin wave theory. Note that the neutron
fit only provides products of the J values with S. Using the
above-given parameters, Eq. (96) predicts

(1) TN = 550 K for S = 2,

(2) TN = 640 K for S = 5/2.
A comparison of these values with the experimental value

TN = 620–625 K clearly favors spin 5/2 over spin 2 for the
Mn ions. Indeed, the TN calculated for S = 5/2 is remarkably
close to the observed value.

B. Magnetic susceptibility

Our tables of calculated susceptibities are in the form of
Eq. (82). A very useful quantity for comparison with exper-
imental susceptibility data is the product of the scaled maxi-
mum susceptibility χmaxJ1/Ng2μ2

B and the scaled temperature
at which the maximum occurs kBT max/J1S(S + 1). Setting N

equal to Avogadro’s number NA so that χ is the susceptibility
per mole of spins, the product of these two variables is(

χmaxJ1

NAg2μ2
B

)[
kBT max

J1S(S + 1)

]
= χmaxT max

3C
, (104)

where C is the Curie constant in Eq. (23). This product does
not contain any exchange constants and hence is a potential
diagnostic for the value of the spin S from experimental
data. One cannot hope to obtain a good fit to an experimental
χ (T ) data set by the theoretical predictions unless one can
at least fit the experimental χmaxT max datum. The quantities
χmaxJ1/Ng2μ2

B, kBT max/S(S + 1)J1, and χmaxT max/3C are
listed in Table VII for both the classical and quantum Monte
Carlo simulations. Using the values of C obtained from
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FIG. 27. (Color online) Product of the maximum susceptibility
χmax per mole of spins and the temperature T max at which it occurs for
the J1-J2 model on a Heisenberg square spin lattice for spins (a) S = 2
and (b) S = 5/2, versus the ratio J2/J1 of the diagonal next-nearest-
neighbor coupling to the nearest-neighbor coupling. Here a g factor
g = 2 was assumed. The data were obtained using quantum Monte
Carlo (blue, QMC) and classical Monte Carlo (red, CMC) simulations
on the lattice sizes indicated. The χmaxT max values obtained from
CMC for the three-dimensional lattices are very insensitive to the
coupling Jc between layers up to at least Jc/J1 = 0.1, as shown in
Table VII. The solid black curves in (a) and (b) are least-squares fits
to the respective data by the second-order polynomials in Eqs. (105).

Eq. (23) using g = 2, the predicted values of χmaxT max for
direct comparison to our experimental datum are listed in
Table VII for the quantum value of S in the QMC simulations
and for classical values S = 2 and S = 5/2 in the CMC
simulations, respectively. One sees from the table that the
value of χmaxT max is very sensitive to the ratio J2/J1 but that
it hardly changes for a given J2/J1 as the interlayer coupling
ratio Jc/J1 is changed over the range from 0 to 0.1.

Plots of χmaxT max versus J2/J1 are shown in Figs. 27(a)
and 27(b) for S = 2 and S = 5/2, respectively. The data were

fitted by the second-order polynomials

χmaxT max = 1.012 − 1.202

(
J2

J1

)
− 0.2712

(
J2

J1

)2

,

(105)

χmaxT max = 1.478 − 1.757

(
J2

J1

)
− 0.4146

(
J2

J1

)2

for S = 2 and S = 5/2, respectively, as shown by the respec-
tive solid curves in Fig. 27, where the units of the fits are
cm3 K/mol. The rms deviations of the fits from the data are
0.005 and 0.010 for S = 2 and S = 5/2, respectively.

A comparison of the calculated values of χmaxT max in
Fig. 27 and Eqs. (105) with the observed value χmaxT max =
0.80 cm3 K/mol Mn in Eq. (20) indicates that the local
moment model can reproduce the observed χmaxT max value
with the following combinations of parameters:

(i) g = 2, S = 2, and J2/J1 ≈ 0.17;
(ii) g = 2, S = 5/2, and J2/J1 ≈ 0.36.

In the J1-J2 model, the G-type AF magnetic structure that is
observed in BaMn2As2 is stable against the stripe state as long
as J2/J1 < 1/2 [Eq. (4)], which is satisfied by both of these
estimates. We do not have simulation data for precisely these
two values of J2/J1. Also, the parameter set {S,J1,J2,Jc} is
underdetermined by the experimental susceptibility data, so we
have to make choices about some of the parameters when we
fit the experimental data by the available classical Monte Carlo
data. We choose Jc/J1 = 0.1 because this value is indicated
both from the neutron scattering fit in Table II above and from
the theoretical results in Table IX below. For each of the two
potential values S = 2 and 5/2, we use the respective CMC
J2/J1 simulation in Table VII that shows the closest agreement
with the experimental χmax

spin T max for that spin value, namely,
(1) Fit 1: J2/J1 = 0.2, Jc/J1 = 0.1, S = 2;
(2) Fit 2: J2/J1 = 0.4, Jc/J1 = 0.1, S = 5/2.
Next, we have a choice of how to obtain a precise fit to

the magnitude of the experimental data by the simulation
data for J2/J1 = 0.2 and 0.4, both with Jc/J1 = 0.1. We
could adjust the g factor, the orbital contribution to the
susceptibility, and/or the spin value. At this stage such changes
are just fitting parameters, so we arbitrarily choose to adjust
the spin value slightly to obtain a good numerical fit of the
particular simulation to the experimental value of χmax

spin T max

given in Eq. (20). Then we fix the value of J1 by substituting
the experimental value of χmax

spin = 0.80 × 10−3 cm3/mol Mn
and g = 2 into the expression χmaxJ1/NAg2μ2

B and equating
that with the χmaxJ1/Ng2μ2

B value listed in Table VII. The
parameters obtained from the two fits are listed in Table VIII.
Remarkably, the value of J1 is not sensitive to the values of
S, J2, or Jc, and a consistent value J1 ≈ 210 K = 18 meV
is obtained for both fits. The two fits are compared with the
experimental data from Fig. 7(a) in Fig. 28. When plotting the
fits, the calculated spin susceptibility per mole of spins has
to be multiplied by two (two atoms of Mn per formula unit)
and then added to the orbital contribution given in Eq. (18).
These fits are only valid in the paramagnetic regime above
TN = 625 K, but they are extrapolated to lower temperatures.
The quality of the fits to the experimental data is reasonable
for both fits. Thus, we cannot distinguish between the two
possibilities S = 2 and S = 5/2 for the Mn spins on the basis
of magnetic susceptibility measurements alone.
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TABLE VIII. Parameters determined from a fit of magnetic sus-
ceptibility data for BaMn2As2 by classical Monte Carlo simulations.
The value Jc/J1 = 0.1 was chosen to agree with the inelastic neutron
scattering and band-theoretical values which are both close to 0.1.
The values of J2/J1 were fixed at the listed values by comparing the
predicted values of χmax

spin T max with the experimental values for S = 2
and S = 5/2. Then the spin value S was determined more precisely
by fitting the respective CMC simulation to the experimental value
of χmax

spin T max. Finally J1 was found by fitting the experimental value
of χmax

spin to the theoretical value for the respective simulation.

Quantity Fit 1 Fit 2

S 2.06 2.64
J1 207 K = 17.8 meV 210 K = 18.1 meV
J2 ≡41.4 K = 3.6 meV ≡85 K = 7.3 meV
J2/J1 ≡0.2 ≡0.4
Jc ≡21 K = 1.8 meV ≡21 K = 1.8 meV
Jc/J1 ≡0.1 ≡0.1

XI. 75As NMR MEASUREMENTS AND ANALYSIS

A. 75As NMR spectrum

As shown in Fig. 1, each As atom is coupled to four
Mn atoms. Thus, through 75As NMR one can probe the
magnetism of the Mn sublattice in BaMn2As2. Figure 29 shows
typical 75As NMR spectra in the magnetically ordered state at
different temperatures T < TN for a polycrystalline sample of
BaMn2As2. At low temperatures, along with the most intense
central line the spectrum contains extra shoulderlike features
on either side. The broad linewidth is attributed to the random
orientation of the internal field with respect to the external field
in the powder sample. 75As has an electric quadrupolar moment
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FIG. 28. (Color online) Two fits (Fit 1 and Fit 2, dashed curves)
of the high-temperature magnetic susceptibility χ of BaMn2As2 from
Fig. 7(a) by CMC simulations. The fits are only valid above TN but
are extrapolated to lower temperatures. The fit parameters are given
in Table VIII. The temperatures of the breaks in slope of the fits are
discernable and denote the predicted Néel temperatures in Eq. (96) for
the respective parameters, which are somewhat above the observed
value.

FIG. 29. (Color online) 75As NMR spectra for polycrystalline
BaMn2As2 at different temperatures. The solid red line is a fit to the
spectrum at 4.2 K.

that interacts with the local electric field gradient (EFG) in the
crystal giving rise to the splitting of the NMR line. Thus, in
principle, one should see in the 75As spectra three allowed
transitions: an Iz = − 1

2 ↔ + 1
2 central transition and two

Iz = ± 1
2 ↔ ± 3

2 satellite transitions. Therefore, in an attempt
to fit the experimental spectra taking into account both the EFG
and the isotropic spin shift effects, we find that the spectrum at
4.2 K can be fitted reasonably well with isoshift Kiso � 0.38%,
quadrupolar frequency νQ � 2.1 MHz, width of central peak
0.43 kOe, width of satellite 1.13 kOe, and EFG asymmetry pa-
rameter η � 0.0. The fit is shown as the solid red curve through
the data at 4.2 K in Fig. 29. The value of νQ is comparable to
that reported for BaFe2As2 in the ordered state.59

The linewidth and position were found to be almost
temperature independent. As shown in Ref. 13 from mag-
netic neutron diffraction data, the sublattice magnetization is
nearly saturated at 300 K. Since the NMR linewidth in the
ordered state is a measure of the sublattice magnetization, the
independence of the linewidth over our temperature range is
consistent with the neutron diffraction results.

The internal field at the 75As site can be analyzed by
taking the crystal symmetry into consideration, which has been
adopted in an analysis of the hyperfine field at the 75As site
in BaFe2As2 by Kitagawa et al.59 According to their analysis,
for a G-type antiferromagnetic spin structure the internal field
at the 75As site is zero due to a perfect cancellation of the
off-diagonal hyperfine field produced by four in-plane NN Mn
spins when the spin moments are parallel to the c axis. Thus, the
spin components along this axis do not produce any magnetic
broadening in the 75As NMR spectra. Only the ab plane
components of the ordered Mn spin can produce an internal
field perpendicular to the c axis at the 75As site. On the other
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hand, for a stripe-type AF spin structure, a c-axis component
of the spin moments produces an internal field Hint = z′BS

along the a axis, where z′ is the number of nearest-neighbor
Mn spins of the 75As site, B is the off-diagonal hyperfine
coupling constant, and S is the Mn spin.

Assuming that the broadening of the NMR spectra orig-
inates from Hint at the 75As site, Hint is estimated to be
∼215 Oe from the spectral width. Using the ordered moment
μ = 3.9 μB/Mn and z′ = 4, the off-diagonal hyperfine cou-
pling constant B is estimated to be ∼14 Oe/μB for the case
of stripe-type AF order. Such a small B is of the order of the
nuclear-nuclear dipolar field and is not likely due to transferred
hyperfine couplings. For the G-type AF structure, the ab-plane
components can be produced by a canted component of the
Mn spins when the magnetic field is applied perpendicular to
the ordered moment axis, that is, perpendicular to the c axis.
Using the perpendicular component of the spin susceptibility
χ⊥ = 1.3 × 10−3 cm3/mol from Fig. 7(a) and H = 7.1 T that
we used for measurements of the spectra, the ab component of
the ordered Mn moment μab is evaluated to be 0.0083 μB/Mn
in this field. Now using Hint = 215 Oe and μab = 0.0083 μB,
the off-diagonal hyperfine coupling constant is calculated to
be B = 6.5 kOe/μB. This value of B is comparable to B =
4.3 kOe/μB reported in BaFe2As2.59 Thus, our 75As NMR
spectra observed in the AF ordered state are consistent with the
G-type AF structure reported from the neutron experiment.13

B. Nuclear spin-lattice relaxation rate

The longitudinal nuclear magnetization recovery curve
following saturation was fitted by the double exponential
function60

1 − M(t)

M(∞)
= 0.1 e−t/T1 + 0.9 e−6t/T1 ,

as expected for the center line of the spectrum of the 75As
nuclear spin I = 3

2 , where 1/T1 is the 75As nuclear spin-lattice
relaxation rate and M(t) and M(∞) are the nuclear magne-
tization at time t after saturation and the equilibrium nuclear
magnetization at time t = ∞, respectively. The extracted 1/T1

as a function of temperature is shown in Fig. 30, where 1/T1

is seen to increase rapidly with increasing temperature. In
the AF state, this rapid increase in 1/T1 with T is a clear
signature of relaxation due to scattering of magnons by the
nuclear spins. According to Beeman and Pincus,61 in the AF
state for magnetic insulators, 1/T1 is mainly driven by such
magnon processes, leading to a power law T -dependence.61–63

For T � 
/kB, where 
 is the anisotropy gap in the spin wave
spectrum, it either follows a T 3 behavior due to a two-magnon
Raman process or a T 5 behavior due to a three-magnon
process, while for T 
 
/kB, it follows a thermally activated
behavior 1/T1 ∝ T 2e−
/kBT . As seen from Fig. 30, our 75As
1/T1 data in the T range 50 � T � 300 K follow a T 3 behavior
rather than a T 5 behavior, indicating that the relaxation is
mainly governed by the two-magnon Raman process. A T 3 fit
over this T range yields

1

T1
= (2.51 × 10−6 s−1 K−3) T 3, (106)

FIG. 30. (Color online) Nuclear spin-lattice relaxation rate (1/T1)
measured at the 75As site versus temperature T . The solid and dashed
lines represent T 3 and T 5 behaviors, respectively. The slope of the
former line fitted to the 50–300 K data is 2.51 × 10−6 s−1K−3. (Inset)
(T1T )−1 versus T .

as shown in Fig. 30. The lack of activated behavior down to
50 K indicates that 
/kB is smaller than 50 K.

For the two-magnon process, 1/T1 is determined by the
slopes of the spin wave dispersion relations at ω ∼ 0 and thus
by the spin wave velocities. The spin wave velocities within the
ab plane and along the c axis in terms of the exchange constants
in the J1-J2-Jc Heisenberg model are given above in Eqs. (9).
Since the spin wave velocity depends on the direction of prop-
agation, 1/T1 should also depend on the spin wave direction.
Based on the 1/T1 expression for the two-magnon process
reported by Beeman and Pincus,61 we have calculated the 1/T1

for BaMn2As2 with the body-centered-tetragonal structure
(I4/mmm) arising from the two spin wave velocities as(

1

T1

)−1

i

=
(

A

h̄

)2 4z′zh̄ sin2 θ

(2π )3
(kBT )3 (a2c)2

(h̄vi)4α2

×
∫ ∞


/kBT

x

ex − 1
dx, (107)

where z′ = 4 is the number of Mn nearest neighbors to a given
75As site (see Fig. 1), z = 4 is the number of nearest-neighbor
Mn spins interacting with a given Mn spin, i = ab with
α = a or i = c with α = c, and θ denotes the angle between
the local hyperfine field at the 75As site and the anisotropy
axis (c axis) which is the Mn ordered moment axis. We also
have

A

h̄
= γngμBAhf,

where g is the electronic g factor, Ahf is the hyperfine
coupling constant and γn is the 75As nuclear gyromagnetic
ratio given by 75γn/2π = 7.2919 MHz/T. Using g = 2 and
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Ahf = 6.5 kOe/μB that was estimated from the spectrum
analysis, one obtains

A

h̄
= 6.0 × 107 s−1. (108)

For T � 
/kB as in our temperature range 50–300 K where
1/T1 ∝ T 3, the integral in Eq. (107) approaches its maximum
value π2/6, so Eq. (107) reduces to(

1

T1

)−1

ab

=
(

A

h̄

)2
z′zh̄a2c2k3

B sin2 θ

12π (h̄vab)4
T 3. (109)(

1

T1

)−1

c

=
(

A

h̄

)2
z′zh̄a4k3

B sin2 θ

12π (h̄vc)4
T 3

≡ Cab or c T 3. (110)

The ratio Rab/c of the relaxation rates for ab-plane and c-axis
spin waves should be independent of T . If we assume that
the hyperfine coupling A of the electronic spins to the nuclear
spins is isotropic, then Rab/c obtained using Eqs. (9), (109),
and (110) is given by

Rab/c = (1/T1)ab

(1/T1)c
=

(
c

a

)2 (
vc

vab

)4

= 1

4

(
c

a

)6 [
(Jc/J1)(1 + Jc/2J1)

(1 − 2J2/J1)(1 + Jc/2J1)

]2

. (111)

Taking a = 4.15 and c = 13.41 Å for the lattice parameters
at 8 K (Ref. 13), and J2/J1 = 0.29 and Jc/J1 = 0.09 from
the neutron scattering fit in Table II, Eqs. (111) yield

Rab/c = 13. (112)

Thus, the nuclear spin-lattice relaxation rate due to spin waves
traveling in the ab plane is much larger than that due to c-axis
spin waves and we therefore assume that Eq. (109) gives the
observed 1/T1 to a good approximation.

Since Ahf was estimated in Eq. (108), one can obtain
information on the exchange constants from the coefficient
of the T 3 fit in Eq. (106). Inserting h̄vab from Eqs. (9) into
(109) gives(

J1

kB

)4

= 1

Cab

(
A

h̄

)2 ( c

a

)2 z′zh̄〈sin2 θ〉
192πkBS4

×
[(

1 − 2J2

J1

)(
1 + Jc

2J1

)]−2

. (113)

Our single fit parameter Cab in Eq. (106) can only be used to
determine a single exchange constant or a single combination
of them. We therefore estimate J1 using the above values
J2/J1 = 0.29 and Jc/J1 = 0.09 derived from our inelastic
neutron scattering experiments. In Eq. (113), we also use
z′ = 4, z = 4, we take S to be the ordered spin 〈S〉 = 2 (from
magnetic neutron diffraction experiments),13 and 〈sin2 θ〉 =
(1/2)

∫ π

0 sin3 θ dθ = 2/3 (i.e., considering an average over all
angles). Using Eq. (113), we then obtain

J1

kB
= 160 K, J1 = 14 meV S ≡ 2. (114)

This value is close to the value J1 = 16 meV estimated in
Table II for S = 2 from our neutron scattering data. If we take

the spin to be S = 5/2, the value of J1 from Eq. (113) would
be a factor of (5/4)4 = 2.4 times smaller.

The overall temperature dependence of 1/T1 in BaMn2As2

in Fig. 30 is similar to that reported for KMnF3 (Ref. 64). In
KMnF3, a deviation from power law behavior was observed
at low temperatures and 1/T1 shows a broad maximum. This
broad feature at low temperature was attributed to the effects
of defects or extrinsic impurities. Thus, in BaMn2As2, the
deviation of the data below 50 K from the higher-temperature
T 3 fit in Fig. 30 is likely due to relaxation associated with
defects and/or extrinsic impurities.

For a metallic system, one would expect a Korringa-
like behavior [(T1T )−1 = constant] as has been observed in
(Ba,Ca)Fe2As2 (Refs. 59, 65, and 66) and RFeAsO1−xFx (R =
La, Pr) (Refs. 67 and 68) in the paramagnetic state. In these
compounds, (T1T )−1 is also constant at low temperature below
TN due to their metallic character and increases sharply near
TN. In contrast, (T1T )−1 in BaMn2As2 (inset of Fig. 30) shows
a gradual increase with increasing temperature signifying the
insulating ground state of the compound.

XII. BAND-THEORETICAL ESTIMATES OF THE
EXCHANGE COUPLINGS

The quantitative analysis of the magnetic interactions in
real magnets is based mostly on density functional theory. To
a large extent this theory is very similar to the Fermi-liquid
theory of Landau; however, strictly speaking, it allows one to
obtain only the total energy of the ground state, the distribution
of charge and spin densities, and other quantities that can be
directly determined by these. Several notable exceptions (Mott
insulators, rare earth systems, systems near quantum critical
points) have been revealed but currently it is believed that
for magnets of the Fe group the accuracy of the commonly
used local density approximation (LDA) is acceptable for
the description of the ground state properties including the
equilibrium magnetic moments at T = 0 K.

While the numerical agreement between experimental
and theoretical magnetic moments is often very good, there
are certain cases when the local approximation numerically
violates quantum mechanical laws. For instance, even in
insulating systems or magnetic molecules where the total
magnetic moment is close to an integer number of Bohr
magnetons, the value obtained from density functional theory
is usually not an integer. This discrepancy is related to the fact
that the wave function of the density functional method is often
not an eigenfunction of the square of total spin (even without
relativistic effects). This effect of “spin contamination” usually
cannot be eliminated or easily resolved. While noninteger
values of the moment in metallic systems are traditionally
explained by itineracy of the system and partial occupation
numbers, the problematic issue of whether or not S2 is an
integral of the motion is usually ignored with the hope that such
errors are small. The relationship between the single-particle
spectrum obtained in the density functional theory and the
physical properties of the magnetic excitations is not clearly
defined. Nevertheless, the research of the last 20–25 years
revealed that LDA often provides good agreement between
theory and experiment for the magnetic excitation spectra if
the ground state is properly described.
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FIG. 31. (Color online) Total energy E of a system when the
polar angle θij between two local magnetic moments i and j is
varied in band theory. The energies of the ferromagnetic EFM and
antiferromagnetic EAF magnetic structures and their difference are
indicated. Here the antiferromagnetic state is the ground state. For
a ferromagnetic ground state, the minimum in energy would be at
θij = 0.

The description of the intersite magnetic interactions
represents a typical problem within the topic of magnetic
excitations. By itself, the determination of a pairwise exchange
parameter Jij between atoms i and j in an arbitrary magnetic
material is not well-posed. For instance, in very itinerant
systems the effective spin Hamiltonian can have very non-
Heisenberg behavior. However, from the phenomenological
theory of ferromagnetism69,70 the energy of any weak and
smooth variation of spin density can be described by the effec-
tive classical Heisenberg Hamiltonian for equivalent classical
spins Si and Sj with magnitudes Si = Sj ≡ S given by

E =
∑
〈ij〉

Jij Si · Sj = S2
∑
〈ij〉

Jij cos θij . (115)

Traditionally, a set {Jij } of exchange coupling constants
in the density functional theory can be calculated using
two approaches. In the first approach, using the effective
Heisenberg model (115) one can solve for the Jij from the
set {Fαβ(Jij )} of equations for the differences of the energies
between different magnetic structures α and β

Fαβ(Jij ) = Eα{Jij } − Eβ{Jij }
2S2

(116)

obtained from band structure calculations as shown in Fig. 31.
This is the usual way to obtain {Jij } for highly localized
magnetic insulators and is usually the most suitable method
for the calculation of magnetic phase transition temperatures.

Another approach is based on the definition of Jij as the
second derivative of the total energy in Eq. (115) with respect
to rotation of moments from their magnetic alignment in a
given magnetically ordered ground state

Jij = − 1

S2

∂2E

∂θ2
ij

, (117)

which is proportional to the curvature of the total energy E

versus angle θij near the minimum for an antiferromagnet
at θij = 180◦ in Fig. 31. This definition of Jij corresponds

to a linear response scheme and is usually the most suitable
technique for the analysis of the excitations above the ground
state (spin waves) and is directly related to the dynamical mag-
netic susceptibility measured in inelastic neutron scattering
experiments. The procedure for evaluating Eq. (117) depends
on the band structure methods and the specifics of the linear
response method employed. This technique has been used for
many magnetic materials in the past.71 This approach can be
understood as a static limit of the dynamic linear response
technique which has been used for calculations of spin waves
and Stoner excitation spectra in magnets. One can analytically
obtain an expression for the onsite stability parameter J0 which
should be the same as

∑
Jij . A comparison of J0 and

∑
Jij is a

check on the consistency of the calculations and the reliability
of the numerical scheme.

We first consider the exchange constants obtained from total
energy differences and then in the subsequent section from the
energy of excitations from the magnetically ordered ground
state.

A. Exchange interactions from total energy calculations

Using density functional theory in the LDA, An et al.
correctly deduced from total energy calculations, prior to
the availability of the experimental results, that the G-type
antiferromagnetic structure of BaMn2As2 has a lower energy
than either the FM structure or of two types of stripe
structure.12 Their predicted ordered moment for the G-type
AF structure was μ = 3.20 μB/Mn, somewhat smaller than
the value of μ = 3.9(1) μB/Mn observed later.13 Their LDA
total energies and ordered moments for the FM and G-type
AF structures are listed in Table IX, together with their total
energies of two commensurate collinear stripe states with the
in-plane stripe structure shown in the bottom panel of Fig. 2.12

The stripe-AF structure has AF alignment of the ordered
moments along the c axis, whereas the stripe-FM structure
has FM alignment along the c axis. As seen in Table IX, the
ordered moment μ of the Mn in the FM structure is not the
same as the value of μ in the G-type AF structure.

From the LDA total energies and ordered moments cal-
culated by An et al.12 for the magnetic structures listed in
Table IX, one can obtain estimates of the exchange couplings
in BaMn2As2 using the value for the spin S obtained from the
ordered moment μ as

S = μ

gμB
= μ

2μB
,

with g = 2. The classical energies per spin of the magnetic
structures in Table IX obtained using Eqs. (3) and Fig. 2 are

EFM = S2
FM(2J1 + Jc + 2J2),

EG = S2
G(−2J1 − Jc + 2J2),

(118)
Estripe AF = S2

G(Jc − 2J2),

Estripe FM = S2
G(−Jc − 2J2).

We have taken the Mn spin in the two stripe phases to be
the same as in the G-type AF structure, since they were not
given by An et al. Because the total energy contains a constant
term proportional to the square of the magnetization, we solve
for the exchange constants using only differences between
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TABLE IX. Parameters of BaMn2As2 with NN (J1), NNN (J2), and interlayer (Jc) exchange interactions obtained from density functional
theory. Here S is the calculated spin, E is the total energy per Mn atom, FM means ferromagnetic structure and G-type AF structure is the
Néel (checkerboard) antiferromagnetic structure with an in-plane structure shown in the top panel of Fig. 2. The two stripe structures have the
in-plane antiferromangetic structure shown in the bottom panel of Fig. 2, where the stripe-AF structure has AF stacking and the stripe-FM
structure has FM stacking along the c axis. The estimated exchange constants J in rows 5 and 6 are calculated from Eqs. (119)–(121) using
the total energy values in column 4. Our exchange constants using the LDA and GGA in the last two rows were calculated from the excitation
energies from the magnetically ordered ground state. In the reference (Ref.) column, “PW” means “present work.”

Magnetic μ E/Mn 2J1 + Jc Jc J1 J2

structure (μB/Mn) S (meV) (meV) (meV) (meV) (meV) Jc/J1 J2/J1 Ref.

FM 2.74 1.37 −330 12
G-type AF 3.20 1.60 −660 12
Stripe-AF ≡ 3.20 ≡ 1.60 −515 12
Stripe-FM ≡ 3.20 ≡ 1.60 −505 12

41.0a 2.0a 19.5a −5.4a 0.10a −0.28a 12, PW
28.5b 1.2b 13.7b −2.5b 0.09b −0.18b 12, PW

FM (LDA) 2.8 1.4 ≈0 −9.1 −2.2 PW
FM (GGA) 3.0 1.5 PW
G-type AF (LDA) 3.3 1.65 27.2 1.03 13.1 2.8 0.08 0.21 PW
G-type AF (GGA) 3.6 1.8 26.2 1.0 12.6 2.7 0.08 0.21 PW

aCalculated using Eqs. (119)–(121) as written.
bCalculated by replacing S2 by S(S + 1) in Eqs. (119)–(121).

these total energies according to Eq. (116). From the last two
expressions in Eqs. (118) we obtain

Jc = 1

2S2
G

(Estripe FM − Estripe AF). (119)

From the first two expressions in Eqs. (118) we obtain

2J1 + Jc = 1

2

(
EFM

S2
FM

− EG

S2
G

)
. (120)

Thus Eqs. (119) and (120) determine the two exchange
constants J1 and Jc. Then from the second and fourth of
Eqs. (118) we solve for J2 according to

J2 = J1

2
− Estripe FM − EG

4S2
G

. (121)

It is not clear whether to retain S2 or to insert the quantum
mechanical expectation value S(S + 1) of 〈S2〉 in place of S2

in Eqs. (119)–(121), so we calculate two sets of exchange
parameters based on these two assumptions, which are given
in Table IX. Using the second assumption, the values of Jc

and J1 are respectively about the same as the values in Table II
deduced from our inelastic neutron scattering experiments, but
J2 has the opposite sign in the theory and experiment.

We studied the properties of BaMn2As2 using density
functional calculations of the electronic structure and mag-
netic interactions in the FM and G-type AF structures. For
consistency, we used the experimental values of the lattice
parameters a = 4.15Å and c = 13.47 Å and the theoretically
optimized value of the internal As parameter zAs = 0.3524
utilized by An et al.12 Our electronic structure calculations
were performed using the recently developed full-potential
linear muffin tin orbital program.72 The accuracy of the
exchange couplings obtained is about 2%–3%. The studies
of the exchange couplings were done using the static linear
response technique described in Refs. 73 and 74.

Our results using LDA and the generalized gradient approx-
imation (GGA) are very similar to those reported by An et al.12

We find that BaMn2As2 has a relatively large ordered moment
in the G-type AF structure with μ = 3.3 μB/Mn in LDA
and 3.6 μB/Mn in GGA, as listed in Table IX, with a small
band gap (0.15 eV) in the electronic spectrum as observed,
and with the G-type AF ordering having the lowest energy
among all considered magnetic structures. The ferromagnetic
structure has no charge gap; that is, the compound would
be metallic. Our total energy EFM − EG differences were
350 meV/Mn (LDA) and 375 meV/Mn (GGA), which are
similar to the values of 330 and 380 meV/Mn obtained in
Ref. 12, respectively.

While the magnetic moments are relatively large, they
show a significant dependence on the magnetic structure,
in agreement with the results of Ref. 12. For instance, the
ferromagnetically ordered BaMn2As2 has an ordered moment
of 2.8 μB/Mn in LDA and 3.0 μB/Mn in GGA, which
deviate from the corresponding values for G-type AF ordering
(Table IX) by about 20%. Due to this relatively strong
dependence of the ordered magnetic moment on the magnetic
structure, estimates of exchange couplings from total energy
calculations should be used with caution.

B. Exchange interactions from excitations from the
magnetically ordered ground state

For comparison with the exchange constants deduced from
inelastic magnetic neutron scattering experiments, calculations
using the linear response technique71 are preferable to the
total energy technique, as noted above. Our calculations of
the parameters of the Heisenberg model are J1 = 13.1 meV,
J2 = 2.8 meV, Jc = 1.03 meV (LDA) and J1 = 12.6 meV,
J2 = 2.7 meV, Jc = 1.0 meV (GGA), as summarized in
Table IX. These values are quite comparable with the values
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deduced from our inelastic neutron scattering measurements
in Table II, and roughly similar to those in Table IV obtained
from molecular field analysis of our magnetic susceptibility
data in Fig. 7.

The G-type AF ordering temperatures obtained from our
spin value and exchange parameters in Table IX using the
molecular field expression (41) are

TN = 730 K (G-type AF, LDA),
(122)

TN = 810 K (G-type AF, GGA).

These mean-field Néel temperatures are somewhat larger than
the observed value of 625 K, as expected, and indeed are
approaching the temperature of the maximum of the measured
susceptibility in Fig. 7(a) which from Table VII is of order the
mean-field transition temperature.

The other longer-range pair exchange parameters appear
to be much smaller, suggesting very short-ranged exchange
interactions in this material. In particular, the difference
between the above parameter J0 and

∑
Jij over six NN and

four NNN is only about 5%, suggesting very short-ranged
exchange interactions in BaMn2As2. This is different from the
corresponding results for many Fe pnictides, where the ex-
changes with further neighbors are not so small and definitely
provide a finite contribution to the spin wave spectrum.75 We
attribute this difference to the metallic character of the Fe
pnictides and the semiconducting character of BaMn2As2.

To check the dependence of {Jij } on the type of magnetic
order we also performed linear response calculations of the
{Jij } for the FM phase. The stability parameter J0 for this
phase appears to be negative, confirming the instability of
such order with respect to the deviation of a single spin
from the ordered moment direction (i.e., from θij = 0). This
directly supports the qualitative behavior of the total energy
versus θij in Fig. 31. The pair exchanges in this phase
are J1 = −9.1 meV and J2 = −2.2 meV with a very weak
coupling along the z direction, which are compared in Table IX
with the other exchange constant values discussed above.
These results indicate that not only the ordered moments are
different in the different magnetic phases, but the exchange
coupling parameters depend on the type of magnetic order
even in materials with a relatively large (3–4 μB) magnetic
moment.

Overall, the localized Heisenberg model with four NN
interactions J1 and four NNN interactions J2 in the ab plane
and two NN interactions Jc along the c axis is sufficient to
theoretically describe the magnetic properties of BaMn2As2

quite well.

XIII. ORDERED MOMENT IN THE J1- J2- Jc HEISENBERG
MODEL FROM SPIN WAVE THEORY

As previously noted, an ionic picture suggests that the spin
of the Mn2+ ion in BaMn2As2 is S = 5/2, yielding for g = 2
an ordered moment of

〈μ〉 = gS μB = 5 μB. (123)

On the other hand, the observed ordered moment

〈μ〉 = g〈S〉 μB (124)

is only 3.9(1) μB/Mn (Ref. 13) implying a substantial
spin reduction 〈S〉. In view of the sizable frustrating AF
next-nearest-neighbor exchange J2 discussed above, it is
natural to ascribe the moment reduction to enhanced quantum
fluctuations. In the following, we use the conventional spin
wave theory to examine the quantum spin reduction for the
layered J1-J2-Jc square lattice Heisenberg antiferromagnet.

The spin wave theory provides an expansion of the
sublattice magnetization in powers of 1/S:

S − 〈S〉 = n0 + n1

2S
+ n2

(2S)2
+ · · · , (125)

where the leading correction n0 is determined by nonin-
teracting spin waves, while higher order corrections nk�1

come from magnon interactions. For the nearest-neighbor
square lattice Heisenberg antiferromagnet the two versions
of the spin wave expansion based either on the Dyson-
Maleyev76 or the Holstein-Primakoff77 representation of
spin operators yield identical results: n0 = 0.196 60, n1 ≡ 0,
and n2 = −0.0035, such that the series (125) rapidly con-
verges and compares extremely well with existing numerical
results.

Chandra and Doucot78 used the harmonic spin wave
theory to investigate the quantum renormalization of ordered
moments for the next-nearest-neighbor J1-J2 square lattice
Heisenberg antiferromagnet. They found that the leading order
correction n0 diverges as J2 → J1/2 due to a softening of
the excitation spectrum seen in the first of Eqs. (13) above.
This fact is considered as an indication of a quantum spin-
liquid state around the strongly frustrated point J2 = J1/2.
Subsequently, Chakravarty, Halperin, and Nelson79 calculated
the next-order correction n1, which becomes finite for J2 �= 0,
has an opposite sign compared to n0, and also diverges at
J2 = J1/2. Below, we extend the results of Chakravarty et al. to
a finite coupling between frustrated antiferromagnetic layers.
Comparison of two consecutive terms in the series (125) is
necessary to judge the accuracy of the spin wave expansion
for large J2.

In the spin wave calculations for the J1-J2-Jc model (2) with
H = 0 we use a single-rotating-sublattice basis80 for the Néel
structure with Q = (π,π,π ) and apply the Holstein-Primakoff
transformation for spin operators expanded to first-order in
1/S. The quantum reduction of ordered moments in the
harmonic approximation is given by an integral over the
paramagnetic Brillouin zone,

n0 = −1

2
+ 1

N

∑
k

Ak

2ωk
, (126)

where N is the number of spins,

Ak = 1 − j2(1 − γ2k) + 1
2jc,

(127)
Bk = γ1k + 1

2jc cos kz, ωk =
√

A2
k − B2

k,

with j2 = J2/J1, jc = Jc/J1, where h̄ωk is the magnon energy
in units of 4J1S, and

γ1k = 1
2 (cos kx + cos ky), γ2k = cos kx cos ky. (128)

Here the positive x and y directions are defined to be in the
directions of the a and b primitive square lattice translation
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vectors, respectively, the positive z direction is perpendicular
to the layers in the direction of the c lattice translation vector,
and we have set a = b = c = 1.

To treat the effect of magnon interaction one needs to intro-
duce various Hartree-Fock averages of the bosonic operators
compatible with the harmonic spectrum. For the present model
this procedure yields in addition to n0 in Eq. (126) three other
integrals:

m = 1

N

∑
k

Akγ2k

2ωk
, 
1 = 1

N

∑
k

Bkγ1k

2ωk
,

(129)


2 = 1

N

∑
k

Bk cos kz

2ωk
.

Then, the leading nonlinear correction to the sublattice
magnetization in Eq. (125) is expressed as

n1 = 1

N

∑
k

Bk

ω3
k

[
j2(m − 
1)γ1k(1 − γ2k) + 1

2
j2jc(m − 
2)

× (1 − γ2k) cos kz + 1

2
jc(
1 − 
2)(γ1k − cos kz)

]
.

(130)

For vanishing interlayer coupling Jc = 0, Eq. (130) becomes

n1 = j2

[
1

N

∑
k

γ 2
1k(1 − γ2k)

ω3
k

][
1

N

∑
k

Akγ2k − γ 2
1k

2ωk

]
,

ωk =
√

A2
k − γ 2

1k, (131)

as in Eq. (A3) of Chakravarty et al.79 To obtain Eq. (131)
we replaced the factor (m − 
1) in Eq. (130) with its integral
representation from Eqs. (129) and Bk with γ1k from Eqs. (127)
and set jc = 0 in Ak .

Numerical values of n0 and n1 for a range of ratios J2/J1 =
0 to 0.49 and for Jc/J1 = 0, 0.05 and 0.1 are listed in Table X.
These allow one to compute the spin reduction S − 〈S〉 for any
value of S. The spin reduction for S = 5/2 is plotted in Fig. 32
for Jc/J2 = 0 and 0.1. Three-dimensional effects generally
suppress quantum fluctuations, as seen in a comparison of
Figs. 32(a) and 32(b), and extend the validity of the spin wave

TABLE X. The first-order and the second-order corrections
[Eq. (125)] to the ordered moment in the J1-J2-Jc stacked square
lattice Heisenberg antiferromagnet.

Jc = 0 Jc = 0.05 Jc = 0.1

J2/J1 n0 n1 n0 n1 n0 n1

0.00 0.1966 0.0000 0.1427 0.0087 0.1260 0.0088
0.05 0.2124 −0.0047 0.1529 0.0071 0.1347 0.0075
0.10 0.2312 −0.0117 0.1648 0.0045 0.1447 0.0055
0.15 0.2542 −0.0227 0.1790 0.0003 0.1566 0.0024
0.20 0.2828 −0.0405 0.1963 −0.0065 0.1709 −0.0028
0.25 0.3198 −0.0710 0.2177 −0.0182 0.1885 −0.0115
0.30 0.3698 −0.1278 0.2455 −0.0392 0.2111 −0.0270
0.35 0.4423 −0.2485 0.2832 −0.0809 0.2414 −0.0573
0.40 0.5605 −0.5691 0.3389 −0.1784 0.2853 −0.1264
0.45 0.8074 −1.9842 0.4354 −0.5045 0.3594 −0.3483
0.49 1.6005 −23.899 0.6257 −2.6777 0.5008 −1.7482
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 1st order

 2nd order, S = 5/2

J
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FIG. 32. (Color online) Reduction S − 〈S〉 in the ordered spin
〈S〉 from its value S in the absence of quantum fluctuations versus
J2/J1 according to linear spin wave theory to first order (solid black
curves) and second-order (solid circles) in 1/S for (a) Jc = 0 and (b)
Jc/J1 = 0.1.

expansion (125) to somewhat larger values of J2/J1 ∼ 0.44,
although the series remain divergent at J2/J1 ∼ 0.5.

The above fits to our experimental neutron scattering
and magnetic susceptibility results for BaMn2As2 and the
band-theoretical estimates of the exchange parameters in this
compound yielded Jc/J1 ≈ 0.1 and J2/J1 = 0.2–0.4. Accord-
ing to the second-order calculations in Fig. 32(b), together
with Eq. (124) with g = 2, this parameter regime predicts
an ordered moment reduction of ≈0.34–0.52 μB/Mn due to
quantum fluctuations.81 This result appears to rule out the
possibility that the spin of the Mn is S = 2 because the ordered
moment would then be a maximum of ∼3.66 μB/Mn for
g = 2, which is significantly smaller than the observed value13

of 3.9(1) μB/Mn. On the other hand, if S = 5/2, then the
corresponding predicted ordered moment is �4.66 μB/Mn,
which is too large compared to the observed value.

It seems likely that charge and/or magnetic moment
amplitude fluctuations, which arise from both on-site and
intersite interactions, can account for the additional reduction
needed to reach agreement with the observed ordered moment
for a Mn spin S = 5/2. For example, the ordered moments
of the Mn atoms are 3.50(4) μB/Mn in Sr2Mn3As2O2,14,15

4.15(3) μB/Mn in La2Mn2Se2O3,82 and 4.04(8) μB/Mn
in Ba2MnMoO6,83 all containing Mn+2 ions with nominal
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spin S = 5/2. Such reductions are also often attributed to
covalency. On the other hand, for the more ionic compound
MnF2, the ordered moment of 4.82 μB/Mn+2 is much closer
to the value of 5 μB/Mn expected for S = 5/2 with g = 2,84

consistent with expectation.

XIV. SUMMARY AND CONCLUSIONS

Our anisotropic magnetic susceptibility χ versus
temperature T measurements from 300 to 1000 K of single
crystals of BaMn2As2 yielded the Néel temperature TN =
618(3) K, close to the value of 625(1) K previously determined
from neutron diffraction measurements on a polycrystalline
sample.13 The χ (T ) above TN is nearly isotropic, indicating
that single-ion anisotropy effects are small and that a
Heisenberg model for the spin interactions is appropriate.
Below TN, the χ becomes strongly anisotropic, with χ⊥ nearly
independent of T and χ‖ dropping nearly to zero for T → 0,
which corresponds qualitatively to the textbook behavior for
collinear antiferromagnets in MFT. However, the temperature
dependence of χ above TN continues to increase, rather than
decrease as expected from MFT, indicating the presence of
strong short-range AF order above TN. Such short-range AF
order above TN is expected for a quasi-two-dimensional spin
lattice as in BaMn2As2. Magnetic inelastic neutron scattering
measurements were carried out on a polycrystalline BaMn2As2

sample at 8 K with momentum transfers up to 6 Å−1 and
energy transfers up to 140 meV. These data allow estimates
of the magnetic exchange interactions in this compound to be
made using appropriate models. We also report 75As NMR
measurements in the antiferromagnetically ordered state of a
polycrystalline BaMn2As2 sample from 4 to 300 K. The nu-
clear spin-lattice relaxation rate is found to obey the power law
dependence 1/T1 ∝ T 3 from 50 to 300 K which we interpret
in terms of the exchange interactions in this compound.

We developed various theories for the J1-J2-Jc Heisen-
berg model in order to model our experimental data and
extract values of the exchange constants between Mn spins
and the value of the spin. Our inelastic neutron scattering
measurements indicate that this is the minimal model needed to
understand these data. For G-type antiferromagnetic ordering
shown for the square spin lattice in the top panel of Fig. 2,
and where the c-axis alignment is also antiferromagnetic,
linear spin wave theory at T 
 TN was used to calculate
the magnon dispersion relations in Sec. IV A 1. The in-plane
spin waves soften as J2 increases, and become unstable for
J2 � J1/2, signaling a phase transition to the in-plane stripe
state shown in the bottom panel of Fig. 2. Thus, the G-type
AF ordered state requires J2 < J1/2. This theory is used
in Sec. IV B to fit our inelastic magnetic neutron scattering
data at 8 K, a temperature far below the Néel temperature
of ≈625 K, and obtain estimates of SJ1, SJ2, and SJc for
BaMn2As2, where S is the spin on the Mn atoms that is not
determined separately in the spin wave fit to the data. From the
ordered moment μ = 3.9(1) μB = gSμB, one would estimate
S = 2 for g = 2. On the other hand, for the d5 ion Mn+2

one would estimate a high-spin S = 5/2. In Sec. VIII B 1
we also calculated the spin wave contribution to the low-
temperature heat capacity for comparison in Sec. VIII B 2 with
our previously published11 experimental heat capacity data for

a single crystal of BaMn2As2. We also used spin wave theory to
extend the nuclear spin-lattice relaxation rate 1/T1 calculations
of Beeman and Pincus for the isotropic cubic Heisenberg spin
lattice61 to the J1-J2-Jc model. We obtained Eqs. (109) and
(110), which were used to analyze the fit to our 75As 1/T1

NMR data with 1/T1 ∝ T 3 from 50 to 300 K for BaMn2As2.
A MFT treatment of the J1-J2-Jc Heisenberg model was

described in Sec. VII. In the paramagnetic state the system
follows the Curie-Weiss law C/(T + θ ) for T � θ , which
has the same form as described in many textbooks for the
J1-only model. The ratio f of the Weiss temperature θ to
TN, f = θ/TN, is found to be f = 1 for J2 = 0, as expected
for a bipartite spin lattice, but is f > 1 for frustrating AF
J2 > 0 and is f < 1 for nonfrustrating reinforcing FM J2 < 0,
which are intrasublattice interactions so the spin lattice is
no longer bipartite. Thus, for J2 > 0, the Curie-Weiss law
continues to be followed below T = θ down to T = TN, a
characteristic already noted by Ramirez for geometrically
frustrated antiferromagnets.35 As shown in Fig. 8, we find
that χ‖(T ) for T < TN strongly depends on J2, whereas χ⊥ is
independent of T and J2 at T < TN, apart from the implicit
influence of J2 on TN. We further find that the staggered
moment and the magnetic heat capacity versus T/TN at
T < TN are also independent of J2, again apart from the
implicit influence of J2 on TN.

We carried out QMC and CMC simulations of both χ (T )
and the magnetic heat capacity Cmag(T ) in H = 0 versus
Jc/J1 and J2/J1. Most of the QMC simulations were for
J2 = 0 due to severe negative sign problems when J2 was
taken to be positive, which is antiferromagnetic and frustrating
for G-type AF order. When we replaced the square of the
spin, S2, in the CMC simulations by the quantum mechanical
expectation value S(S + 1), the QMC simulations for J2 = 0
for increasing S merged smoothly with the CMC simulation
(which corresponds to S → ∞) as shown in Fig. 23, so we
used the CMC simulations to fit the experimental χ (T ) data
for T > TN. The CMC simulations of Cmag(T ) as a function
of Jc showed AF phase transitions at temperatures TN that
increased with Jc > 0 but decreased with J2 > 0, as shown in
Fig. 22. The TN(Jc,J2) data are well fitted by Eq. (96).

We also carried out band-theoretical estimates of the
exchange couplings in BaMn2As2. There are two generic
ways to do this. The first is to take the differences between
the total energies for different spin configurations such as in
Eqs. (119)–(121), where the lowest energy spin configuration
is the ground state. This method is often used to determine
exchange constants to be used in the calculation of magnetic
transition temperatures and yields the exchange constants in
rows 5 and 6 of Table IX,which are not further discussed. The
second is to measure the change in the total energy due to small
deviations of the spin directions from the magnetically ordered
ground state via Eq. (117), which gives the exchange values
in rows 9 and 10 of Table IX. These values are considered to
be more reliable for comparison with values extracted from
inelastic neutron scattering experiments.

Our exchange constants from the MFT fit to our anisotropic
χ (T ) data for BaMn2As2 below TN in Fig. 28 and Table VIII
are probably not reliable because that fit assumes that χ (T )
follows the Curie-Weiss law above TN (i.e., that there are no
two-spin AF correlations stronger than 1/T above TN), which
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TABLE XI. Summary of our most reliable exchange constants in
BaMn2As2 obtained from band theory and from fitting our experi-
mental data by our predictions of the J1-J2-Jc Heisenberg model. The
notation “≡” means that the value that follows it was assumed, not
fitted. Two spin values for the neutron fit are listed because the neutron
fit gives the product of the spin S and the respective exchange constant,
not the two separately. For the χ fit, a range of spin values can fit the
data. We chose two spin values close to 2 and 5/2, corresponding to
J2/J1 = 0.2 and 0.4, respectively. Two band theory estimates were
obtained using the LDA and the GGA, as noted.

J1

Data S (meV) J2/J1 Jc/J1

Neutrons 2 16.5 ± 1.5 0.29 ± 0.05 0.09 ± 0.02
5/2 13.2 ± 1.2 0.29 ± 0.05 0.09 ± 0.02

χ (T > TN) 2.06 17.8 ≡0.2 ≡0.1
2.64 18.1 ≡0.4 ≡0.1

75As NMR ≡2 14 ≡0.29 ≡0.09
(T 
 TN)

Band theory
LDA 1.65 13.1 0.21 0.08
GGA 1.8 12.6 0.21 0.08

is strongly violated by the data in Fig. 7(a). Similarly, although
our fits by MFT to the ordered moment μ̄z(T ) from neutron
diffraction measurements13 on BaMn2As2 in Fig. 14 and to the
heat capacity Cp(T ) (Ref. 11) in Fig. 15 are reasonable, they are
not sufficient to distinguish between the possible spins S = 2
and S = 5/2 discussed above. Furthermore, the fit to the Cp(T )
data near room temperature by the sum of the Debye lattice
heat capacity and the MFT prediction of the magnetic heat
capacity indicated that the measured magnetic heat capacity
is too low. This discrepancy suggests the presence of strong
AF fluctuations above TN that reduce the magnetic entropy
and magnetic heat capacity below TN, consistent with the
behavior of the magnetic susceptibility above TN in Fig. 28.
The calculated T 3 contribution to the heat capacity at low
temperatures from spin waves, without an anisotropy gap in
the spin wave spectrum, is about 40% of the measured value.
However, an anisotropy gap would suppress the spin wave
contribution exponentially to zero at low temperatures.

We have gathered together in Table XI our most reliable
exchange constants in BaMn2As2 from our band theory
calculations and from the theoretical fits to our experimental
data by the J1-J2-Jc Heisenberg model. Several features are
noteworthy. First, all three exchange constants are consistently
positive (antiferromagnetic). Second, the estimates give simi-
lar values of J1 ≈ 13–18 meV for S values in the range from
2 to 5/2. For the susceptibility fits, nearly the same J1 was
obtained from the two fits despite the significant differences
between the respective S and J2/J1 values. Third, the estimates
of J2/J1 from band theory and from analysis of the neutron and
magnetic susceptibility measurements are in the range 0.2–0.4,
which are below the value of 0.5 at which the in-plane G-type
AF order would classically become unstable with respect to
the stripe-AF order [see Fig. 2 and Eq. (4)], and are therefore
consistent with the observed G-type AF order. From our clas-
sical Monte Carlo simulations of the heat capacity of stacked
square lattice layers, the exchange parameters from the neutron

scattering fit predict TN ≈ 640 K if the Mn spin is S = 5/2, in
close agreement with the experimental value of ≈625 K.

Finally, with the above range of exchange parameters, our
second-order spin wave calculations in Sec. XIII show that the
ordered moment reduction due to quantum fluctuations alone is
at least ∼0.4 μB/Mn. Because the measured ordered moment
is 〈μ〉 = 3.9(1) μB/Mn, this argues against assigning a spin
S = 2 to the Mn2+ ions which gives 〈μ〉 = gSμB = 4 μB/Mn
and favors S = 5/2 for which one would obtain 〈μ〉 =
5 μB/Mn for g = 2 in the absence of quantum fluctuations.
The additional reduction needed to reach the experimental
value is likely due to charge and/or magnetic moment ampli-
tude fluctuations which arise from both on-site and intersite
interactions, and/or from hybridization effects, consistent
with the reduced ordered moment measured for other Mn2+
compounds.14,15,82,83 This effect cannot be described in the
Heisenberg model formalism used in this paper. For instance,
in Sec. XII we discussed that despite the large moment of
the Mn, the magnitude of the magnetic moment can vary
by ∼20% depending on the specific magnetic configuration,
suggesting that amplitude fluctuations of the magnetic moment
may indeed be relevant.

As noted in the Introduction, the view that BaFe2As2 is an
itinerant antiferromagnet is not universally held. Furthermore,
the results of many magnetic inelastic neutron scattering
measurements on BaFe2As2 have been analyzed in terms of
local moment Heisenberg models, even when the authors of
this modeling believe that the itinerant model is valid. The
reason for this latter analysis, as has been stressed in the
literature, is that the magnetism of itinerant models can often
be parametrized by local moment Heisenberg models. Further
review and discussion of this issue is given in Ref. 4.

We therefore now compare the exchange constants in
BaMn2As2 with those in the isostructural (at room temper-
ature) high-Tc AFe2As2 parent compounds (A = Ca, Sr, Ba)
within the context of the J1-J2-Jc local moment Heisenberg
model. The AFe2As2 compounds order into an in-plane stripe-
type antiferromagnetic structure below ∼200 K (lower panel
of Fig. 2) and the lattice distorts to orthorhombic symmetry
at or above TN.4 Within the orthorhombic structure and
assuming S = 1/2 and gSμB ≈ 1 μB, one defines the average
〈J1〉 = (J1a + J1b)/2, yielding 〈J1〉/J2 = 0.7–1.4 for a variety
of AFe2As2 compounds,4 which is in the regime 〈J1〉/J2 <

2 expected for in-plane stripe-type ordering [see Eq. (4)].
These values can be compared with those for BaMn2As2

in Table XI, where J1/J2 ∼ 3. In BaMn2As2 and also in
the AFe2As2 compounds, the interlayer coupling Jc is weak
compared to the in-plane couplings and the systems should be
considered to have strongly spatially anisotropic exchange, but
not necessarily two-dimensional. Thus, the AT2As2 systems,
where T is a 3d-transition metal element, appear to be ideal
systems to study the physics of the J1-J2-Jc Heisenberg model,
including the possibility of tuning the system to and through
the quantum critical point J1/J2 = 2 by doping. Indeed,
doping-dependent studies of Ba(Fe1−xCrx)2As2 have recently
revealed a transition from stripe-type AF order to G-type
AF order at x ≈ 0.3,85 and studies of Ba(Fe1−xMnx)2As2

have revealed a transition to a new state, possibly due to
competition between G-type and stripe-type AF ordering,
at x ≈ 0.1.86
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APPENDIX A: HIGH-TEMPERATURE
SERIES EXPANSIONS

From quite general considerations, one can show that
the results of MFT at high temperatures for the magnetic
susceptibility (the Curie-Weiss law) is an exact result arising
from a quantum mechanical treatment of local moment
magnetism using a high-temperature series expansion HTSE.
We also discuss a complementary “Curie-Weiss law” for the
magnetic heat capacity at high temperatures, which is useful
when discussing our Monte Carlo simulations of the magnetic
heat capacity in Sec. IX.

1. Magnetic susceptibility and the Curie-Weiss law

Using the fluctuation-dissipation theorem, one can express
the diagonal αα components χα (α = x,y,z) of the magnetic
susceptibility tensor in terms of the two-spin correlation
functions,

�α
r ≡ 〈

Sα
0 Sα

r

〉
, (A1)

where r is the distance measured in the number n of bonds,
including zero, of spin Sr from a typical central spin S0.6,32 In
the isotropic Heisenberg model, one obtains32

χ = Ng2μ2
B

kBT

∑
r

�z
r . (A2)

If one only considers the single-spin autocorrelation function
(r = 0), then one has �z

0 = 〈S2
z 〉 = 〈S2〉/3 = S(S + 1)/3,

which gives the Curie law

χ = Ng2μ2
BS(S + 1)

3kBT
, (A3)

which in turn is the Curie-Weiss law (22) with θ = 0 and Curie
constant (23).

Writing r ≡ n = 0,1,2, . . . , in terms of the distance of a
spin in number of bonds from the central spin at position 0
(i.e., n means the nth-nearest neighbor of the spin at the origin
in terms of the minimum number of bonds between them),
one can express the temperature dependences of the two-spin

correlation functions as high-temperature series expansions in
1/T with the general form

�z
n = �z

n,n

(kBT/J )n
+ �z

n,n+1

(kBT/J )n+1
+ · · · , (A4)

where �z
0 = S(S + 1)/3, as noted above, and the lowest-order

term for a given �z
n is 1/T n.32 Substituting the first three terms

of Eq. (A4) into Eq. (A2) gives

χ = Ng2μ2
B

kBT

[
S(S + 1)

3
+ �z

1,1

kBT/J
+ �z

1,2 + �z
2,2

(kBT/J )2
+ · · ·

]

= C

T

[
1 + 3

S(S + 1)

(
�z

1,1

kBT/J
+ �z

1,2 + �z
2,2

(kBT/J )2
+ · · ·

) ]
,

(A5)

where the Curie constant C is the same as in Eq. (23). If one
keeps only the first two terms in the square brackets and uses
the Taylor series expansion 1 + x ≈ 1/(1 − x) for small x to
put the quantity in square brackets into the denominator, one
gets the Curie-Weiss law (22) with Weiss temperature

θ = − 3�z
1,1J

S(S + 1)kB
. (A6)

Comparing Eqs. (25) and (A6) gives the coefficient

�z
1,1 = −z[S(S + 1)]2

9
. (A7)

2. The HTSE for the magnetic heat capacity

We discussed above that the Curie-Weiss law for the mag-
netic susceptibility of equivalent spins is rigorously derived
from the first (1/T ) term in the HTSE of the nearest-neighbor
two-spin correlation function and hence does not depend on
the particular crystal structure or spin-lattice dimensionality.
This suggests that there is an analogous term in the HTSE of
the magnetic heat capacity Cmag. We show this to be the case
[Eq. (A9)] and apply the result in Sec. IX.

From Hamiltonian (21), the thermal-average magnetic
configuration energy in zero field only depends on the nearest-
neighbor two-spin correlation function as32

Emag(T ) = 1
2NzJ 〈S0 · S1〉T(T ), (A8)

where the factor of 1/2 is introduced to avoid double counting
the distinct AF NN bonds and 〈· · ·〉T denotes a thermal average
of the quantum mechanical expectation value. The magnetic
specific heat Cmag(T ) is obtained by differentiating Eq. (A8)
with respect to T . Thus, the first 1/T HTSE term of Emag(T )
gives the first term in the HTSE of Cmag(T ) as a 1/T 2 term.

Rushbrooke and Wood showed that the first six terms of
the HTSE of χ (T ) and Cmag(T ) of a Heisenberg spin lattice
containing equivalent spins S can be expressed in terms of the
identical NN exchange couplings J and the bond connectivity
(“lattice parameters”) of the specific spin lattice.33 With respect
to the present discussion, they found that the first (1/T 2) term
of the HTSE for Cmag(T ) is independent of the type of spin
lattice and of the spin lattice dimensionality and only depends
on z, S, and J according to33

Cmag

R
= z

6

[
JS(S + 1)

kBT

]2

. (A9)

094445-38



MAGNETIC EXCHANGE INTERACTIONS IN . . . PHYSICAL REVIEW B 84, 094445 (2011)

This term is the same for FM and AF interactions because
the exchange constant is squared, which gives a positive-
definite result for Cmag(T ). Thus, when comparing calculated
Cmag(T ) data for lattices with the same coordination number
z but different exchange constants and/or spins, a universal
high-temperature behavior is obtained if the data are scaled
according to

Cmag

R
versus

kBT

JS(S + 1)
. (A10)

The Curie law for the magnetic susceptibility arises because
there is a nonzero susceptibility for isolated spins. This is
modified at high temperatures by the addition of a 1/T 2 term in
Eq. (A5) arising from spin interactions, yielding a Curie-Weiss
law with nonzero Weiss temperature θ . On the other hand, the
magnetic heat capacity of isolated spins is zero, and hence
there is no equivalent Curie law for Emag(T ) or Cmag(T ): the
values are just zero. Equation (A9) can therefore be considered
to be a “Curie-Weiss law” for Cmag(T ).

APPENDIX B: ANISOTROPIC SUSCEPTIBILITY BELOW
TN FOR THE J2- J2- Jc MODEL IN MOLECULAR FIELD

THEORY

1. Perpendicular susceptibility χ⊥ below TN

Setting the external field H to zero and using the exchange
fields in Eq. (29), the average exchange energy of the spin
system is

Eexch = −M1 · B1 = −(
λsM

2
1 + λdM1 · M2

)
. (B1)

We do not add a second term −M2 · B2 to this, because that
would double count the exchange interactions between the
spins which occur pairwise.

We apply an external magnetic field H⊥ that is perpendic-
ular to the ordered moment direction in the antiferromagneti-
cally ordered state that induces a perpendicular magnetization
M⊥ in the sample, where M⊥ = M1 + M2 is the vector sum
of the sublattice magnetizations. From Fig. 33, the angle φ

between M1 and M2 is

cos φ = cos(180◦ − 2γ ) = − cos(2γ ) ≈ −(1 − 2γ 2),

where we used cos(A − B) = cos A cos B + sin A sin B and
on the right-hand side we used the small angle approximation
cos x ≈ 1 − x2/2. We assume that γ is very small because
χ⊥ = limH⊥→0 M⊥/H⊥ by definition. Thus, the exchange
energy in Eq. (B1) becomes

Eexch = M2
i [−λs + λd(1 − 2γ 2)], (B2)

where M1 = M2 ≡ Mi .
A perpendicular magnetic field H⊥ = H⊥ î causes the

ordered AF spin sublattices to tilt toward the applied field
direction, away from the ordered moment z direction, as shown
in Fig. 33. The magnetic energy due to the perpendicular field is

E⊥ = −2Mi · H⊥ = −2MiH⊥ sin γ ≈ −2MiH⊥γ, (B3)

where we have used the small-angle approximation sin x ≈ x.
Thus, the total magnetic energy is

E = Eexch + E⊥ = M2
i [−λs + λd(1 − 2γ 2)] − 2MiH⊥γ.

(B4)

z

x

γ

γ

φ

M1

M2

H

FIG. 33. (Color online) Influence of a perpendicular magnetic
field H⊥ on the sublattice magnetizations of an ordered antiferro-
magnet. The H⊥ tilts the ordered sublattice magnetizations M1 and
M2 that are initially pointed along the z axis by an angle γ toward the
applied field H⊥ along the x axis. The angle γ is greatly exaggerated
for clarity.

The stable configuration minimizes the energy. Taking the
derivative of E with respect to γ and setting it to zero and
setting λd = −|λd| because λd is negative gives

γ = H⊥
2|λd|Mi

.

Thus, the interactions within the same sublattice (λs,
i.e., J2) have no influence on this equilibrium condition.
The equilibrium value of the component M⊥ of the total
magnetization in the direction of H⊥, using the small-angle
approximation sin θ ≈ θ , is

M⊥ = 2Mi sin γ ≈ 2Miγ = H⊥
|λd| ,

which gives the perpendicular susceptibility as

χ⊥ = M⊥
H⊥

= 1

|λd| .

Note that Mi and hence also its temperature dependence have
dropped out, so that χ⊥ in this treatment is independent of T

below TN.
From Eqs. (54) we have

|λd| = TN(1 + f )

C
. (B5)

Thus, we obtain

χ⊥ = 1

|λd| = C

TN(1 + f )
= C

TN + θ
= χ (TN) (T � TN),

which is Eq. (55) in the text. Although J2 is not present
explicitly, its influence is expressed through the implicit
dependence of TN on J2.

2. Parallel susceptibility χ‖ below TN

Here again we assume that the susceptibility in the absence
of explicit exchange couplings is χ0 = C/T , which is isotropic
above TN. We apply a small magnetic field H . Below TN a large
exchange field develops as seen by each sublattice because
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of the ordered moments. Therefore, we must use a Brillouin
function to describe the magnetization of each sublattice.

The saturation magnetic moment of a spin S is

μsat = gμBS.

For N spins, the saturation magnetization is therefore

Msat = NgSμB. (B6)

The magnetization of the N spins is written

Mz = MsatBS(y), (B7)

where BS(y) is the Brillouin function given by

BS(y) = 1

2S

{
(2S + 1) coth

[
(2S + 1)

y

2

]
− coth

(
y

2

)}
,

(B8)

where 0 � BS(y) � 1 for y � 0,

y = gμBH

kBT
, (B9)

and the g factor is usually set to the value g = 2.
In MFT, we replace H in the Brillouin function by the

magnetic inductions Bi in Eqs. (28) and (29), which include
the exchange fields. Thus, we have

M1 = 1

2
MsatBS

(
gμBB1

kBT

)

= 1

2
MsatBS

[
gμB(H + λsM1 + λdM2)

kBT

]
,

(B10)

M2 = 1

2
MsatBS

(
gμBB2

kBT

)

= 1

2
MsatBS

[
gμB(H + λdM1 + λsM2)

kBT

]
.

Substituting for λs and λd from Eqs. (54) gives

M1

Msat
= 1

2
BS

{
gμB

[
H − TN(f −1)

C
M1 − TN(f +1)

C
M2

]
kBT

}
,

M2

Msat
= 1

2
BS

{
gμB

[
H − TN(f +1)

C
M1 − TN(f −1)

C
M2

]
kBT

}
.

(B11)

To simplify the notation and the solution to Eqs. (B11)
we define reduced magnetic field, temperature, and ordered
moment variables, respectively, by

h̃ = gμBH

kBTN(H = 0)
, t = T

TN(H = 0)
,

(B12)
μ̄iz = μiz

μsat
= μiz

gSμB
.

Then using Mi = Nμiz/2 and Msat = Nμsat = NgSμB and
the expression for the Curie constant C in Eqs. (23), Eqs. (B11)
become

μ̄1z = BS

[
h̃

t
− 3(f − 1)

2(S + 1)

μ̄1z

t
− 3(f + 1)

2(S + 1)

μ̄2z

t

]
,

(B13)

μ̄2z = BS

[
h̃

t
− 3(f + 1)

2(S + 1)

μ̄1z

t
− 3(f − 1)

2(S + 1)

μ̄2z

t

]
.

For specified S, f , h̃, and t , one can solve these two
simultaneous equations numerically for μ̄1z(t,h̃) and μ̄2z(t,h̃).
The average reduced magnetization per spin is

μ̄z(t,h̃) = 1
2 [μ̄1z(t,h̃) + μ̄2z(t,h̃)]. (B14)

This solution is valid in both the paramagnetic and antiferro-
magnetic states. The reduced parallel susceptibility per spin
is

χ̃(t) = lim
h̃→0

μ̄z(t,h̃)

h̃
. (B15)

In the AF phase, the order parameter is the staggered ordered
moment

μ̄†
z = μ̄1z − μ̄2z

2
, (B16)

which is one-half the difference between the z components
of the ordered moments of the two sublattices. The term
“ordered moment,” when used in the context of a collinear
antiferromagnet, is the staggered moment.

The susceptibility is isotropic at TN (at reduced temperature
t = 1). Therefore, setting t = 1 and μ̄1z = μ̄2z in Eqs. (B13)
gives

μ̄iz = BS

[
h̃ − 3f

S + 1
μ̄iz

]
,

where i = 1,2. Using the expansion BS(y) = (S + 1)y/3 for
y 
 1 and solving for μ̄iz gives

μ̄iz(t = 1) = S + 1

3(f + 1)
h̃. (B17)

Then Eq. (B15) gives

χ‖(T )

χ‖(TN)
= χ̃‖(t)

χ̃‖(t = 1)
= 3(f + 1)

S + 1
lim
h̃→0

μ̄z(t,h̃)

h̃
. (B18)

APPENDIX C: ORDERED MOMENT VERSUS
TEMPERATURE BELOW TN

In the AF state, setting the applied magnetic field h̃ = 0 and
the ordered moment μ̄2z(t) = −μ̄1z(t) in the first of Eqs. (B13)
gives the simple result

μ̄†
z(t) = BS

[(
3

S + 1

)
μ̄
†
z(t)

t

]
. (C1)

Thus, the reduced exchange field as in Eqs. (28) and (29) is

h̃exch(t) = 3

S + 1
μ̄†

z(t). (C2)

APPENDIX D: ZERO-FIELD MAGNETIC HEAT CAPACITY
Cmag BELOW TN

In the presence of the staggered exchange field with z

components H1 exch = −H2 exch and nonzero μ1z = −μ2z, the
energy of a collinear G-type AF system in zero applied field is

Eave = −N

2
μ1zH1 exch = −1

2
M1zH1 exch, (D1)

where the factor of 1/2 is included to avoid counting each
magnetic moment twice (once in μ1z or M1z and again in
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H1 exch). The exchange field seen by sublattice 1 can be written
using Eqs. (29) and (42) as

H1 exch = (λs − λd)M1z = 3kBTN

g2μ2
BS(S + 1)

μ1z. (D2)

Then using the expression for the saturation moment μsat =
gSμB, one can rewrite this as

H1 exch =
(

3kBTNS

S + 1

)
μ1z

μ2
sat

. (D3)

Inserting Eq. (D3) into (D1) gives

Eave(T ) = −3NkBTNS

2(S + 1)

[
μ1z(T )

μsat

]2

. (D4)

Using the dimensionless reduced variables introduced in
Eqs. (B12) and the definition (B16) of the staggered moment,
we obtain

Eave(t) = −3NkBTNS

2(S + 1)
(μ̄†

z)
2(t). (D5)

By setting N equal to Avogadro’s number NA and using the
definition of the molar gas constant R = NAkB one obtains
from Eq. (D5) the molar magnetic energy

Eave(t) = − 3RTNS

2(S + 1)
(μ̄†

z)
2(t). (D6)

The molar magnetic heat capacity is then

Cmag(t)

R
= 1

R TN

dEave(t)

dt
= − 3S

S + 1
μ̄†

z(t)
dμ̄

†
z(t)

dt
. (56)

APPENDIX E: LOW-TEMPERATURE HEAT CAPACITY
OF SPIN WAVES

At low temperatures, only the lowest energy spin waves
contribute to the heat capacity, so we can use generic
Eq. (7) for the dispersion relation. To evaluate the integrals
in Eq. (69), we change variables in the integrals from wave
vector q to the vector �ε with dimensions of energy and with
components

εx = h̄vxqx, εa = h̄vxπ/a,

εy = h̄vyqy, εb = h̄vyπ/b, (E1)

εz = h̄vzqz, εc = h̄vzπ/c.

Now the dispersion relation (7) is written symmetrically as

E�ε = h̄ω�ε =
√

ε2
x + ε2

y + ε2
z ≡ ε (E2)

and Eq. (69) becomes

Eave = NVspin

(2π )3h̄3vxvyvz

×
∫ εa

−εa

dεx

∫ εb

−εb

dεy

∫ εc

−εc

dεz

E�ε
eE�ε/kBT − 1

, (E3)

in which the anisotropy in the dispersion relation (7) has been
moved to anisotropies in the limits of integration and in the
prefactor.

At low temperatures, only the lowest energy spin wave
states are populated, so we can take the limits of each integral

to be −∞ to ∞, which also eliminates the anisotropy between
the limits of integration of the three integrals. We can then
convert the integrals over the three Cartesian coordinates to
an integral over radius in spherical coordinates according to
E�ε → ε and∫ ∞

−∞
dεx

∫ ∞

−∞
dεy

∫ ∞

−∞
dεz → 4π

∫ ∞

0
dε ε2.

Now we will integrate only about the � point, so we must
multiply by two to take into account the low-energy spin wave
branches at the corners of the Brillouin zone of the primitive
tetragonal direct lattice as discussed in the text. We then obtain

Eave = NVspin

π2h̄3vxvyvz

∫ ∞

0

ε3

eε/kBT − 1
dε (low T ). (E4)

Changing variables in the integral to x = ε/kBT gives

Eave = NVspin(kBT )4

π2h̄3vxvyvz

∫ ∞

0

x3

ex − 1
dx (low T ). (E5)

The integral is π4/15, yielding

Eave = π2NVspin(kBT )4

15h̄3vxvyvz

(low T ). (E6)

Then setting N = NA (Avogadro’s number), the magnetic heat
capacity due to the spin waves per mole of spins is

Cmag

R
= 1

R

dEave

dT
=

(
4π2k3

BVspin

15h̄3vxvyvz

)
T 3 (T 
 TN), (73)

where R = NAkB is the molar gas constant.
We now calculate the two-dimensional spin wave theory

prediction of Cmag to check consistency with Eq. (101) that was
derived using chiral perturbation theory. In two dimensions
(i.e., Jc = 0), the area of the sample is A = Na2, where N

is the number of spins and ab = a2 is the area of the square
unit cell which contains one spin in its basis. Then Eq. (69) is
replaced by

Eave = 1
(2π)2

Na2

∫ π/a

−π/a

dqx

∫ π/b

−π/b

dqy

h̄ωq

eh̄ωq/kBT − 1
. (E7)

Following the same steps as for the three-dimensional case
above, converting the two-dimensional integrals to polar
coordinates according to∫ ∞

−∞
dεx

∫ ∞

−∞
dεy → 2π

∫ ∞

0
dε ε,

and multiplying by two to take into account the spin
wave excitations at the corners of the Brillouin zone,
gives

Cmag

R
= 6ζ (3)

π (h̄v/a)2
(kBT )2, (E8)

where v is the isotropic spin wave velocity in the ab plane and
we have used

∫ ∞
0

x2

ex−1dx = 2ζ (3). Equation (E8) is identical
to Eq. (101) obtained for the isotropic Heisenberg square lattice
from chiral perturbation theory.52
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