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Finite-size effects on the dynamic susceptibility of CoPhOMe single-chain molecular magnets in
presence of a static magnetic field
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The static and dynamic properties of the single-chain molecular magnet Co(hfac)2NITPhOMe (CoPhOMe)
(hfac = hexafluoroacetylacetonate, NITPhOMe = 4′-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-
oxide) are investigated in the framework of the Ising model with Glauber dynamics, in order to take into account
both the effect of an applied magnetic field and a finite size of the chains. For static fields of moderate intensity
and short chain lengths, the approximation of a monoexponential decay of the magnetization fluctuations is
found to be valid at low temperatures; for strong fields and long chains, a multiexponential decay should rather
be assumed. The effect of an oscillating magnetic field, with intensity much smaller than that of the static one,
is included in the theory in order to obtain the dynamic susceptibility χ (ω). We find that, for an open chain
with N spins, χ (ω) can be written as a weighted sum of N frequency contributions, with a sum rule relating the
frequency weights to the static susceptibility of the chain. Very good agreement is found between the theoretical
dynamic susceptibility and the ac susceptibility measured in moderate static fields (Hdc � 2 kOe), where the
approximation of a single dominating frequency for each segment length turns out to be valid. For static fields in
this range, data for the relaxation time, τ versus Hdc, of the magnetization of CoPhOMe at low temperature are
also qualitatively reproduced by theory, provided that finite-size effects are included.
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I. INTRODUCTION

It is commonly admitted that the plain Ising Hamiltonian
does not contain any dynamics.1 In fact, when considering a
system of Ising spins σi localized at the sites i of a lattice,

H = −JI

∑
ij

σiσj , σi = ±1, (1)

the physically interesting quantities, the σi’s, commute withH.
However, for a system in contact with a heat bath, a stochastic
dynamics can be introduced by means of a master equation
which assumes Markovian processes inducing random flips
between different states. One of the few cases in which the
problem can be solved analytically is for a one-dimensional
lattice, with zero external magnetic field, and an opportune
choice of the transition probability, as devised by Glauber2

some decades ago. He calculated the dynamic susceptibility
within a linear response framework, and found that the uniform
magnetization decays exponentially, with a relaxation time
given by an Arrhenius law

τ (T ) = τ0e
4JI /kBT , (2)

where 1/τ0 is the relaxation rate for an isolated spin.
Considering that, at low temperatures, the correlation length
for model (1) in one dimension is given by ξ ∝ e2JI /kBT ,3

the dynamic critical exponent results in z = 2.4 Glauber’s
dynamics has been applied ever since in very different areas,
comprising structural phase transitions,5 neural networks,6

chemical reactivity,7 and even biosocioeconophysics.8,9

The recent discovery of single-chain magnets10 (SCMs)
spurred renewed interest in Glauber’s dynamics in magnetic
nanomaterials. Such systems show magnetic hysteresis with-
out the onset of three-dimensional magnetic ordering. At
very low temperatures, the relaxation of the magnetization
is so slow that other very interesting dynamic phenomena
have also been observed with unprecedented clarity, including
collective reversal11 and quantum tunneling.12 As a result, after
the discovery of the archetypal SCM [Co(hfac)2NITPhOMe]
(hereafter denoted CoPhOMe),10 the number of SCM com-
pounds has been rapidly increasing.13–20

The strong exchange interaction and one-dimensional
character of CoPhOMe (Ref. 10) make it the ideal system
in which to observe the long-predicted2 slow relaxation of the
magnetization. In CoPhOMe, owing to the very high value
of the exchange constant (JI /kB = 80 K), the correlation
length ξ is huge, at low temperatures, in a zero magnetic
field. Consequently, the unavoidable presence of even a small
density of defects causes the chain to break into finite segments
whose average length L̄ can be much smaller than the
correlation length ξ . In such a finite-size regime, L̄ � ξ ,
the dynamics of the system in zero field is modified21,22

with respect to Glauber’s analysis of the infinite chain.2 In
particular the relaxation time, measured in CoPhOMe using
ac susceptibility and superconducting quantum interference
device (SQUID) magnetization decay techniques, was found
to follow an Arrhenius law with a halved energy barrier23–25

τ (T ) = τ0(L̄)e2JI /kBT , (3)
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in agreement with theoretical predictions of finite-size
effects.21,22

These effects were systematically investigated in
CoPhOMe by introducing nonmagnetic impurities.26 For nom-
inally pure and impure samples, the complex susceptibility
χ (ω) = χ ′(ω) + iχ ′′(ω) was measured in the presence of a
moderate static magnetic field (Hdc = 2 kOe) and of a much
smaller ac field oscillating at frequency ω. A two-peaked
structure was found in χ ′(ω) as a function of temperature:
the low-temperature peak is frequency dependent, while the
high-temperature one is not. On the basis of transfer matrix
calculations for the static susceptibility of the doped chain, the
low-temperature peak was attributed to finite-size effects.26

Anyway, the frequency dependence of the peak for χ ′(ω)
and χ ′′(ω) �= 0 remains unexplained. Static and dynamic
susceptibilities with a similar behavior have also been observed
in different cobalt-organic single-chain magnets,27 in the
presence of a moderate static magnetic field (Hdc = 0.5 kOe)
and of lattice imperfections. The explanation of such features is
thus becoming more pressing, as it can constitute an important
tool for the analysis of the properties of a whole class of
magnetic systems.

In systems with a very large correlation length, like the one-
dimensional Ising model at low temperatures, the introduction
of an external magnetic field can have dramatic consequences.
A static field Hdc strongly depresses the correlation length
ξ ,3 and this fact, in turn, should also strongly affect the
dynamic susceptibility. The Glauber dynamics of the infinite
Ising chain model in an external magnetic field was studied
some years ago in order to describe the kinetics of the helix-
coil transition in biopolymers.28 For single-chain magnets, a
theoretical and experimental study was recently performed
by Coulon et al.29 focusing on the relaxation time of the
magnetization fluctuations. In addition to a static magnetic
field, their theoretical analysis29 considered finite-size effects,
relevant in SCMs. A local-equilibrium approximation was
adopted29 in order to truncate the infinite hierarchy of kinetic
equations for finite open Ising chains in Hdc �= 0. The main
advantages of this approximation, first proposed by Huang30

for infinite chains, are that (i) it provides the exact steady-state
solution,30 in contrast with the mean-field approximation; (ii)
it is valid for any value of the applied field, in contrast with
perturbation methods.2

In this work, we develop the theoretical framework
necessary to analyze the ac susceptibility measurements of
single-chain magnets in the presence of a static magnetic field
Hdc. We include in the theory29 the effect of an oscillating
magnetic field with intensity much smaller than that of the
static one, using a linear response framework. With these
theoretical tools, we can account for the dynamic behavior
of CoPhOMe and other single-chain magnets. We directly
compare the calculated frequency-dependent magnetic suscep-
tibility (representing the response function of the system2 to
an oscillating magnetic field) with previous24,26 and additional
experimental measurements of the ac susceptibility in the
presence of a nonzero static magnetic field Hdc. In this way,
we can reproduce the temperature and frequency dependence
of the ac susceptibility of SCMs, measured in moderate static
fields (Hdc � 2 kOe) and in the presence of crystal defects
and/or nonmagnetic impurities. For static fields in this range,

the present data for the relaxation time of the magnetization
of CoPhOMe, τ versus Hdc, are analyzed at low temperature.
They are qualitatively reproduced by theory, provided that
finite-size effects are included.

The paper is organized as follows. In Sec. II we present
both the real system and the simplified model that we adopt to
catch the essentials of its stochastic dynamics. In Sec. III we
calculate, for pure and doped chain systems, the temperature
dependence of the magnetization and static susceptibility in the
presence of a static magnetic field. In Sec. IV, the theoretical
framework for the calculation of the dynamic susceptibility in
the presence of a static magnetic field is first developed for the
infinite chain and then generalized to an open, finite chain with
N spins; next we present and discuss the approximation of a
single dominating contribution for each segment length, with
characteristic frequency �c dependent on N , to the calculation
of dynamic susceptibility. In Sec. V, the results of our
explicit calculations, performed using parameters suitable for
describing CoPhOMe, are shown and discussed. Finally, the
conclusions are drawn in Sec. VI, and some technical details
are reported in the Appendix, for the reader’s convenience.

II. THE MODEL

The magnetic properties of CoPhOMe are determined by
Co(II) ions, with an Ising character and effective S = 1/2, and
by NITPhOMe organic radicals, magnetically isotropic and
with s = 1/2.10,23,31 The primitive magnetic cell is made up
of three cobalt ions and three radicals. The spins are arranged
in a helical structure, with the helix axis coincident with the
crystallographic c axis of the chain; the local axes, along which
the spins are aligned, form the same angle θ ≈ 55◦ with the
c axis. The gyromagnetic factor gR of the organic radical is
isotropic, while cobalt is strongly anisotropic, with g

‖
Co 	 g⊥

Co.
The nearest-neighbor exchange between the components of the
spins along the local axes is antiferromagnetic,23 and since the
gyromagnetic factors of the two types of magnetic center are
different, the sublattice magnetizations are not compensated
along c, whereas they are compensated within the plane
perpendicular to the chain axis.

Thanks to its ferrimagnetic and quasi-one-dimensional
character (the ratio between interchain and intrachain ex-
change constants is less than 10−6),10 CoPhOMe was the
first magnetic molecular compound to display slow relaxation
of the magnetization at low temperatures for H = 0,10 a
feature which was predicted a long time ago by Glauber2

in a one-dimensional model of Ising spins, coupled by a
nearest-neighbor ferromagnetic exchange and interacting with
a heat reservoir, causing them to change their states randomly
with time.

In this paper we are primarily concerned with analyzing
finite-size effects on the spin dynamics of CoPhOMe in the
presence of a non-negligible static magnetic field parallel to the
chain axis. Since the model of an Ising ferrimagnet with canted
spins and two kinds of magnetic center23,32 is too involved, in
the following we adopt a simplified model, yet able to catch
the essentials of the dynamic behavior. Namely, we make the
approximation of an open Ising chain with N equal spins, all
with σ = ±1 and the same (isotropic) gyromagnetic factor
g, coupled by an effective nearest-neighbor ferromagnetic
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exchange JI > 0 and subject to a time-dependent external
magnetic field H (t),

H = −
N∑

j=1

[JIσjσj+1 + gμBH (t)σj ]. (4)

Within this model, the spins are supposed to be collinear with
the chain axis and with the direction of the applied magnetic
field.

It is worth noticing that many single-chain magnets studied
so far were rather described by a Heisenberg model with a
uniaxial single-ion anisotropy D > 0,13,14

H = −
N∑

j=1

[
JSj · Sj+1 + D

(
Sz

j

)2 + gμBH · Sj

]
, (5)

where J > 0 is the ferromagnetic exchange constant between
the spins Sj . For such systems, a description in terms of
Glauber dynamics was shown33 to be valid provided that the
ratio between anisotropy and exchange is sufficiently strong:
D/J > 2/3. In fact, in this case, the energy required to create
a Bloch wall depends only on J , and the domain wall is
localized on one unit cell (sharp wall).34 For D/J < 2/3, the
creation energy depends on both J and D, and the domain wall
spreads over several lattice spacings.35 The static and dynamic
properties of single-chain magnets in such a broad-wall regime
were recently investigated36 using transfer matrix calculations
and time-quantified Monte Carlo simulations on classical spin
chains in the thermodynamic limit (N → ∞) and for H = 0.

In contrast, CoPhOMe represents quite a peculiar example
of a single-chain magnet whose static and dynamic properties
cannot be described by the model (5). In fact, no experimental
evidence for a single-ion uniaxial anisotropy was found in
CoPhOMe,11,26 neither was it expected, since the Co(II)
magnetic centers have effective spin 1/2.

Nevertheless, clear experimental evidence for a strong
Ising-like anisotropy in nominally pure CoPhOMe was found
for T < 55 K, with finite-size effects becoming important for
T < 26 K.26 Therefore, a strong anisotropy in the exchange
coupling has to be invoked for this single-chain magnet. In a
classical picture, this means that the z components of the spins
experience a much stronger exchange interaction than the x

and y components. Then, provided that temperatures are low
with respect to exchange coupling, the choice of model (4)
is convenient since it allows a simple, though approximated,
theoretical description of the spin dynamics of CoPhOMe in
the framework of Glauber’s theory.2 As temperature increases,
a description in terms of effective spin 1/2 no longer holds,
because higher-energy electronic levels of the metallic centers
become populated,26 and the above approximation does not
apply.

III. STATIC PROPERTIES

For pure CoPhOMe, static magnetization measurements
were originally performed in single-crystal samples10 with
a static magnetic field Hdc = 1 kOe applied parallel to the
chain direction. A strong increase in the quantity T M/Hdc is
found, upon decreasing T below 100 K, with a maximum
reached around 25 K and a subsequent decrease. Such a

behavior, typical of ferromagnetic and ferrimagnetic systems,
was also observed in the case of polycrystalline powder
samples of pure37 and Zn(II)-doped CoPhOMe,38 at different
static magnetic fields and different concentrations of Zn(II)
nonmagnetic impurities. It is also a common feature of all
SCMs identified so far.14

For a finite chain of N spins, coupled by the Hamiltonian (4)
and subject to open boundary conditions, the static properties
in a time-independent field Hdc can be calculated analytically
by the transfer matrix method.3 The free energy FN can be
expressed as the sum of a bulk, a surface, and a finite-size
contribution:39

FN = −kBT {N ln λ> + ln(a>/λ>)

+ ln[1 + (a</a>)(λ</λ>)N−1]}. (6)

The two eigenvalues λ≷ = eK (cosh h0 ± 
1/2) and the two
coefficients a≷ = cosh h0 ± 
−1/2(sinh2 h0 + e−4K ) related
to the two eigenvectors are expressed in terms of the Hamil-
tonian parameters in Eq. (4) by K = JI

kBT
, h0 = gμBHdc

kBT
, and


 = sinh2 h0 + e−4K .
For a doped chain with a given concentration c of nonmag-

netic impurities, the magnetization per spin, Mdoped, and static
susceptibility per spin, χdoped, are, respectively

Mdoped =
∞∑

N=1

c2(1 − c)NMN,

(7)

χdoped =
∞∑

N=1

c2(1 − c)NχN,

where the static magnetization MN and static susceptibility
χN of a finite open Ising chain with N spins are obtained
from Eq. (6) simply by deriving FN with respect to the static
magnetic field

MN = − ∂FN

∂Hdc
, χN = −∂2FN

∂H 2
dc

. (8)

For the infinite chain (i.e., c = 0 and N → ∞), according to
Eq. (6) the static properties can be calculated analytically3,39

in terms only of the larger eigenvalue λ>. In particular, the
magnetization per spin is

m = kBT
1

λ>

∂λ>

∂Hdc
= 
−1/2 sinh h0 ≡ meq, (9)

and the susceptibility per spin is χ∞ = ∂m
∂Hdc

. In
a nonzero static field, χ∞ is found to be exponentially
vanishing for T → 0 [see Eq. (22) later on], in strong contrast
with the exponentially diverging low-T behavior of the same
quantity in Hdc = 0.

In Fig. 1 the calculated quantity T M/Hdc is reported versus
T for different values of c (including c = 0) and for a fixed
value of the dc field (Hdc = 1 kOe). In Fig. 2, the same quantity
is reported for different values of the static applied magnetic
field and for a fixed, rather small, value of the nonmagnetic
impurity concentration (c = 0.01). It is worth observing that, at
low fields and low temperatures, the curves calculated for c =
0.01 resemble the experimental ones, obtained by Lascialfari
et al.37 for a powder sample of nominally pure CoPhOMe (see
inset). In contrast, according to Eq. (9), the theoretical curves
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FIG. 1. (Color online) T M/Hdc versus T for an Ising chain with
JI /kB = 80 K, in a static magnetic field Hdc = 1 kOe, calculated
for selected values of the concentration c of nonmagnetic impurities
(different symbols refer to c = 0.05,0.02,0.01 on going from bottom
to top), and for the pure system (c = 0, full line).

for the pure system (not shown here) are found to undergo a
much stronger increase at such low fields and temperatures
(as can also be inferred from the concentration dependence
of T M/Hdc shown in Fig. 1). Previous suggestions24–26 about
the presence of lattice imperfections, or impurities that limit
the chain size even in pure CoPhOMe, appear thus to be
confirmed.

In Fig. 3 we show experimental data for the temperature
dependence of χ ′(ω), the real part of the ac susceptibility of a
nominally pure CoPhOMe sample, measured at frequency ν =
1 kHz for a fixed value of the static applied field, Hdc = 1 kOe.
For the same field, the calculated static susceptibility χ∞ of
the infinite chain (c = 0, full line) is exponentially vanishing
at low temperatures, in strong contrast with the diverging
behavior of χ∞ in zero field. For the doped chain (c = 0.047,
dashed line), the static susceptibility χdoped was calculated in
the framework of the simplified model (4). As observed in
previous work,32 a precise relationship is still lacking between
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FIG. 2. (Color online) T M/Hdc versus T for a doped Ising chain
with JI /kB = 80 K, calculated for different values of the static
applied field, at a fixed value (c = 0.01) of the nonmagnetic impurities
concentration. Inset: Experimental data for a nominally pure (c = 0)
powder sample.

the Hamiltonian parameters of the original ferrimagnetic
model of CoPhOMe and those of model (4). Using an effective
exchange JI = 80 K and an effective gyromagnetic factor
g = 2, we found that χdoped, as given in Eq. (7), turns out
to be in nice agreement with previous results from an exact
transfer matrix calculation, performed for the more complete
model of a ferrimagnetic chain with two kinds of spin with
different gyromagnetic factors.26 In particular, the model (4)
allows us to recover the feature of a peak, in χdoped versus T ,
gradually shifting to lower temperatures with increasing c: a
clear signature of finite-size effects (not shown here). From
Fig. 3 one sees that the two-peaked feature, experimentally
observed at nonzero field in χ ′(ω) versus T , can be well
reproduced by taking a weighted average (light-gray triangles)
between the static susceptibility of the pure chain (χ∞, full
line) and that of the doped one (χdoped, dashed line). Finally we
mention that the steep decrease, displayed by the experimental
χ ′(ω) for T � 10 K, can also be well reproduced (blue circles)
by taking into account dynamic effects, at it will be shown
in Sec. IV. In summary, the data and calculations reported
in Fig. 3 not only are in good agreement with the reported
presence of a distribution of impurities inside the crystal,26 but
are also revealing of a nonhomogeneous nature of the samples.

A similar two-peaked feature was observed, later, in the
real part of the ac susceptibility of a different cobalt-organic
single-chain magnet, for Hdc = 0.5 kOe.27 As in the case of
CoPhOMe, the higher-temperature peak, due to the infinite
chain, did not present any dynamic effect, while the lower-
temperature shoulder, related to finite-size effects, was found
to be frequency dependent. In the following we will show that
the latter feature can be well accounted for by a calculation of
the dynamic susceptibility in the framework of the simplified
model (4).

IV. DYNAMIC PROPERTIES

In ac magnetic measurements, a small ac drive magnetic
field is superimposed on the dc field, causing a time-dependent
moment in the sample. Therefore we are faced with the
theoretical problem of determining how the kinetic equations
of motion for the time-dependent spin averages of a finite, open
chain in zero magnetic field21,22 are modified by the presence
of a magnetic field of the general form

H (t) = Hdc + H1e
−iωt , (10)

i.e., the sum of a static dc field of any intensity, Hdc, and
of an ac field, oscillating at the angular frequency ω. In the
following we will make use of the reduced fields h0 = gμBHdc

kBT

and h1 = gμBH1

kBT
. As the experimental oscillating fields are

usually much smaller than the static field, we will consider
the case H1 � Hdc, which allows us to use the expansion
[h(t) = gμBH (t)

kBT
]

tanh h(t) ≈ tanh h0 + h1e
−iωt (1 − tanh2 h0). (11)

Generally speaking, the susceptibility induced by a field as in
Eq. (10) will have a real and an imaginary part,

χ (ω) = χ ′(ω) + iχ ′′(ω), (12)
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FIG. 3. (Color online) (a) Real part of the ac susceptibility, χ ′(ω) (square symbols), measured versus temperature in a nominally pure
CoPhOMe sample for frequency ν = 1 kHz and fixed static applied field Hdc = 1 kOe. (b) Static susceptibility χ calculated with JI /kB = 80 K
and Hdc = 1 kOe, for a doped Ising chain (χdoped, dashed line, c = 0.047) and for an infinite chain (χ∞, full line, c = 0). The two-peaked
structure (light-gray triangles) is obtained by taking a weighted average of the two quantities (80% versus 20%, respectively). The real part of
the dynamic susceptibility, χ ′(ω), calculated according to the theory in Sec. IV, is denoted by blue circles.

from which the dynamic behavior of molecular materials is
usually extracted. In the following we will thus focus on
calculating these experimentally relevant quantities, which are
compared to data in the next section.

Typical values of the frequencies ν = ω
2π

used in ac
susceptibility measurements10,26 on pure and doped CoPhOMe
range between 0.1 and 10 000 Hz. In contrast, one has ν ≈
MHz for proton nuclear magnetic resonance (NMR) and
muon spin relaxation (μSR) experiments.40,41 In the following,
before passing to the comparison with experimental data, we
first examine the properties of an infinite chain (Sec. IV A),
then include finite-size effects (Sec. IV B), and eventually
explore the single-frequency approximation (Sec. IV C).

A. Infinite chain

Before considering finite-size effects, it is instructive to
calculate first the dynamic susceptibility of an infinite Ising
chain in the presence of a static magnetic field. The kinetic
equation for the site-independent average m(t) = 〈σ (t)〉 of a
spin in the infinite chain is

τ0
dm(t)

dt
= −(1 − γ )m(t) + [1 − γ�1(t)] tanh h(t), (13)

where γ = tanh(2K) and �1(t) is the nearest-neighbor spin-
pair time-dependent correlation function. The kinetic equation
for �1(t), in its turn, involves higher-order time-dependent
correlation functions, so that eventually an infinite sequence
of equations is obtained as a consequence of h(t) �= 0. In
order to truncate this hierarchy, we adopt the local-equilibrium
approximation:29,30 i.e., the relation holding at equilibrium42

between the nearest-neighbor correlation function and the
magnetization [where meq is defined in Eq. (9)],

�1,eq = 1 − 2
(
1 − m2

eq

)
1 +

√
m2

eq + (
1 − m2

eq

)
e4K

, (14)

is assumed to hold locally also at any time t �= 0. The main
advantages of this approximation, first proposed by Huang30

for an infinite Ising chain model with Glauber dynamics
in Hdc �= 0, are that (i) it provides the exact steady-state

solution,30 in contrast with the mean-field approximation,
which assumes simply �1,eq = m2

eq; (ii) it is valid for any value
of the applied field, in contrast with the perturbation method,
which assumes h0 � 1.2

In this way, a nonlinear equation for m(t) is obtained,
where the approximation of a linear response of the chain
applies only to the ac field H1. We thus assume δm(t) =
m(t) − meq, i.e., small departures of the magnetization from
its equilibrium value meq. Likewise, we expand �1(t) ≈
�1|eq + d�1(t)

dm(t) |eqδm(t) and, taking into account that d�1(t)
dm(t) |eq =

2 tanh h0 at equilibrium,29 we finally obtain a linear nonhomo-
geneous differential equation for δm(t),

τ0
dδm(t)

dt
= −(1 − γ + 2γ tanh2 h0)δm(t)

+h1e
−iωt (1 − tanh2 h0)(1 − γ�1,eq). (15)

In the absence of the ac field (h1 = 0), one finds an
exponential time decrease for the magnetization fluctuation,

δm(t) = δm(t0)e−λ∞(t−t0)/τ0 . (16)

Thus, for the infinite Ising chain, there is a single relaxation
time τ∞ related to the adimensional parameter λ∞ by

λ∞ = τ0

τ∞
= 1 − γ + 2γ tanh2 h0. (17)

Notice that, for h0 → 0, Glauber’s result2 of an exponentially
diverging relaxation time at low temperatures (τ∞ ≈ 1

2τ0e
4K

for kBT � JI ) is correctly recovered, while for Hdc �= 0 the
relaxation time of the infinite chain does not diverge any more.

In the presence of the ac field (h1 �= 0), the general solution
of Eq. (15) is

δm(t) = δm(t0)e−λ∞(t−t0)/τ0 + h1(1 − tanh2 h0)

× (1 − γ�1,eq)
∫ t

t0

e−iωt ′e−λ∞(t−t ′)/τ0dt ′. (18)

094444-5



M. G. PINI et al. PHYSICAL REVIEW B 84, 094444 (2011)

Taking into account that λ∞ �= 0, one can safely let t0 → −∞
in order to find a solution that does not depend on the initial
conditions,2,43

δm(t) = (1 − tanh2 h0)(1 − γ�1,eq)
h1e

−iωt

λ∞ − iωτ0
. (19)

The fluctuation of the total magnetization of the infinite Ising
chain is obtained by summing over all the N spins and letting
N → ∞,

δ〈M(t)〉 = NgμBδ〈σ (t)〉 = χ (ω)H1e
−iωt , (20)

so that the dynamic susceptibility χ (ω) is

χ (ω) = g2μ2
BN

kBT
(1 − tanh2 h0)(1 − γ�1,eq)

× 1

λ∞ − iωτ0
= χ∞

1 − iω τ0
λ∞

, (21)

where χ∞ denotes the static susceptibility of the infinite Ising
chain for Hdc �= 0,

χ∞ = g2μ2
BN

kBT

(1 − tanh2 h0)(1 − γ�1,eq)

1 − γ + 2γ tanh2 h0
. (22)

For h0 → 0, Glauber’s result2

χ (ω) = g2μ2
BN

kBT

1 + η

1 − η

1

1 − iω τ0
1−γ

(23)

is correctly recovered, by taking into account that λ∞ → 1 −
γ , �1,eq → η = tanh K , and γ = 2η

1+η2 .

B. Finite chain

In the case of an open Ising chain with a finite number N

of spins, the lack of translational invariance leads to N kinetic
equations for the N site-dependent spin averages δ〈σp(t)〉 (p =
1, . . . ,N ).21,22,29 As in the case of the infinite chain, we can
introduce the local-equilibrium approximation29,30 in order to
truncate the infinite sequence of equations for the higher-order
time-dependent spin correlation function. Next we perform
the linearization of the kinetic equations, in the hypothesis of
a linear response to the ac magnetic field. We then obtain a
set of N linear differential equations, which can be written in
matrix form as

τ0
d�

dt
= −Y · � + h1e

−iωt (1 − tanh2 h0)�, (24)

where � and � are N × 1 vectors containing the spin fluctu-
ations and the nonhomogeneous terms, respectively (see the
Appendix for details). Y is a real, symmetric, tridiagonal N ×
N matrix, with nonzero adimensional eigenvalues λj (j =
1, . . . ,N ), while �(λj ) are the corresponding N × 1 eigenvec-
tors. In the limiting case h0 → 0, the numerical solutions for
λj coincide with the ones obtained21,22 in the framework of
a finite-size scaling calculation of the Glauber dynamics in a
zero static field. In particular, the low-temperature expansion
(kBT � JI ) for the eigenvalue of a finite open chain with N

spins is λ1(Hdc = 0) ≈ 2
N−1e−2JI /kBT ,21 to be compared with

λ∞(Hdc = 0) ≈ 2e−4JI /kBT for the eigenvalue of the infinite
chain.2

We are interested in the long-time behavior of the system,
characterized for being independent of the initial condition.
Thus, solving Eq. (24) by the method of eigenfunctions44,45

and letting t0 → −∞,2,43 we obtain for the fluctuation of a
single-spin average (p = 1, . . . ,N)

δ〈σp(t)〉 = h1e
−iωt (1 − tanh2 h0)

×
N∑

j=1

1

λj − iωτ0
�

(λj )
p

(
N∑

m=1

�
(λj )
m �m

)
. (25)

The fluctuation of the magnetization of the finite open Ising
chain is obtained by summing over the N spins

δ〈MN (t)〉 = gμB

N∑
p=1

δ〈σp(t)〉 = χN (ω)H1e
−iωt . (26)

The dynamic susceptibility χN (ω) takes the form

χN (ω) = g2μ2
B

kBT

N∑
j=1

�2
j + iω�j

�2
j + ω2

Aj (λj ,T ,Hdc) (27)

where the angular frequencies are (j = 1, . . . ,N)

�j = λj

τ0
(28)

and the corresponding frequency weights are

Aj (λj ,T ,Hdc)= 1 − tanh2 h0

λj

N∑
p=1

�
(λj )
p

(
N∑

m=1

�
(λj )
m �m

)
.

(29)

The angular frequencies (28) are expressed in terms of the
adimensional eigenvalues λj of the matrix Y and of the
characteristic time τ0 for the spin flip of an isolated spin.
The latter is a free parameter which is expected to depend, in
general, on the intensity of the applied magnetic field.29 The
general expression for the dynamic susceptibility per spin of a
doped chain is thus

χ (ω) =
∞∑

N=1

c2(1 − c)NχN (ω). (30)

C. Single-frequency approximation

Let us start by deriving a quite general sum rule for the
frequency weights, which is readily obtained by setting zero
frequency (ω = 0) in Eq. (27),

N∑
j=1

Aj (λj ,T ,Hdc) = kBT

g2μ2
B

χN, (31)

where χN , the static susceptibility of a finite, open Ising
chain with N spins, subject to the dc field Hdc, is given in
Eq. (8). Next we observe that, in the approximation of a single
characteristic frequency �c dominating the relaxation of the
magnetization fluctuations of a segment with fixed length,
Eq. (27) for the dynamic susceptibility of a finite, open, Ising
chain with N spins assumes the simple form

χN (ω) ≈ χN

�2
c + iω�c

�2
c + ω2

. (32)

094444-6



FINITE-SIZE EFFECTS ON THE DYNAMIC . . . PHYSICAL REVIEW B 84, 094444 (2011)

In principle, the characteristic frequency is not necessarily
�c = λ1/τ0, i.e., related to the smallest eigenvalue of Y.
Rather, in order to determine the dominating frequency, the
temperature dependence of the frequency weights must be
taken into account.46

For a doped chain, when the single-frequency approxima-
tion is performed for each chain segment with N spins, the
dynamic susceptibility per spin assumes the simplified form

χ (ω) ≈
∞∑

N=1

c2(1 − c)NχN

�2
c + iω�c

�2
c + ω2

, (33)

where χN is given in Eq. (8), and we recall that the
characteristic frequency �c depends on N .

Finally we observe that, using the fluctuation-dissipation
theorem, the linear response SN (ω) of a finite, open Ising
chain with N spins can be expressed as a weighted sum of N

Lorentzian functions, centered at zero frequency, with widths
�j ,

SN (ω) = 2kBT

ω
χ ′′

N (ω) = 2g2μ2
B

N∑
j=1

�j

�2
j + ω2

Aj (λj ,T ,Hdc).

(34)

When the approximation of a single dominating frequency (32)
holds, the linear response is simply the product of T χN and of
a single Lorentzian function, centered at zero frequency, with
width equal to the characteristic frequency �c,

SN (ω) = 2kBT

ω
χ ′′

N (ω) ≈ 2kBT χN

�c

�2
c + ω2

. (35)

It is worth noticing that expressions quite similar to Eqs. (34)
and (35) were obtained for the spectrum of fluctuations of a
cluster magnetization by Santini et al.,46 in the framework of an
exact calculation of the energy levels of three important classes
of magnetic molecules in contact with a phonon heat bath:
namely, antiferromagnetic rings, grids, and nanomagnets.
Moreover, Bianchi et al.47 recently showed that, while for
antiferromagnetic homometallic rings the approximation of
a single dominating frequency is valid, it does not hold for
heterometallic rings,46 due to the presence of inequivalent
ions which prevent mapping local-spin correlations with the
corresponding total-spin ones.

V. RESULTS

In this section we compare the theoretical results derived in
Sec. IV with experimental ac susceptibility data, obtained in
nominally pure and zinc-doped CoPhOMe for different values
of Hdc and of the frequency of the oscillating field. Also, our
experimental data for the relaxation time of the magnetization,
measured as a function of the static magnetic field at fixed
temperature, will be discussed and compared with theoretical
calculations.

Let us first provide evidence for the correctness of the
single-frequency approximation, Eq. (32), by showing the
temperature dependence of the eigenvalues and weights of
a finite, open, Ising chain in an applied dc field. The values
of the Hamiltonian parameters we assumed for the dynamic
calculations, JI /kB = 80 K and g = 2, are the same we used

in Sec. III for the static properties. The characteristic time
for the spin flip of an isolated spin, τ0, was left as a free
parameter (see later on). Moreover, the field dependence of τ0,
though expected in principle,29 was neglected for the sake of
simplicity.

In Fig. 4 some of the calculated adimensional eigenvalues
λj (j = 1, . . . ,N) of the real tridiagonal matrix Y, defined
in Eqs. (24) and (A10), are reported as a function of inverse
temperature for different values of the number of spins N and
of the applied static field Hdc. For the sake of comparison, the
temperature dependence of the eigenvalue λ∞ [see Eq. (17)]
of an infinite chain in the same field is also shown. Except
for the case of long chains and strong fields, at sufficiently
low temperatures a single mode dominates the low-frequency
dynamics of a finite, open, Ising chain with N spins: namely,
the mode with characteristic frequency �c = λ1/τ0, where λ1

is the smallest eigenvalue of Y. The temperature dependence
of the frequency weights corresponding to the various modes
is displayed in the insets of Fig. 4: for not too long chains and
not too strong fields, one can see that the frequency related to
the smallest eigenvalue λ1 has the strongest weight.

A. ac Susceptibility

Some years ago, the ac susceptibility of CoPhOMe was
measured versus T in single crystals, both for Hdc = 0 Oe
in a nominally pure sample10 and for Hdc = 2 kOe in a
doped one.26 In this work, we present some data for χ (ω)
versus T . Data were obtained using a homemade ac probe
and a Cryogenics magnetometer, on a collection of nominally
pure single crystals of CoPhOMe. The crystals were all
aligned with the chain axis along the magnetic field direction.
The frequencies in an ac susceptibility experiment typically
range between 0.1 and 10 kHz, and we can safely adopt the
single-frequency approximation in order to account for the
temperature dependence of χ (ω) in moderate fields (Hdc �
2 kOe). Additionally the oscillating fields used were always
below 8 Oe, and the condition Hdc 	 H1 is also fulfilled.

In Figs. 5(a) and 5(b) we show the temperature dependence
of the real and imaginary parts of the dynamic susceptibility
calculated for an infinite chain with Hdc = 0, while analogous
quantities calculated for a zinc-doped chain (c = 0.047) in
Hdc = 2 kOe are reported in Figs. 5(c) and 5(d).

In the pure system (c = 0) with Hdc = 0, the static
susceptibility [full black curve in Fig. 5(a)] diverges as T → 0.
As regards the dynamic susceptibility (23) [colored curves in
Figs. 5(a) and 5(b)], a single, resonating peak is found for both
χ ′(ω) and χ ′′(ω) versus T ; the peak position gradually shifts
to higher temperature with increasing frequency of the tiny
oscillating field. The phenomenon can be interpreted32,43,48 as
a manifestation of stochastic resonance in a set of coupled
bistable systems: i.e., there is an optimal value of noise, for
which the response of the dynamic system to the driving field
is maximum. In a ferromagnetic or ferrimagnetic chain, the
role of stochastic noise is played by thermal fluctuations,
and a resonance peak occurs when the deterministic time
scale of the oscillating magnetic field matches the statistical
time scale associated with the spontaneous decay of the net
magnetization.
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FIG. 4. (Color online) Temperature dependence of the first three eigenvalues λj = �jτ0 (j = 1, red full circles; j = 2, green full squares;
j = 3, blue full triangles) of an open Ising chain, calculated for a finite number of spins (N = 11 and N = 101) in presence of a nonzero static field
(Hdc = 2 kOe and Hdc = 10 kOe). For comparison, the eigenvalue λ∞ (black open circles) of an infinite chain in nonzero field is also reported.
Dashed lines denote the zero-field, low-temperature expansions for the smallest eigenvalue of a finite chain, λ1(Hdc = 0) ≈ 2

N−1 e−2JI /kBT

(Ref. 21) and for the eigenvalue of an infinite chain, λ∞(Hdc = 0) ≈ 2e−4JI /kBT (Ref. 2). The horizontal lines, from bottom to top, denote
the quantity 2πντ0, calculated for three different frequencies: ν = 1 kHz, ν (MHz) = 4.26 × Hdc (kOe), and ν (MHz) = 13.55 × Hdc (kOe),
typically used in ac susceptibility, proton NMR, and μSR measurements, respectively. Insets: calculated temperature dependence of the
frequency weights Aj (λj ,T ,Hdc) with j = 1 and 3 (red full circles and blue full triangles, respectively); for odd N , the weights of the even
modes are zero (Ref. 29). The curves denoted by black open circles and black dashed lines represent the frequency weights of an infinite chain
in Hdc �= 0 and in Hdc = 0, respectively. The parameters used for the calculations were JI /kB = 80 K, g = 2, and τ0 = 4 × 10−13 s.

For the doped system in Hdc = 2 kOe, we find that a
frequency-dependent peak in the calculated χ ′(ω) and χ ′′(ω)
versus T [the colored curves in Figs. 5(c) and 5(d)] develops
at substantially lower temperatures with respect to the peak in
the static susceptibility of an infinite chain [the full black curve

in Fig. 5(c); see Eq. (22)]. This can be easily understood by
looking at Fig. 4: for a finite, open Ising chain in a moderate
field, the fulfillment of the resonance condition [ω = �c in
Eq. (32)] occurs at low temperatures, as signaled by the
crossing between the full horizontal line (which represents a
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FIG. 5. (Color online) Temperature dependence of the calculated dynamic susceptibility for an infinite (c = 0) ferromagnetic Ising chain in
zero static field Hdc = 0 (a) and (b), and of a doped (c = 0.047) Ising chain in nonzero static field Hdc = 2 kOe (c) and (d). The different curves
refer to different frequencies (ν = 0.1, 1, and 10 kHz on going from left to right) of the ac magnetic field. The calculated static susceptibility
of the infinite chain in Hdc = 0 is denoted by the full black line: it diverges exponentially as T is decreased to 0 [see (a)], while in Hdc �= 0 it
goes through a peak, and then vanishes exponentially [see (c)]. The calculated static susceptibility of the doped (c = 0.047) chain in nonzero
(Hdc = 2 kOe) field is denoted by the black dashed line [see (c)].

typical value, 1 kHz, of the frequency ν in an ac susceptibility
measurement) and the curve (red full circles) representing
the T dependence of the smallest-frequency mode λ1. In
contrast, the crossing does not occur in the case of an
infinite chain (black open circles) subject to the same dc
field: i.e., the relaxation rate of the infinite chain does not
fulfill the resonance condition [ωτ0 = λ∞ in Eq. (21)] at the
low frequencies involved in the ac susceptibility experiment:
thus, the infinite chain does not present any dynamic response.
As already observed in Sec. III, the nominally pure samples
are nonhomogeneous and consequently, at low temperatures,
only the regions with dilute chains contribute to the dynamic
properties in a significant way. This explains the experimental
results10,11,23–25 in which the measured relaxation rate, for
Hdc = 0, was always found to follow a modified Arrhenius
law with a halved energy barrier, τ (T ) = τ0(L̄)e2JI /kBT , where
L̄ is the mean chain length.

In Fig. 6 we present experimental data for the temperature
dependence of the ac susceptibility of CoPhOMe, measured
for a fixed value of the frequency (ν = 1 kHz) at different
values of the static magnetic field (Hdc � 1 kOe) [Figs. 6(a)
and 6(b)], and for a fixed value of the dc field (Hdc = 1 kOe)
at different values of the frequency (ν � 1 kHz) [Figs. 6(c)
and 6(d)]. In Fig. 7 we plot the real and imaginary parts of the
dynamic susceptibility, calculated using Eq. (33) for a doped

chain (c = 0.047) at just the same values of frequency and dc
field as in Fig. 6. For the sake of comparison, the dynamic
susceptibility of the infinite chain (c = 0) was also calculated:
for fixed Hdc = 1 kOe, at the chosen values of ν, this quantity
was not found to display any frequency dependence [see the
black line in Fig. 7(c)], in fine agreement with experimental
observations [see the higher-temperature peak in Fig. 6(c)].
Thus we can conclude that, for the moderate values of ν and
Hdc exploited in the present ac susceptibility experiments, (i)
the frequency dependence of χ (ω) can be attributed solely to
finite-size effects; (ii) the approximation of a single dominating
frequency for each segment length is a good one for the
calculation of the dynamic susceptibility.

B. Relaxation time

In Fig. 8(a) we show the frequency dependence of the
imaginary part of the ac susceptibility, measured for a sample
of five crystals of nominally pure CoPhOMe, at a fixed
temperature of 9 K and for Hdc ranging from 0.1 to 2 kOe.
Fitting of the curves was performed using an extended Debye
model to extract the peak frequency49

χ (ω) = χS + χT − χS

1 + (iωτ )1−α
, (36)
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FIG. 6. (Color online) Temperature dependence of the measured ac susceptibility of CoPhOMe. The data refer to the same sample as in
Fig. 3(a). In (a) and (b), the frequency was fixed (ν = 1 kHz) and the dc field was varied (Hdc = 0.333, 0.666, and 1 kOe on going from top
to bottom). In (c) and (d), the dc field was fixed (Hdc = 1 kOe) and the frequency was varied (ν = 10, 100, and 1000 Hz on going from left to
right).

where χT is the isothermal susceptibility, χS is the adiabatic
susceptibility, and α is a parameter that measures the dis-
tribution of relaxation times in the sample. In the present
measurements it was found that α ≈ 0, meaning that the whole
system relaxes with a single characteristic time. The field

dependence of the relaxation time τ , obtained in this way,
is reported (red squares) in Fig. 8(b).

The field dependence of the relaxation time at a lower
temperature, T = 5.1 K, was instead obtained by performing
dc measurements. The magnetization was first saturated in
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FIG. 7. (Color online) Temperature dependence of the dynamic susceptibility of CoPhOMe, calculated for a doped chain (c = 0.047) in
the single-frequency approximation [Eq. (33)], for the same values of frequency and dc field as in Fig. 6. Thin dashed lines denote the static
susceptibility of the doped system (c = 0.047) versus T . Thin solid lines denote the dynamic susceptibility of the infinite chain (c = 0): notice
the absence of any frequency dependence for fixed Hdc = 1 kOe [see (c)] at the chosen values of ν.
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FIG. 8. (Color online) (a) Frequency dependence of the imaginary part of the ac susceptibility, χ ′′, measured in CoPhOMe at fixed
temperature T = 9 K for selected values of the static magnetic field. (b) Field dependence of the relaxation time τ of the magnetization of
CoPhOMe as deduced from the peak position of χ ′′ versus frequency at T = 9 K. Squares denote experimental results; the lines connect
theoretical values calculated for a doped chain in the approximation of a single dominating frequency for each segment length [Eq. (33)], using
JI /kB = 80 K, g = 2, and τ0 = 4 × 10−13 s.

Hdc = 25 kOe, the field was swept to a new Hdc value with a
field sweep rate of about 250 Oe/s, and the time dependence
of the magnetization of the system was recorded in the
presence of an applied static magnetic field. The relaxation
of the magnetization as a function of time in nonzero field,
measured using a Cryogenic S600 SQUID magnetometer, is
reported in Fig. 9(a). The magnetization was fitted using a
monoexponential law, M(t) = M(t0) + a1e

−(t−t0)/τ , and we
obtained the relaxation time τ versus H reported (red squares)
in Fig. 9(b).

In both cases, the experimental relaxation time presents a
maximum for Hdc = 0, but the low-field behavior is rather
different: ac data at higher temperature (T = 9 K) present a
smooth dependence, while dc data at lower temperature (T =
5.1 K) display a sharp maximum.

For an infinite Ising chain or for an open chain segment
of fixed length L (expressed in lattice units), the dependence
of the normalized frequency (i.e., inverse of relaxation time)
on the static field in the critical regime (e2Kh � 1 or Lh �

1, respectively) is expected to be quadratic:29 νnor(h0) =
τ (h0 = 0)/τ (h0) = 1 + (aih0)2, where ai ∝ e2K or ai ∝ L,
respectively. In Fig. 10 we show that the relaxation data
for CoPhOMe, obtained from ac measurements at T = 9 K
and from dc measurements at T = 5.1 K, indeed display a
quadratic dependence on h0 at very low fields, thus confirming
the correctness of the Ising model. From data fitting (dashed
curves in Fig. 10) one can deduce an order of magnitude for
ai and, according to the relationship ai ≈ 0.82L, valid for
L � e2K ,29 an estimate for an effective mean chain length
L̄. From dc data at T = 5.1 K one obtains L̄ ≈ 548, while
from ac data at T = 9 K the estimated mean chain length is
L̄ ≈ 172. The higher value obtained for L̄ in the former case is
consistent with the higher quality of the single-crystal sample
used for the dc measurements.

Considering that even nominally pure samples are strongly
nonhomogeneous, a data analysis in terms of a single ef-
fective L̄ seems too rough. For the interpretation of the τ

versus H experiments, we thus assumed concentrations of
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FIG. 9. (Color online) (a) Time dependence of the magnetization m(t), measured in CoPhOMe at fixed temperature T = 5.1 K for selected
values of the static magnetic field. (b) Field dependence of the relaxation time τ of the magnetization of CoPhOMe. Squares denote experimental
results obtained by an exponential fit of m(t); the line connects theoretical values determined as in Fig. 7(b), but for T = 5.1 K.
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FIG. 10. (Color online) Normalized frequency νnor(h0) = τ (h0 =
0)/τ (h0) versus reduced field h0 = gμBHdc/kBT , as deduced for
CoPhOMe from ac data at T = 9 K (triangles) and dc data at T =
5.1 K (diamonds). The dashed lines denote a quadratic fit in h0:
νnor(h0) = 1 + (aih0)2, where ai = 141.1 from data at T = 9 K and
ai = 449.7 from data at T = 5.1 K.

randomly distributed, nonmagnetic impurities in the range
c ≈ 0.02–0.05 (i.e., comparable with those evidenced by dc
and ac susceptibility measurements in the same compound: see
Secs. III and V A, respectively). The theoretical curves for τ

versus H , reported as full (c = 0.02) and dashed (c = 0.047)
lines in Figs. 8(b) and 9(b), were determined as follows.
First, the dynamic susceptibility χ (ω) was calculated in the
approximation of a single dominating frequency for each
chain segment of N spins, opportunely weighted according
to its static susceptibility and its probability of occurrence
[see Eq. (33)]. Next, the frequency maximum of χ ′(ω) was
taken to determine τ = 1/(ωmax). In order to reproduce the
correct order of magnitude for the relaxation time τ of the
magnetization of CoPhOMe (at both T = 5.1 and 9 K), one
has to assume a value τ0 ≈ 4 × 10−13 s for the characteristic
time of spin flip of an isolated spin (the only free parameter in
Glauber’s theory2). For the sake of simplicity, the same field-
independent value was assumed in all calculations throughout
the paper.

As regards the dc field dependence of the relaxation
time of the magnetization, τ , we can conclude that it is
qualitatively reproduced by theory, provided that finite-size
effects are included. In fact, in a measurement performed
for an inhomogeneous CoPhOMe sample, no appreciable
contribution to the relaxation time τ is expected from the
infinite chain at low temperatures, owing to the high value of
the exchange coupling (JI /kB = 80 K). For example, from
Eq. (17), putting τ0 = 4 × 10−13 s, at T = 5 K one has τ∞ =
1.25 × 1015 s for Hdc = 0, while in a static field Hdc = 10 Oe
the relaxation time reduces to τ∞ = 2.77 × 10−6 s. In contrast,
an experimentally appreciable relaxation time is associated
with finite-size chains. To achieve a quantitative agreement,
as regards the field dependence of τ , further work is required.
This quite interesting task, however, is deferred to the future. In
fact, our primary concern in the present paper was the study of
the frequency-dependent magnetic susceptibility, representing

the response function of the system to an oscillating magnetic
field.2

VI. CONCLUSIONS

In this paper, the spin dynamics of the archetypal molecular
magnetic chain CoPhOMe in the presence of an external mag-
netic field of any intensity was investigated using a simplified
model, consisting of a one-dimensional Ising ferromagnet with
a stochastic dynamics caused by the interaction of the spins
with a heat reservoir.2

In the framework of a local-equilibrium approximation,
devised to truncate the infinite sequence of kinetic equations
originated by the presence of a nonzero static magnetic field,
and of a linear response of the system to a small oscillating
field, we first calculated the dynamic susceptibility of an
infinite chain. Next, the theory was generalized to a finite, open
Ising chain. We showed that the dynamic susceptibility of an
open chain with a finite number N of spins can be expressed
as a weighted sum of N frequency contributions, related to
the N relaxation rates of the magnetization fluctuations. From
the comparison with the ac susceptibility data obtained for
nominally pure samples we can draw two conclusions: (i)
the pure samples are really nonhomogeneous, because regions
with very low density of defects coexist with regions with a
relevant density of defects; (ii) only the latter regions show
a contribution to the dynamic relaxation, in the frequency
range conventionally investigated by ac susceptibility mea-
surements.

For doped CoPhOMe chains, the approximation of a single
dominating frequency for each segment length was found to
be quite satisfactory in order to account for ac susceptibility
data26 in a moderate static magnetic field (Hdc = 2 kOe), as a
function both of temperature and of the frequency of the small
oscillating field.

Finally, it is worth observing that, on the basis of our
calculation of the T and H dependence of the relaxation rates
(and corresponding frequency weights), we do not expect that
the approximation of a single dominating frequency for each
segment length will be able to account for 1H nuclear magnetic
resonance and muon spin rotation experimental data37,38,40,41

in pure and zinc-doped CoPhOMe, because these techniques
probe the local spin dynamics at frequencies (ν ≈ MHz)
substantially higher than the typical frequencies (ν ≈ kHz)
used in an ac susceptibility experiment. Anyway, the present
results constitute a fundamental background for the future
theoretical investigation of such high-frequency regimes.
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APEENDIX: RELAXATION TIMES OF AN OPEN CHAIN
OF N ISING SPINS IN AN APPLIED MAGNETIC FIELD

In order to calculate the relaxation times of an open
chain of N spins coupled by the Ising exchange Hamiltonian
and subject to a static magnetic field H , Eq. (4), following
Glauber2 one starts by writing the kinetic equation of motion
for the time-dependent average of an interior spin (〈σp〉 with
1 < p < N),

τ0
d〈σp〉

dt
= −〈σp〉 + γ

2
[〈σp−1〉 + 〈σp+1〉] + tanh h(t)

×
[

1 − γ

2
(〈σp−1σp〉 + 〈σpσp+1〉)

]
, (A1)

where τ0 is the characteristic time for the spin flip of an
isolated spin, γ = tanh(2K), and h(t) = gμBH (t)

kBT
. For the two

spins (p = 1 and p = N ) located at the ends of the open
chain, following Coulon et al.,29 one has instead

τ0
d〈σ1〉
dt

= −〈σ1〉 + η〈σ2〉 + tanh h(t)[1 − η〈σ1σ2〉], (A2)

τ0
d〈σN 〉

dt
= −〈σN 〉 + η〈σN−1〉 + tanh h(t)[1−η〈σN−1σN 〉],

(A3)

where η = tanh K .2 In our case [see Eq. (10)], the time-
dependent magnetic field is assumed to be H (t) = Hdc +
H1e

−iωt , i.e., the sum of a static dc field of any intensity, Hdc,
and of a much lower ac field, H1 � Hdc, oscillating at the an-
gular frequency ω. Thus we can expand tanh h(t) ≈ tanh h0 +
h1e

−iωt (1 − tanh2 h0), where h0 = gμBHdc

kBT
and h1 = gμBH1

kBT
.

Following Coulon et al.,29 a linearization of Eqs. (A1),
(A2), and (A3) around the spin equilibrium values is
next performed in the framework of linear response the-
ory (i.e., small departures from thermal equilibrium are
assumed),

〈σp〉 ≈ 〈σp〉N,eq + δ〈σp〉,
(A4)

〈σpσp+1〉 ≈ 〈σpσp+1〉N,eq + δ〈σpσp+1〉.

In this way, we obtain a system of N differential equations in
the spin fluctuations (δ〈σp〉 with p = 1, . . . ,N ) where, on the
right-hand sides, the presence of the field involves the presence
of variations of time-dependent nearest-neighbor spin-spin
correlation functions (δ〈σpσp+1〉),

τ0
dδ〈σ1〉

dt
= −δ〈σ1〉 + η[δ〈σ2〉 − tanh h0δ〈σ1σ2〉] + h1e

−iωt (1 − tanh2 h0)[1 − η〈σ1σ2〉N,eq],

τ0
dδ〈σp〉

dt
= −δ〈σp〉 + γ

2
[(δ〈σp−1〉 + δ〈σp+1〉) − tanh h0(δ〈σp−1σp〉 + δ〈σpσp+1〉)]

(A5)

+h1e
−iωt (1 − tanh2 h0)

[
1 − γ

2
(〈σp−1σp〉N,eq + 〈σpσp+1〉N,eq)

]
,

τ0
dδ〈σN 〉

dt
= −δ〈σN 〉 + η[δ〈σN−1〉 − tanh h0δ〈σN−1σN 〉] + h1e

−iωt (1 − tanh2 h0)[1 − η〈σN−1σN 〉N,eq].

If one writes down the kinetic equations for δ〈σpσp+1〉, one
finds an infinite sequence of equations involving other, higher-
order spin correlation functions. Such an infinite hierarchy
of equations can be decoupled by resorting to the local-
equilibrium approximation first proposed by Huang in the case
of the kinetic equation of an infinite Ising chain in a magnetic
field:30 i.e., the relation existing between the magnetization and
the correlation function at thermal equilibrium42 is assumed
to hold locally although the system is not in equilibrium
(t �= 0). The advantage of the local-equilibrium approxima-
tion with respect to perturbative methods2 or the mean-
field approximation is that it provides an exact steady-state
solution.30

In the case of a finite chain with N spins, the
local-equilibrium approximation was implemented, following
Coulon et al.,29 by expressing the variations of two-spin
correlation functions in terms of a linear combination of the
variations of single-spin averages,

δ〈σpσp+1〉 = AN,pδ〈σp〉 + BN,pδ〈σp+1〉. (A6)

The coefficients are29

AN,p = 〈σN−p〉N−p,eq − η〈σp〉p,eq

1 − η〈σp〉p,eq〈σN−p〉N−p,eq
,

(A7)

BN,p = 〈σp〉p,eq − η〈σN−p〉N−p,eq

1 − η〈σp〉p,eq〈σN−p〉N−p,eq
,

where the average spin values can be calculated, at thermal
equilibrium, by using the recursive relation50

〈σp〉p,eq = tanh h0 + η〈σp−1〉p−1,eq

1 + η tanh h0〈σp−1〉p−1,eq
(A8)

with the initial condition 〈σ1〉1,eq = tanh h0. The set of N linear
differential equations in the N variables δ〈σp〉 can be rewritten
in matrix form as

τ0
d�

dt
= −Y · � + h1e

−iωt (1 − tanh2 h0)�. (A9)

The N × 1 vector � has elements �p = δ〈σp〉 (p = 1, . . . ,N).
Y is a real, symmetric, tridiagonal N × N matrix whose
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nonzero elements are (1 < p < N)

Y1,1 = 1 + ηAN,1 tanh h0, Y1,2 = η(BN,1 tanh h0 − 1),

Yp−1,p = γ

2
(AN,p−1 tanh h0 − 1), Yp,p = 1 + γ

2
(AN,p + BN,p−1) tanh h0, Yp,p+1 = γ

2
(BN,p tanh h0 − 1), (A10)

YN,N−1 = η(AN,N−1 tanh h0 − 1), YN,N = 1 + ηBN,N−1 tanh h0.

The N × 1 vector � in Eq. (A9) has elements

�1 = 1 − η〈σ1σ2〉N,eq,

�p = 1 − γ

2
[〈σp−1σp〉N,eq + 〈σpσp+1〉N,eq], 1 < p < N,

�N = 1 − η〈σN−1σN 〉N,eq = �1. (A11)

Equation (A9) can be solved, e.g., using the method of
eigenfunctions.44,45 As shown in Sec. IV B, the N eigenvalues
of Y are related to the N frequencies (28) of the finite, open
Ising chain of N spins, while the N eigenfunctions are required
in order to calculate the corresponding frequency weights (29),
involved in the expression of the dynamic susceptibility (27).
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