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Effect of pressure on phase stability in Fe-Cr alloys
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The effect of hydrostatic pressure on the phase stability of Fe-Cr alloys has been studied using ab initio
methods. We show that while pressure decreases the tendency toward the phase separation in the paramagnetic
state of bcc alloys, in the ferromagnetic state it reduces the alloy stability at low Cr concentration and vice
versa, makes the solid solution more stable at higher concentrations. This behavior of the phase stability can be
predicted from the deviation of the lattice parameter from Vegard’s law in bcc Fe-Cr alloys. On the atomic level,
the pressure effect can be explained by the suppression of the local magnetic moments on Cr atoms, which gives
rise to a decrease of the Fe-Cr magnetic exchange interaction at the first coordination shell and, as a result, to the
observed variation of the ordering tendency between the Fe and Cr atoms.
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I. INTRODUCTION

The binary Fe-Cr alloys are the base for many important
industrial steels. For the purpose of corrosion resistance, the
alloys containing more than 10 at.% of Cr are of the greatest
practical interest. However, at about 800 K, these alloys are
a subject to the so-called spinodal decomposition1–3 occuring
for alloy concentrations close to 20 at.% of Cr and leading to
the degradation of mechanical properties. Since these alloys
are used, for example, in the cooling pipes of pressure vessel
reactors, it is important to analyze the effect of pressure on
phase stability and spinodal decomposition.

Although the reliable ab initio picture of the phase equi-
libria in Fe-Cr alloys is far from being firmly established,
it is clear, that chemical interactions, driven in many cases
by magnetism, play a crucial role in this system. One of
the interesting features of Fe-Cr system, which is directly
related to the spinodal decomposition, is the existence of the
anomalous alloying behavior, when the dominating effective
interaction at the first coordination shell becomes of ordering
type in Fe-rich alloys. The effect was predicted theoretically
by Hennion4 using the tight-binding generalized perturbation
method (GPM),5 and confirmed later in the diffuse-neutron-
scattering measurements of the atomic short range order
(ASRO) by Mirebeau et al.6

A similar switching of the alloying type behavior at
low concentrations of Cr has been found from the first-
principles calculations of enthalpy of formation of random
Fe-Cr alloys in the ferromagnetic state, first by Olsson
et al.7 and later by a number of consequent first-principles
calculations.8–11 The consensus at the moment is that the
origin of this effect is the magnetic behavior of Cr atoms,
which acquire a magnetic moment antiparallel to that of
Fe in the dilute limit due to antiferromagnetic interactions.
At the same time, the magnetic exchange interaction of a
couple of Cr atoms is also antiferromagnetic at the first
coordination shell. Thus appearance of a couple of nearest-
neighbor Cr atoms causes a frustration of the local magnetic
configuration, leading to a gradual loss of magnetic moment
by the Cr atoms with increasing Cr concentration and the

corresponding change in the type of the effective chemical
interactions.9,12

At higher Cr concentration, the interactions (on average,
see Ref. 11 on the local environment effects) become of a
phase-separation type leading to the corresponding change in
the concentration dependence of the enthalpy of formation and,
in particular, to the change of the curvature of the enthalpy
of formation. The latter could be related to the spinodal
decomposition. Of course, at finite temperature, one should
consider the Gibbs free energy. However, if the effect is strong
enough, it will also remain at least within the temperature
interval where the ferromagnetic state is still stable. In this
paper, we investigate the effect of pressure on the enthalpy of
formation of random Fe-Cr alloys and, thereby, its possible
effect on the spinodal decomposition. It is well known that
pressure can strongly influence the properties of materials,
including the phase stability.13–16 However, in most of previous
publications the effect of pressure on Fe-Cr alloys has not been
taken into account.

II. DETAILS OF CALCULATIONS

The calculations were performed using the exact muffin-tin
orbital (EMTO)17,18 method combined with the coherent
potential approximation (CPA)19–21 for the electronic structure
of random alloys. The disordered local-moment model was
used for the paramagnetic state.22 It is known that the
generalized-gradient approximation (GGA)23 provides better
agreement between calculated and experimental equilibrium
volumes, and accordingly pressure-volume relations, but leads
to an overestimation of the magnetic moment of bcc Fe.
Therefore the self-consistent electron densities were obtained
within the local-density approximation (LDA),24 and then the
total energies were calculated in the GGA using full charge-
density formalism. As advocated in Ref. 25, this scheme gives
very accurate description of both magnetic and thermodynamic
properties of transition metal alloys.

The energy integration has been carried out in the complex
plane using a semielliptic contour comprising 24 energy points.
The calculations were performed for a basis set including
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valence s,p,d, and f orbitals, whereas the core states were
recalculated at each iteration of the self-consistency loop. In
our CPA calculation, we included the screening contribution
to the electrostatic potential and energy to take into account
the effect of charge transfer between the alloy components. We
used screening constants obtained in Ref. 11. In Fe-Cr alloys,
the on-site screening constants are different for the ferromag-
netic (FM) and disordered local-moment (DLM) states, which
we use to represent the magnetic ground state and the high-
temperature paramagnetic state, respectively.7,8,11,12 Their val-
ues exhibit a pronounced concentration dependence in the FM
state of Fe-rich alloys11 because of strong correlation between
the magnitude of the magnetic moment and the screening.

It has been established earlier that CPA is fully adequate
for the description of configuration-averaged quantities in
disordered transition metal alloys in general,26 and their
magnetic properties in particular, including magnetic moments
and exchange interactions.27,28 For Fe-Cr alloys, this has been
demonstrated explicitly by a comparison with the experimental
concentration dependence of the net magnetization7 as well as
with supercell calculations.8,11

Details about the ground-state properties and electronic
structure of random Fe-Cr alloys at ambient pressure can be
found in Refs. 7,8,11, and 12.

III. THERMODYNAMIC ANALYSIS
OF PRESSURE EFFECT

As suggested by Alling et al.16 the influence of hydrostatic
pressure on phase stability in an alloy system can be predicted
from a simple thermodynamic consideration by looking at
deviations of the lattice parameters from Vegard’s law at
ambient pressure. We write the pressure derivative of the free
energy of mixing

�G = GFe1-cCrc − (1 − c)GFe − cGCr, (1)

where G is Gibb’s free energy and c denotes Cr concentration
at fixed temperature.(

d�G

dp

)
T

= �V (2)

and

�V = VFe1-cCrc − (1 − c)VFe − cVCr, (3)

where �V is the deviation of the solid solution volume from
Zen’s law.29 From Eq. (2), we see that if �V > 0, the pressure
derivative of the free energy of mixing is positive and one
should observe increasing tendency toward a phase decom-
position of the alloy with increasing pressure. In the opposite
case, then �V < 0, the pressure increase should lead to
reduction of the free energy of mixing and increasing stability
of the alloy.

The insets in Fig. 1 show the calculated lattice parameters
of Fe-Cr alloys as a function of Cr concentration for different
magnetic states of the alloy together with its average value
given by Vegard’s law. Note that our results are similar to those
obtained in Refs. 7,8, and 11, and differ by less than 1% from
experimental values. The concentration dependence of the
lattice parameter in the FM state exhibits oscillating behavior
with positive deviations from the Vegard’s (or Zen’s) law
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FIG. 1. (Color online) (a) Calculated mixing enthalpy of para-
magnetic (DLM) and (b) ferromagnetic Fe-Cr alloys as a function
of Cr concentration for different pressures between P = 0 and
10 GPa. The insets in upper and lower panels show the concentration
dependence of the calculated lattice parameter in bcc Fe-Cr alloys in
paramagnetic (DLM) and ferromagnetic states, respectively. Dashed
lines correspond the lattice parameter predicted from Vegard’s rule.

(�V > 0) for Fe-rich compositions and negative deviations
(�V < 0) for the intermediate and Cr-rich compositions. The
lattice parameters of random Fe-Cr alloys in the DLM state
are always less than the average one, given by the Vegard’s
law. Therefore just from Eq. (2) we predict that the pressure
produces different effects on the alloy stability in the FM or
DLM state; the pressure will reduce the tendency toward de-
composition in the DLM state, while in the FM state it actually
should promote the phase separation of Fe-rich Fe-Cr alloys.

In order to verify the prediction of the thermodynamic
model, we have calculated the mixing enthalpy �H at different
pressures for the DLM and FM states of Fe-Cr alloys. The
mixing enthalpy is defined as

�H = HFe1-cCrc − (1 − c)HFe − cHCr. (4)

Note that the standard states of bcc Fe HFe in the FM and DLM
cases are different, while the reference state of bcc Cr HCr is
considered to be nonmagnetic in both cases.

Let us note that our results for �H at P = 0 GPa are in good
agreement with the results obtained by Olsson et al.7,8 and
Korzhavyi et al.11 At the same time, as one can see in Fig. 1, the
pressure reduces the phase-separation tendency in the whole
concentration interval in the DLM state and for a wide range of
compositions, in FM state. The alloy stabilization is weakened
in the case of Fe-rich alloys. With increasing pressure the depth
and width of the �H minimum in the FM state decreases.
Although the enthalpy is still negative at pressures up to
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10 GPa, the stability of the alloy reduces. On the other hand,
positive values of �H for large Cr concentrations decrease,
indicating decreasing tendency toward the phase separation in
this concentration range with increasing pressure.

IV. CHEMICAL AND MAGNETIC INTERACTIONS

To understand the results presented in the previous section,
we calculate the effective pair interactions of the Ising-type
alloy Hamiltonian:25

Hconf = 1

2

∑
p

V (2)
p

∑
i,j∈p

cicj . (5)

Here, V (2)
p are the effective pair interactions (EPI) for

coordination shell p, ci are the occupation numbers taking
on values 1 or 0 if Fe or Cr atoms occupy a site i, respectively,
and the Fe concentration in the alloy is c. The EPI characterize
the tendency of an alloy toward ordering or phase separation:
positive EPI at a given coordination shell correspond to the
ordering at this coordination shell, while a negative EPI
indicate a tendency toward clustering.

In Fe-Cr alloys, the effective interactions strongly depend
on Cr concentration and the global magnetic state at ambient
pressure.4,6,12 In the present work, the effective pair interac-
tions have been determined in the FM state by the screened
generalized perturbation method (SGPM).30,31 In Fig. 2(a),
we show the EPI at the first coordination shell at ambient
pressure and at P = 10 GPa. One can see that pressure reduces
V

(2)
1 (open circles and triangles) at low Cr concentration and
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FIG. 2. (Color online) The concentration dependence of the
effective pair interactions of the Ising Hamiltonian (Eq. (5)) (a) in
FM state at P = 0 GPa and P = 10 GPa in random Fe-Cr alloys. The
(b) shows the magnetic interactions V

magn-FM
1 (Eq. (11)) as function

of Cr concentration for pressures 0 GPa and 10 GPa.

increases them at a Cr concentration higher than 20 at.%
in the FM state. This means that the pressure destabilizes
alloy formation in the FM state at low Cr concentration and,
vice versa, makes the solid solution more stable at higher Cr
concentrations. As has been discussed above, the calculated
mixing enthalpy shows exactly the same behavior.

As has been noted by Ruban et al.,12 the concentration
dependence of the EPI at the first coordination shell almost
exactly follows the concentration dependence of the nearest-
neighbor Fe-Cr magnetic exchange interaction. Their explicit
connection in fact can be easily demonstrated within a simple
phenomenological model based on Heisenberg Hamiltonian
for magnetic degrees of freedom, which has been frequently
used in the past32–39 to elucidate the magnetic contribution to
the ordering behavior of alloys. If the chemical and magnetic
exchange interactions in an alloy AcB1−c do not depend
on the atomic and magnetic configuration, the Hamiltonian
combining both degrees of freedom can be written as

Halloy = 1

2

∑
p

∑
i,j∈p

[(
vAA

p − 2JAA
p eA

i eA
j

)
cicj

+ 2
(
vAB

p − 2JAB
p eA

i eB
j

)
ci(1 − cj )

+ (
vBB

p − 2JBB
p eB

i eB
j

)
(1 − ci)(1 − cj )

]
, (6)

where vXY
p are the chemical interatomic potentials between

X and Y alloy species at the pth coordination shell, JAB
p is

the magnetic exchange interaction parameter of the classical
Heisenberg Hamiltonian (Hmagn = −∑

p

∑
i,j∈p Jpeiej ), and

eX
i is the direction of the spin of atom X at site i.

Omitting in Eq. (6) the part that does not depend on alloy
configuration, this Hamiltonian is reduced to the form of the
above written configurational Hamiltonian (5):

Hconf = 1

2

∑
p

∑
i,j∈p

V mod
p cicj , (7)

where the whole effective interaction of this model can be
presented as a sum of the chemical and magnetic parts:

V mod
p = V chem

p + V magn
p . (8)

The chemical part is formally defined in the usual way:

V chem
p = vAA

p + vBB
p − 2vAB

p , (9)

but its meaning will be clear after the definition of the magnetic
part, which is

V magn
p = −2

(
JAA

p eA
i eA

j − 2JAB
p eA

i eB
j + JBB

p eB
i eB

j

)
. (10)

The magnetic contribution depends on the magnetic state
through the direction of the magnetic moments of particular
atoms at particular sites. In the ground-state magnetic config-
uration, for instance, in the FM state, it is well determined
since the orientations of the spins are fixed. However, it is
not the case of the paramagnetic state, in which the directions
of magnetic moments fluctuate with high frequency, much
higher than atomic jumps due to diffusion equilibrating atomic
alloy configuration. The latter means that one should consider
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the average magnetic configuration in order to determine the
contribution of the magnetic interactions to the total effective
interaction.

In particular, in the paramagnetic or DLM state the
orientations of the spins are totally uncorrelated on different
sites, which means that average products 〈eX

i eY
j 〉 = 0, and

thus V
magn-DLM
p = 0, i.e., the magnetic exchange interactions

do not contribute to the total effective interactions: V chem
p =

V mod-DLM
p . This defines the “chemical” contribution in this

particular model. As has been demonstrated in Ref. 11, the
nearest-neighbor interaction in the DLM state V

magn-DLM
1 is

practically independent of concentration; our calculations have
shown that they also do not depend on pressure. Therefore we
focus our attention only on the magnetic interactions. In the
FM state of Fe-rich Fe-Cr alloys, they are

V magn-FM
p = −2

(
J FeFe

p + 2J FeCr
p + J CrCr

p

)
, (11)

where we have taken into consideration the antiparallel
alignment of Cr magnetic moment with respect to that of Fe.

Figure 2(b) shows the V
magn-FM

1 obtained using Eq. (11) at
P = 0 and 10 GPa. It is clear that the change of V

magn-FM
1 with

concentration is almost identical to that of the EPI at the first
coordination shell at different pressures, which includes both
magnetic and chemical interactions. The components of the
magnetic part of the effective interaction in the FM state given
by Eq. (11) are shown in Fig. 3. One can see that the main
ordering contribution at the first coordination shell (with posi-
tive sign) comes from Cr-Cr and Fe-Cr magnetic interactions,
while the strong ferromagnetic interaction between Fe atoms
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FIG. 4. (Color online) The pressure dependence of local mag-
netic moments on Fe and Cr atoms in the FM Fe97Cr03 alloy.

at the first coordination shell promotes the phase separation.
Thus it is energetically favorable for Cr and Fe atoms to be
nearest neighbors.

One can also now clearly see why at the ambient pressure,
the effective pair interactions at the first coordination shell as
a function of concentration closely follow the Fe-Cr magnetic
exchange interaction mentioned in Ref. 12. In this case, the
Fe-Fe and Cr-Cr magnetic exchange interactions compensate
each other to a large degree, leaving basically only one Fe-Cr
exchange interaction contribution in Eq. (11). However, this
picture is no more valid at elevated pressure, which reduces
the Fe-Cr and Cr-Cr exchange interactions leaving the Fe-Fe
exchange interaction practically unchanged. This is so, since
the pressure strongly affects the local magnetic moment of Cr,
while the magnetic moment of Fe is affected very little.

This can be clearly seen in Fig. 4, where we show the
magnitude of Fe and Cr local magnetic moments in Fe0.97Cr0.03

alloy as a function of pressure. One can see that the magnetic
moment of Fe decreases by only about 4% at 10 GPa, while
the Cr magnetic moment is reduced by more than 25%. This
means that the contribution from Fe-Fe exchange interactions
becomes dominating at high pressure, which increases the
phase-separation tendency.

V. SPINODAL DECOMPOSITION AND STRUCTURAL
STABILITY

The stability of alloy against the phase separation is
determined by the balance between the Gibbs free energy of
alloy and the competing phases. However, even if the Gibbs
free energy of an alloy is higher than that of competing phases,
the alloy can still be in a metastable phase due to, for instance,
a high barrier for the phase transformation. It can be stable
against composition (or atomic configuration) fluctuations on
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second derivatives of the mixing enthalpy for pressures P = 0, 10,
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the local scale. In the macroscopic limit, the metastability
requires that the second derivative of the Gibbs free energy
has to be positive (d2G/dc2 > 0).

When the second derivative is negative, any fluctuation of
the composition should initiate the phase separation. At the
boundary between these two limits, where the second deriva-
tive of the Gibbs free energy is zero, an alloy undergoes the
so-called spinodal decomposition. Thus the knowledge of this
boundary is very important in providing (meta)stable alloys
for industrial applications. In general, the spinodal boundary
is a function of temperature. However, at low temperatures, the
mixing enthalpy gives dominating contribution to the Gibbs
free energy and thus it can be used to check the effect of the
pressure on the qualitative level.

In Fig. 5, we plot the second derivative of the mixing
enthalpy as a function of Cr concentration at different
pressures. The predicted limit for spinodal decomposition
at P = 0 GPa is about 17 at.%. The calculated data are
in good agreement with the results obtained in Ref. 7 and
with Mössbauer spectroscopy measurements.40 From Fig. 5,
one can see that at pressure P = 20 GPa the concentration
of Cr corresponding to the onset of spinodal decomposition
decreases from 17 to 14 at.%. Thus when pressure increases,
the concentration boundary on the Fe-rich side of the phase
diagram at T = 0 K shifts to the left, i.e., a region of spinodal
decomposition becomes wider.

Finally, in Fig. 6, we represent the structural enthalpy
differences �H =Hfcc − Hbcc in random Fe-Cr alloys as a
function of Cr concentration at P = 0 and 10 GPa. We consider
both the FM and PM states of bcc iron and only the PM state
of fcc iron (γ phase). The latter restriction is reasonable due
to low Nèel temperature of fcc Fe. We can see that at ambient
pressure, bcc FM alloys are more stable as compared to fcc
DLM alloys in the whole concentration range, while the bcc
structure in the DLM state becomes less stable with respect
to PM fcc alloys at low Cr concentration. These results are in
qualitative agreement with the available Fe-Cr phase diagram1

and a theoretical study considering the α-γ phase transition
in this alloys.41 With increasing pressure, the FM bcc phase
(at P = 10 GPa) is still more stable than the PM fcc structure

FIG. 6. (Color online) Calculated structural enthalpy differences
�H in random Fe-Cr alloys as a function of Cr concentration at P =
0 GPA and P = 10 GPa.

but the stability of the FM bcc phase decreases, whereas the
paramagnetic fcc phase becomes more stable compared to
the PM bcc alloys in the Fe-rich part of the phase diagram.
This means that applied pressure should extend the range of
existence of the γ phase. Note, however, that the hpc phase
was not considered in this study.

VI. CONCLUSIONS

Using the EMTO-CPA method, we have studied the effect
of hydrostatic pressure on the phase stability of Fe-Cr alloys
in the FM state and the PM state described within the
DLM model. We find that in the PM state, the pressure
decreases the tendency toward phase separation, while it
promotes the phase separation in the Fe-rich alloys in the
FM state. To analyze the effect of pressure on the phase
stability, we use a simplified model in which the effective
pair interactions are split into chemical and magnetic terms.
This model shows that the effect of pressure on the phase
stability in this system comes mostly through the decrease
of the magnetic moment on Cr, and consequently, Fe-Cr
exchange interaction, which dictates the anomalous stability
of the alloy at ambient conditions. We predict that the region of
spinodal decomposition should become wider with increasing
pressure. Further, our calculations show that under pressure,
the paramagnetic fcc phase becomes more stable compared to
the PM bcc alloys in the Fe-rich part of the phase diagram.

ACKNOWLEDGMENTS
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