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Spontaneous toroidal moment and field-induced magnetotoroidic effects in Ba2CoGe2O7
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The unusual magnetoelectric effects observed in the multiferroic phase arising below TN = 6.7 K in
Ba2CoGe2O7 (BCG) are related to the spontaneous toroidal moment existing in this compound. The transition to
the multiferroic state, which involves spontaneous magnetization, polarization, and toroidal moment gives rise
to spontaneous toroidic effects. These effects correspond to specific contributions to the induced polarization
and magnetization under applied magnetic or electric fields which can be differentiated from standard nonlinear
magnetoelectric contributions. The toroidic contribution to the electric polarization in BCG is shown to result
from single-ion effects.
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I. INTRODUCTION

The resurgence of interest in multiferroic materials has
prompted discussion of the relevance of the concept of
magnetic toroidal moment for clarifying the macroscopic and
microscopic properties of these systems.1–14 The existence of
a macroscopic moment asymmetric under both time reversal
and space inversion long remained elusive15–18 until the
observation of the independent coexistence of ferrotoroidic
and antiferromagnetic domains in LiCoPO4.19 This result
provides a motivation for investigating toroidic effects in
the ferroelectric phases of multiferroic materials, in which
the space-asymmetric electric polarization is induced by a
time-asymmetric and space-asymmetric magnetic order. In the
absence of well-defined physical properties showing direct
experimental evidences of a spontaneous toroidal moment
in magnetic systems, one of the important issues is to find
a material in which specific magnetoelectric effects20 would
reflect the effective role of the toroidal moment.

Here we analyze theoretically the magnetoelectric ef-
fects disclosed in the multiferroic phase of Ba2CoGe2O7

(BCG).21,22 Due to its unique magnetic symmetry, this phase
allows existence of spontaneous magnetization, polarization,
and toroidal moment, as well as linear and nonlinear mag-
netoelectric effects. Furthermore, the spontaneous toroidal
moment �T has the same symmetry as the antiferromagnetic
order-parameter �L to which it is bilinearly coupled. This allows
interpreting the magnetoelectric effects reported in BCG, as
resulting either from higher-order coupling of the polarization
to �L or as field-induced toroidic effects. In this respect, we
emphasize that the specific critical behaviors reported for the
polarization components under applied magnetic fields21,22

should allow for distinguishing the respective contributions
of the antiferromagnetic and toroidal order parameters. At the
microscopic level, the toroidal contribution to the spontaneous
polarization is shown to result from single ion effects.

II. PHASE DIAGRAM AND MULTI-DOMAIN
PATTERN OF BCG

The P 4̄21m1′ paramagnetic space group of BCG23 has
at the center of the tetragonal Brillouin zone (�k = 0) five

irreducible representations (IRs) denoted by τ1–τ5.24 The one-
dimensional IR’s τ1–τ4 induce nonpolar magnetic symmetries
P 4̄21m, P 4̄21m

′, P 4̄′21m, and P 4̄′21m
′, and are not associated

with the transition to the ferroelectric phase observed in BCG
below TN = 6.7 K. The two-dimensional IR τ5 spanned by the
order-parameter components η1 = ρcos(θ ) and η2 = ρsin(θ )
is associated with the Landau expansion:

F = α

2
ρ2 + β1

4
ρ4 + β2

4
ρ4cos(4θ ) + · · · + γ

8
ρ8cos2(4θ ).

(1)

Minimizing F yields three possible magnetically ordered
phases below the paramagnetic phase:

(i) Phase I corresponds to ρe = ±( α0(TN −T )
β1+β2

)
1
2 and

cos(4θ ) = 1 (θ = nπ
2 ). It has the orthorhombic magnetic space

groups P 2′
1212′ (η1 = ρe,η2 = 0) or P 212′

12′ (η1 = 0,η2 =
ρe), which form energetically equivalent domains of the same
equilibrium phase.

(ii) Phase II has the magnetic symmetry Cm′a2′ with
ρe = ±( α0(TN −T )

β1−β2
)

1
2 and cos(4θ ) = −1 (θ = (2n + 1)π

4 ), or
equivalently η1 = ±η2 = ρe. The phase involves a variety
of spontaneous physical properties and domains represented
in Fig. 1. Denoting �s1 and �s2 the magnetic spins associ-
ated with the Co2+ ions located at (0,0,0) and (0.5,0.5,0)
positions,23 the phase displays four weak ferromagnetic
and/or antiferromagnetic domains with a spontaneous unit
cell magnetization �M = �s1 + �s2 along the m′ plane and
unit cell antiferromagnetic vector �L = �s1 − �s2 along the a

plane. The polar symmetry of the phase also gives rise to
two ferroelectric(±Pz)-ferroelastic(±exy) domains, and four
ferrotoroidic domains corresponding here2 to the spontaneous
toroidal moment �T = ν̂( �M × �P ), collinear to �L, where ν̂ is a
third rank tensor. �T and �L have the same symmetry and are
bilinearly coupled.

(iii) Phase III of symmetry P 2′ is stabilized for θ �= nπ
4

and requires an eighth-degree expansion of F , involving eight
weak ferromagnetic and/or antiferromagnetic domains and
two ferroelectric-ferroelastic domains.

The theoretical phase diagram containing the preceding
phases is shown in Fig. 2. Phases II and III allow a spontaneous
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FIG. 1. (Color online) Respective orientations of the magnetiza-
tion ( �M), antiferromagnetic vector ( �L), toroidal moment ( �T ), and
polarization ( �P ) in the four multiferroic domains of BCG. Dark blue
thin arrows represent the orientation of the spins �s1 and �s2 located
in positions (0,0,0) and (0.5,0,5,0) in the tetragonal paramagnetic
structure. The central inset shows the tetragonal and orthorhombic
settings used in the text.

polarization along z, as observed experimentally in BCG.21,22

However, only phase II can be reached directly from the
paramagnetic phase, whereas a transition to phase III goes
across phases I or II, or displays a first-order character. The
temperature dependence of the polarization varies continu-
ously at TN , and the configuration of the spin moments22

is consistent with the four domains of phase II. Therefore,
phase II can unambiguously be identified as the multiferroic
phase arising below TN .

I

III

II

FIG. 2. (Color online) Theoretical phase diagram associated with
the free-energy F given by Eq. (2). Solid and hatched curves are first-
and second-order transitions lines. Hatched-dotted curves are limits of
stability lines. T1 and T2 are tricritical points. N is a four-phase point.
The arrow represents the thermodynamic path followed in BCG.

III. SPONTANEOUS AND FIELD-INDUCED
TOROIDIC EFFECTS

Let us express the effective transition free-energy Feff in
the multiferroic phase in terms of the spontaneous measurable
variables �L = (Lx,Ly), �M = (Mx,My), and Pz, taking into
account their lowest degree coupling invariants. It reads:

Feff = a1L
2 + a2L

4 + b1M
2 + b2M

4 + c(LxMy + LyMx)

+ P 2
z

2ε0
zz

+ δ1LxLyPz + δ2MxMyPz

+ δ3(MxLy − MyLx)Pz (2)

where ε0
zz is the dielectric permittivity in the paramagnetic

phase, and ai,bi,c, and δi are phenomenological coefficients.
Minimizing Feff with respect to Pz yields the equilibrium
polarization below TN :

P e
z = −ε0

zz[δ1LxLy + δ2MxMy + δ3(MxLy − MyLx)]. (3)

The two first terms into brackets express the respective contri-
butions of the antiferromagnetic and weak-ferromagnetic order
parameters to the polarization, whereas the third term reflects
their coupling contribution. Since | �L| and | �M| vary below
TN as ∼ (TN − T )

1
2 , P e

z varies as (TN − T ), consistent with
the linear dependence observed for P e

z (T ),21 corresponding
to an improper ferroelectric critical behavior. The dielectric

permittivity varies as εzz(T ) = ε0
zz(1 + ε0

zzδ
2
1

2a2
) for T < TN , in

agreement with the reported upward discontinuity at TN .21

The δ3 term in Eq. (2) reflects the invariance of the mixed
vector product ( �M × �L) · �P under the symmetry operations
of the paramagnetic phase. Since the toroidal moment �T =
(Tx,Ty) has the same symmetry as the antiferromagnetic vector
�L, one has analogously a mixed coupling invariant (TxMy −
TyMx)Pz reflecting the invariance of the mixed products
( �T × �M) · �P or ( �T × �P ) · �M which express the following
relationships between the spontaneous macroscopic vectors

�P s = μ̂( �T s × �Ms) (4)

and

�Ms = λ̂( �T s × �P s), (5)

where μ̂ and λ̂ are third rank tensors. Therefore applying elec-
tric or magnetic fields the field induced dielectric, magnetic,
and toroidal coupling contributions to the free-energy read:

FD = P 2

2ε0
+ ε �E · �P + α �H · �P + σH ( �T × �H ) · �P , (6)

FM = μ0
M2

2
+ χ �H · �M + β �E · �M + σE( �T × �E) · �M,

(7)

FT = ν0
T 2

2
+ κ1 �E · �T + κ2 �H · �T + σEH ( �E × �H ) · �T ,

(8)

minimizing Eqs. (6)–(8) with respect to �P , �M , and �T , and tak-
ing into account the spontaneous quantities �P s, �Ms, �T s existing
in the absence of applied fields yields the equations of state
for the total polarization, magnetization, and toroidal moment

�P = �P s + ε̂ �E + α̂ �H + σ̂ H ( �T × �H ), (9)
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�M = �Ms + χ̂ �H + β̂ �E + σ̂ E( �T × �E), (10)
�T = �T s + κ̂E �E + κ̂H �H + σ̂ EH ( �E × �H ). (11)

The ε̂,α̂,χ̂ , and β̂ terms correspond to linear magneto-
electric effects, whereas the third-rank tensors σ̂ H and σ̂ E

precede additional polarization and magnetization components
induced by the coupling of the total toroidal moment �T to
noncollinear �H or �E fields. κ̂E and κ̂H are the electrotoroidal
and magnetotoroidal tensors. The σ̂ EH term represents the
induced toroidal contribution under noncollinear electric and
magnetic fields. One should emphasize that the toroidal con-
tributions to �P and �M in Eqs. (9) and (10), which are activated
by a single external field noncollinear to �T , differ from the
“ferromagnetotoroidic” and “ferroelectrotoroidic” effects25

implying the application of two distinct noncollinear fields.

IV. MAGNETOELECTRIC EFFECTS

Equations (9)–(11) provide an interpretation of the re-
markable magnetoelectric effects reported in BCG21,22 as
resulting from the existence of a spontaneous toroidal moment.
Applying Hz field gives rise to a polarization component Px

increasing from 0 to 120 μCm−2 for 0 < Hz < 8T . In the
orthorhombic setting, which is turned by 45◦ with respect to
the tetragonal axes (Fig. 1), one gets from Eqs. (9)–(11):

Px(Hz) = [
α13 + T s

y

(
χ33 + σH

123

)]
Hz. (12)

Consistent with the linear increase observed for Px(Hz) with
increasing field21 and with its sign reversal on reversing Hz.22

The sharp increase of Px(T ) below TN at constant field,21

denotes a substantial toroidal contribution, with respect to
the linear magnetoelectric contribution α13 ≈ (TN − T )

1
2 . The

observed increase of Pz(Hz) from −11 μCm−2 at Hz = 0, to
+80 μCm−2 in 8T is given by:

Pz(Hz) = P s
z + (

χ23T
s
x − χ13T

s
y

)
Hz. (13)

The shift of Pz(Hz) to higher temperature under applied field21

is due to the renormalization of the coefficient a1 ≈ (T − TN )
in Eq. (2), which increases TN by TN (Hz) − TN (0) ≈ χ33H

2
z .

In order to account for the even dependence of Hz observed
for Pz(Hz), one has to consider a higher order contribution,
e.g. �H 2

z , to Pz(Hz).
Other magnetoelectric effects have been reported22 under

application of Hxy and Hx̄y fields. Pz increases by increasing
Hxy and decreases when increasing Hx̄y .22 Projecting Eq. (9)
along z, one gets:

Pz(Hxy) = −Pz(Hx̄y) = 1
2

(
α31 + σH

321T
s
y + σH

312T
s
x

)
Hxy.

(14)

Turning the Hxy field by 90◦ transforms a ferroelectric domain
into another, changing the sign of Pz.22 As for Pz(Hz), a
shifting of the transition temperature is observed under Hxy

field,22 Pz(T ) decreasing smoothly down to TN = 12 K for
Hxy = 5 T. These effects occur at low magnetic fields. At
higher fields Px(Hxy) decreases and changes sign.22 This
behavior, assumed to correspond to a spin-structural change,22

requires including the higher-order invariant ( �T s × �H ) · ( �T s ·
�H ) ≈ K(T s

x ,T s
y )

2 H 2
xy in Eq. (9). For K < 0, Pz(Hxy) decreases

above the threshold field H th
xy = −α31+A

4K
taking negative values

for Hxy > 2H th
xy .

V. MICROSCOPIC TOROIDIC CONTRIBUTION
TO THE POLARIZATION

To gain insight into the nature of the magnetic interactions
governing the magnetoelectric and toroidic behaviors of BCG,
let us express the order-parameter components in function of
the magnetic spins �s1 and �s2. Writing �si = sa

i �a + sb
i
�b + sc

i �c
(i = 1,2), where �a,�b,�c are the tetragonal lattice vectors,
the representation � transforming the s

a,b,s
i components

decomposes into � = τ1 + τ2 + 2τ5, i.e., two order-parameter
copies, denoted (η1,η2) and (ζ1,ζ2), are involved in the
transition mechanism. Standard projector techniques26 give:

η1 = sa
1 + sa

2 , η2 = −(
sb

1 + sb
2

)
,

(15)
ζ1 = sb

1 − sb
2 , ζ2 = sa

1 − sa
2 .

It shows that the two order-parameter copies coincide with
the ferromagnetic and antiferromagnetic vectors. On the other
hand, projections of � on τ1 and τ2 lead to sc

1 − sc
2 = 0

and sc
1 + sc

2 = 0, i.e., sc
1 = sc

2 = 0, confirming the in-plane
spin ordering in BCG. The equilibrium values of (η1,η2)
and (ζ1,ζ2) in phase II yield the spin configurations for the
four magnetic domains represented in Fig. 1, namely: two
weak ferromagnetic domains for sa

1 + sa
2 = ±(sb

1 + sb
2 ), and

two antiferromagnetic domains for sb
1 − sb

2 = ±(sa
1 − sa

2 ). The
spontaneous polarization P e

z at zero field reads

P e
z = δ′

1η1η2 + δ′
2ζ1ζ2 + δ′

3(η1ζ2 + η2ζ1), (16)

analogue to Eq. (3). Using Eq. (12) yields

P e
z = δ′

1

(
sa

1 sb
1 + sa

1 sb
2 + sa

2 sb
1 + sa

2 sb
2

)

+ δ′
2

(
sa

1 sb
1 − sb

1 sa
2 − sb

2 sa
1 + sa

2 sb
2

)

+ δ′
3

(
sa2

1 − sa2
2 − sb2

2 + sb2
2

)
. (17)

Equation (17) holds for a pair of antiferromagnetic domains
(e.g., ηe

1 = ηe
2 and ζ e

1 = ζ e
2 ) whereas −P e

z coincides with the
other pair (ηe

1 = −ηe
2,ζ

e
1 = −ζ e

2 ). The δ′
1, δ′

2, and δ′
3 terms

represent the respective contributions of the spontaneous
ferromagnetic, antiferromagnetic, and toroidal contributions
to the spontaneous polarization arising in the multiferroic
state. The δ′

3 term, which is the microscopic analog of the
spontaneous toroidic effect given by Eq. (4), reflects single-ion
effects, while the two other terms contain invariants su

i sν
i (i =

1,2; u,ν = a,b), also corresponding to single-ion effects, and
su
i sν

j (i �= j ) invariants expressing the symmetric part of the ex-
change coupling interaction between the two Co spins. These
results support the interpretation21 that the spin-dependent p-d
hybridization between the transition-metal (Co) and ligand (O)
contributes to the ferroelectricity in BCG via the spin-orbit
interaction, as well as the proposed mechanism of lattice
relaxation induced by exchange striction.22 Note that the
Dzialoshinskii-Moriya (DM) interaction does not contribute
directly to the polarization but is responsible of the canting
inducing the weak-ferromagnetic moments,23 which stabilizes
the toroidal moment giving rise to the δ′

3 term in Eq. (17).
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VI. SUMMARY, DISCUSSION, AND CONCLUSION

In summary, our theoretical analysis of the magnetoelectric
effects reported in BCG shows that they can be described by the
existence in the multiferroic phase of a spontaneous toroidal
moment �T displaying the same symmetry as the antiferromag-
netic order-parameter �L. Equations of state relating the total
polarization �P and magnetization �M to the toroidal moment
have been proposed, involving the existence of specific toroidal
contributions to �P and �M under, respectively, applied magnetic
and electric fields. At the microscopic level, the toroidal
contribution to the spontaneous polarization has been shown
to be due to single-ion effects.

One may question if a toroidal-free approach involving
the sole antiferromagnetic order-parameter �L would also
provide a consistent interpretation of the magnetoelectric
effects observed in BCG. In order to clarify this point, let
us consider, for example, the field dependence of Px given
by Eq. (12), which is a purely magnetic-field induced effect,
since Px has no direct coupling to �L or �T but couples to these
two order-parameters only via the Hz field. Equation (12)
shows that Px varies linearly with Hz and is formed by
the sum of three different terms: (i) α13Hz corresponds to
the linear magnetoelectric effect, α13(T ) varying critically
as (TN − T )1/2; (ii) χ33Hz is the contribution to the field
of the weak magnetization induced by Hz, varying also as
(TN − T )1/2; (iii) the toroidal contribution T s

y σH
123Hz assumed

in our description corresponds at constant field to a (TN −
T )3/2 power law. At very low field Hz, the observed critical
behavior of Px(Hz) follows an S-shape type21,22 temperature
dependence at constant field, consistent with the (TN − T )3/2

power law typifying the toroidal term. Such critical behavior
cannot be due to the higher-order magnetoelectric contribution

(L2
xLy + L2

yLx)PxHz since �L also induces the power law
(TN − T )1/2 via the linear magnetoelectric effect. Therefore
if the critical exponents 1/2 and 3/2 are both related to the
same order-parameter �L, the former should be dominating
at a second-order transition. Furthermore, at very low field
the nonlinear magnetoelectric contribution is negligible with
respect to the linear one. Accordingly, the experimentally
observed (TN − T )3/2 power law for Px(Hz) at constant field
corresponds indeed to a magneto-toroidic effect. An additional
support to this interpretation is the similar power laws found
experimentally for Pz(Hxy) (Eq. (14) and Pz(Hz) (Eq. (13),
which can also be related to the corresponding toroidic
contributions.

In the absence of measurable physical quantity that would
give a direct proof of the presence of the toroidal moment in
a multiferroic phase, the coupling of the toroidal moment to
the polarization and magnetization can give rise to behaviors
reflecting its specific contribution to the magnetic field. This
contribution corresponds to higher-order effects which can be
differentiated from standard nonlinear magnetoelectric effects.
Besides the critical behavior of field-induced components
of the polarization the nonlinear H 2 contribution to �P is
observable above and below the transition while the �T × �H
contribution would be observable only below TN . More gen-
erally, the symmetries of the third-rank tensors σ̂ H and σ̂ E are
different from the symmetries of the nonlinear magnetic and
electric susceptibilities. Therefore, more spectacular toroidic
effects, differing from standard nonlinear magnetoelectric ef-
fects, should be disclosed in systems exhibiting a spontaneous
toroidal moment, involving the orientations of magnetic or
electric field-induced polarization and magnetization compo-
nents and the corresponding domain patterns.
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