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We construct and analyze a microscopic model for insulating rock-salt ordered double perovskites, with
the chemical formula A2BB ′O6, where the magnetic ion B ′ has a 4d2 or 5d2 electronic configuration and
forms a face-centered cubic lattice. For these B ′ ions, the combination of the triply degenerate antisymmetric
two-electron orbital states and strong spin-orbit coupling forms local quintuplets with an effective spin moment
j = 2. Moreover, due to strongly orbital-dependent exchange, the effective spins have substantial biquadratic
and bicubic interactions (fourth and sixth order in the spins, respectively). This leads, at the mean-field level,
to a rich ground-state phase diagram, which includes seven different phases: a uniform ferromagnetic phase
with an ordering wave vector p = 0 and uniform magnetization along the [111] direction, four two-sublattice
phases with an ordering wave vector p = 2π (001), and two four-sublattice antiferromagnetic phases. Among the
two-sublattice phases, there is a quadrupolar ordered phase that preserves time-reversal symmetry. By extending
the mean-field theory to finite temperatures, we find 10 different magnetization processes with different magnetic
thermal transitions. In particular, we find that thermal fluctuations stabilize the two-sublattice quadrupolar ordered
phase in a large portion of the phase diagram. Existing and possible future experiments are discussed in light of
these theoretical predictions.
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I. INTRODUCTION

The combination of strong electron correlation and strong
spin-orbit coupling (SOC) is relatively unexplored theoret-
ically. It arises naturally in a broad family of magnetic
Mott insulating systems in which the threefold-degenerate t2g

orbitals are partially filled. In these systems, the t2g orbital
degeneracy is protected by cubic lattice symmetry and the
crystal-field splitting is large enough so that eg orbitals are
not occupied. Unlike for eg states, SOC is unquenched for
t2g orbitals and splits the one-electron levels into an upper
j = 1/2 doublet and a lower j = 3/2 quadruplet.1,2

In this category, many Ir-based magnets have been studied
both theoretically and experimentally.1–8 Here, the magnetic
ion Ir4+ has a d5 electron configuration with five electrons
residing on the t2g orbitals, and the effective j = 1/2 descrip-
tion can be adopted. Some very exotic states such as a quantum
spin liquid in Na4Ir3O8 (Refs. 1 and 3) and a topological Mott
insulator in A2Ir2O7 (Refs. 4 and 6–8) have been observed and
proposed in the strong-coupling and intermediate-coupling
regimes, respectively.

Moving beyond iridates, in our recent work,9 we have
studied the magnetic properties of a series of compounds
called ordered double perovskites with the chemical formula
A2BB ′O6.10–16 We considered double perovskites in which the
magnetic ions B ′ (e.g., Re6+, Os7+, Mo5+) have a d1 electron
configuration with one electron residing on the t2g orbitals and,
hence, form j = 3/2 local moments. In this analysis, we found
several exotic phases including a novel ferromagnetic state
driven primarily by orbital interaction, an antiferromagnetic
state with strong octupolar order, a spin nematic state, and,

furthermore, a quantum spin-liquid state postulated in a region
of the phase diagram.

To round out the list of magnetic systems with partially
filled t2g orbitals, we must consider the d2, d3, and d4 cases. For
a d3 electron configuration, the three electrons fill all the three
single-electron t2g orbitals, forming an antisymmetric orbital
wave function. The orbital degree of freedom is completely
quenched. The system is described by spin-only Hamiltonian
with spin S = 3/2. Since it has a large spin, one may expect it
to behave rather classically.17 For a d4 electron configuration,
when the SOC dominates over the Hund’s coupling, the
four electrons completely fill the lower j = 3/2 quadruplets
and there is no local moment description at lowest order of
approximation. When the Hund’s coupling dominates over
SOC, the four t2g electrons form a total spin S = 1, but still
have a threefold orbital degeneracy. The effective SOC further
lifts the spin-orbital degeneracy completely and also favors a
trivial j = 0 local state. So, the only nontrivial case left is the
d2 configuration, with two electrons filling the t2g orbitals.

In this paper, we consider this valence state in the context
of double perovskites mentioned above, specifically extending
the theory of Ref. 9 to the case of a B ′ ion with a 4d2

or 5d2 electron configuration.13,18 Unlike for the 4d1 or
5d1 system with one electron per site, the local Coulomb
interaction plays an important role in determining the local
spin and orbital structures for the 4d2 or 5d2 systems. For
the spin sector, the first Hund’s rule requires a symmetrized
spin wave function, favoring a total spin S = 1. For the
orbital sector, the orbital electron wave function should be
antisymmetrized, composed of two single-electron t2g orbitals.
These three antisymmetrized two-electron states act as an
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effective l = 1 total orbital angular moment. The strong SOC
combines the total spin S = 1 with the total orbital moment
l = 1 and leads to an effective total angular momentum
j = 2 description of the system. Similar to the j = 3/2
case studied in Ref. 9, the orbitally dependent nature of
the spin interactions leads to an interesting microscopic
Hamiltonian, which contains significant biquadratic (fourth
order in spin operators) and triquadratic (sixth order in spin
operators) spin-spin interactions. These unusual interactions
may be understood as couplings between the local magnetic
quadrupole and octupole moments. Therefore, an analysis of
the microscopic Hamiltonian naturally leads to a rich structure
of magnetic multipolar orders.

The results of a mean-field analysis are summarized in
Fig. 1 and Table I. There are seven total ground-state phases
that appear, including notably a broad region of time-reversal
invariant but quadrupolar ordered (spin nematic) ground state
with a two-sublattice structure of the orbital configuration.
This is described by the quadrupole tensor operators

Q3z2

i = [
2
(
jz
i

)2 − (
jx
i

)2 − (
j

y

i

)2]/√
3, (1)

Q
x2−y2

i = (
jx
i

)2 − (
j

y

i

)2
. (2)

In the quadrupolar phase, 〈Qx2−y2

i 〉 = ±q ′ alternates sign
on the two sublattices [see Eqs. (73)]. In this phase, the
time-reversal symmetry is unbroken and there is no magnetic
dipolar and octupolar order. Such a local spin nematic ground
state is particular to integer spin systems and prohibited for
half-integer spins. A similar spin nematic ground state has
also been proposed theoretically for a spin S = 1 material
NiGa2S4,19–24 but an experimental confirmation of this phase
in NiGa2S4 is still lacking. Apart from the quadrupolar ordered
phase, the other ground states are magnetic and comprise both
ferromagnetic and antiferromagnetic states with enlarged unit
cells up to quadruple the size of the ideal one. The extension
of the mean-field analysis to T > 0 is described in Fig. 2.
Amongst various finite-temperature phases, the quadrupolar
ordered one is prominent, providing more opportunity for its
experimental discovery in real material.
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FIG. 1. (Color online) Ground-state phase diagram of the model
Hamiltonian in Eq. (24). Here, V is the electric quadrupole interac-
tion, and J ′ is the nearest-neighbor ferromagnetic exchange between
orthogonal orbitals; both are normalized to a unit value J = 1 for
the nearest-neighbor antiferromagnetic coupling. The names for the
phases are defined in Table I, and in Sec. III.

TABLE I. Phases in mean-field theory. The first column gives the
name of the phase, as shown in Fig. 1. In the second column, �m denotes
the direction (up to symmetries) of the uniform magnetization; a “0”
is shown if this is vanishing. Similarly, in the third column, �n denotes
the direction of the staggered magnetization. For the quadrupolar
phase, in which “0” appears in both the second and third columns,
time-reversal symmetry is unbroken. The fourth column specifies the
number of sites in the magnetic unit cell. The fifth column gives the
number of sites in the unit cell for time-reversal-invariant observables,
i.e., the quadrupolar tensor.

Magnetic Quadrupolar
Phase �m �n unit cell unit cell

AFM100 0 [100] 2 1
FM111 [111] 0 1 1
FM110 [110] [110] 2 2

[11x] [110] 2 2
� 0 [xy0] 4 2
� 0 [xy0] 4 1
Quadrupolar 0 0 2 2

The remainder of the paper is organized as follows. In
Sec. II, we first explain the on-site spin and orbital physics,
which leads to effective j = 2 local moments on each B ′
magnetic ion. As we did in previous work,9 we introduce a
microscopic Hamiltonian, which includes three interactions:
nearest-neighbor (NN) antiferromagnetic (AFM) exchange J ,
NN ferromagnetic (FM) exchange J ′, and electric quadrupolar
interaction V . Due to strong SOC, we project these inter-
actions, which are written in the separate spin and orbital
spaces, down to the j = 2 manifold. This leads to a spatially
anisotropic and very non-Heisenberg-type Hamiltonian, which
contains many terms beyond the usual quadratic exchange. In
Sec. III, we find the mean-field ground-state phase diagram
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FIG. 2. (Color online) T > 0 phase diagram. In region I (white),
the system transitions directly from the high-temperature para-
magnetic phase to a magnetic state with ordering wave vector
Q = 2π (001) at T = Tm(Q). In region II (blue), the transition from
the high-temperature paramagnet is instead to a quadrupolar phase
with ordering wave vector Q at T = TQ(Q). In region III (red), the
transition from the paramagnetic is to a q = 0 ferromagnetic state at
T = Tm(0). The dashed curves are the boundaries of the ground-state
phases taken from Fig. 1. a, b, c, and d label the low-temperature
phases of each region. J = 1 in the phase diagram.
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of the model Hamiltonian and analyze the properties of each
ground state. Some insight into the general results is given by
considering some simple limits, including both strong easy
plane and easy axis anisotropy, and an orbital interaction
only model (Sec. III B). We find that, aside from a uniform
orbitally ordered, there exists an orbitally ordered state with
a two sublattice structure. Finally, in Sec. III C, we carry out
a mean-field study for the complete model Hamiltonian and
find the zero-temperature ground-state phase diagram, which
is depicted in Fig. 1.

In Sec. IV, we extend the mean-field theory to T > 0,
and identify the structure of the magnetic order for each
phase. We find 10 different finite-temperature magnetization
processes, which correspond to the 10 overlapping regions
between the ground-state phases and the shaded areas in
Fig. 2. We also discuss the different finite-temperature phase
transitions associated with magnetic dipolar and quadrupolar
orders. Transition temperatures are extracted from Landau
theory. In a broad region of the parameter space, we find that
the quadrupolar phase occurs at the intermediate temperatures
between the high-temperature paramagnetic phase and various
low-temperature magnetic ordered phases. Finally, in Sec. V,
we compare our theoretical predictions with current experi-
mental findings and suggest further directions for theory and
experiment.

II. MODEL

A. Spin-orbit interaction and electron orbitals

The magnetic ions B ′ (Re5+, Os6+) in the relevant ordered
double perovskites (Ba2CaOsO6, La2LiReO6, Ba2YReO6)13,18

all have a 4d2 or 5d2 electron configuration with two electrons
on the triply degenerate t2g multiplets. Because of the electron
interaction, the local spin-orbital state is quite different from
the case of d1 electron configuration where the single-electron
state is enough to describe the local physics. Considering
the dominance of the crystal-field splitting over the SOC, we
now fill the three t2g orbitals with these two electrons before
including the effect of SOC. To respect the first Hund’s rule,
the total spin for the two electrons is S = 1. For the orbital
sector, there are three degenerate antisymmetric two-electron
states:

|X〉 = 1√
2

(|xy〉1|xz〉2 − |xy〉2|xz〉1), (3)

|Y 〉 = 1√
2

(|xy〉1|yz〉2 − |xy〉2|yz〉1), (4)

|Z〉 = 1√
2

(|xz〉1|yz〉2 − |xz〉2|yz〉1) , (5)

in which the subindices (“1” and “2”) label the electron.
Therefore, there are totally ninefold spin-orbital degeneracies.
The presence of SOC will lift some of the degeneracies.
Following the spirit of degenerate perturbation theory, we
project the SOC onto the triplet subspace spanned Eq. (5):

Hso = −λ l · S , (6)

in which the total angular momentum quantum numbers of
these operators are l = 1,S = 1. The effective orbital angular

momentum l comes from the projection of the total orbital
angular momentum L ≡ L1 + L2 onto the tripets in Eq. (5),

Po L Po = −l . (7)

Here, Po ≡ ∑
A=X,Y,Z |A〉〈A| is the projection operator to the

triplet orbital subspace. The reduced SOC in Eq. (6) favors
a local j = 2 (j = l + S) over other higher-energy states j =
0,1 by an energy separation O(λ). In the materials we are
considering, the SOC λ is a very large energy scale (some
fraction of an eV).

In general, cubic symmetry allows the presence of an on-
site cubic anisotropy term (jx)4 + (jy)4 + (jz)4, which lifts
the degeneracy of the five j = 2 states. However, we expect
this splitting to be rather small, and provided it is smaller
than the typical exchange coupling between spins, the j = 2
description should be a good approximation. Microscopically,
the cubic anisotropy comes from the fourth-order effect of
the SOC and pair hopping (between different orbitals on the
same ion) terms Jp, which excite the electrons into the eg

orbitals. The magnitude of the cubic anisotropy should be of
∼O(λ4/�3,J 4

p/�3) (with � the crystal-field splitting between
eg and t2g levels). This is certainly a much smaller energy scale
compared to SOC, and likely small compared to exchange. In
any case, we will neglect it in the following.

In the strong SOC limit, every local operator should be
projected onto the local subspace spanned by five j = 2 states.
In particular,

P2 S P2 = 1
2 j, (8)

P2 l P2 = 1
2 j . (9)

Here, P2 is the projection operator into the local j = 2 states.
In addition, one can find that the local magnetic moment is
given by

M = P2 (2S − l) P2 = 1
2 j , (10)

hence, the magnitude of the local magnetic moment is found
to be

√
6/2μB ≈ 1.25μB.

B. Exchange interactions and electric quadrupolar interaction

In this section, we introduce the interactions between the
local moments. From previous work,9 we will need to consider
the nearest-neighbor antiferromagnetic exchange, NN FM
exchange, and NN electric quadrupolar interactions, and these
interactions are highly anisotropic in both the position and spin
spaces. For example, in the XY plane, only electrons on xy

orbital can virtually transfer from one site to another via the
intermediate oxygen p orbitals. Thus, one finds that the NN
AFM exchange is written as

HXY
AFM = J

∑
〈ij〉∈XY

[
Si,xy · Sj,xy − 1

4
ni,xynj,xy

]
, (11)

where the sum is over nearest-neighbor sites in the XY planes,
and the correponding terms for the YZ and XZ planes can
be obtained by the obvious cubic permutation. One should
note that the operators Si,xy and ni,xy denote the electron
spin residing on the single-electron xy orbital and orbital
occupation number for the single-electron xy orbital at site i,
respectively. To connect these single-electron operators to the
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two-electron operator, which acts on the two-electron orbitals
in Eq. (5), we have the following relations:

ni,xy = ni,X + ni,Y = (
lzi

)2
, (12)

Si,xy = Si

2
(ni,X + ni,Y ) = Si

2

(
lzi

)2
. (13)

Here, ni,X (or ni,Y ) denotes the occupation number for |X〉 (or
|Y 〉) of the two-electron orbital states at site i, and Si is the
total spin S = 1 for the two electrons. The physical meaning
of Eq. (13) is apparent. The electron occupation number on
the single-electron orbital xy can be nonvanishing only when
the two-electron orbital state |X〉 or |Y 〉 is occupied by the two
electrons.

Throughout this paper, we use the subindices (i,xy)
to denote the site and single-electron orbitals, subindex
X to denote the two-electron orbitals, superindex (μ = x,y,z)
to denote the spin component, and capital letters (XY , XZ,
YZ) to denote the planes. With these definitions, we note that
the double-occupancy condition at each site, which defines the
Mott insulating phase, becomes

ni,xy + ni,xz + ni,yz = 2 (14)

in terms of the two-electron operators, the above equation is
equivalent to

ni,X + ni,Y + ni,Z = 1 . (15)

Moreover, from Eq. (13), orbitally resolved spins satisfy

Si,xy + Si,xz + Si,yz = Si . (16)

The second interaction to include is the NN FM exchange
interaction. FM exchange comes about when the orthogonal p

orbitals on a single oxygen ion are involved in the exchange
path. Directly using the results from Ref. 9 and the relation
in Eq. (13), one can immediately write down this interaction.
Again, for two sites i,j in the XY plane, this FM exhange is
given as

HXY
FM,ij =−J ′[Si,xy · (Sj,yz + Sj,xz) + 〈i ↔j 〉]+ 3J ′

2
ni,xynj,xy

= −J ′

4

{
Si · Sj

(
lzi

)2[(
lxj

)2 + (
l
y

j

)2] + 〈i ↔ j 〉}
+ 3J ′

4

(
lzi

)2(
lzj

)2
. (17)

The third interaction to include is the electric quadrupolar
interaction. This is obtained by evaluating the Coulomb
interaction in different orbital occupations. As the AFM and
FM exchange, we also take results from previous work to write
down this interaction. In the XY plane, we obtain the electric
quadrupolar interaction as

HXY
quad,ij = −4V

3
(ni,xz − ni,yz)(nj,xz − nj,yz) + 9V

4
ni,xynj,xy

= −4V

3

[(
l
y

i

)2 − (
lxi

)2][(
l
y

j

)2 − (
lxj

)2]
+ 9V

4

(
lzi

)2(
lzj

)2
. (18)

The minimal Hamiltonian for the cubic system contains all
three of these interactions in addition to the on-site SOC:

H = HAFM + HFM + Hquad + Hso . (19)

Since we are interested in the limit of strong SOC, we have to
project the minimal Hamiltonian H onto the five j = 2 states
at every site. As an illustration, we write down the projection
for Si,xy and ni,xy as

S̃x
i,xy = 1

12jx
i + 1

12

(
jx
i

)3
, (20)

S̃
y

i,xy = 1
12jx

i + 1
12

(
jx
i

)3
, (21)

S̃z
i,xy = − 1

12jx
i + 1

12

(
jx
i

)3
, (22)

ñi,xy = 1
3 + 1

6

(
jz
i

)2
, (23)

in which Õ = P2OP2. After the projection, the minimal
Hamiltonian that we will study in this paper is

H̃ = H̃AFM + H̃FM + H̃quad. (24)

III. MEAN-FIELD GROUND STATES

In this section, we study the zero-temperature phase
diagram of the model Hamiltonian in Eq. (24). Ultimately, in
Sec. III C, we will do this by mean-field theory, or equivalently,
variationally searching for direct product states that minimize
the expectation of H̃. Before reporting these results, however,
we discuss some simple limits in which the behavior can
be understood more intuitively. First, in Sec. III A, we
impose a strong single-ion uniaxial anisotropy, which removes
the orbital degeneracy and renders the problem trivially soluble
with singlet, ferromagnetic, and antiferromagnetic ground
states. Second, we consider a pure orbital model in which
only the electric quadrupole interaction V is included. This
gives the two-sublattice quadrupolar state described in the
Introduction. Finally, in Sec. III C, we report the results of a
full mean-field calculation including all couplings and making
no further approximations.

A. Uniaxial anisotropy

As we did in Ref. 9, we first consider the ground state
of this Hamiltonian in the presence of strong easy-plane or
easy-axis anisotropies. The strong easy-plane anisotropy (on
the XY plane) is a trivial limit and is modeled by

∑
i D(jz

i )2

with a positive D. When D is quite large (compared to
exchange coupling and electric quadrupolar interaction), the
spin state on every site is pinned to |jz = 0〉, which is a rather
trivial uniform state with an ordering wave vector p = 0. The
strong easy-axis anisotropy (along the z direction) is less
trivial and is modeled by the same Hamiltonian but with a
negative D. Large |D| favors either |jz = 2〉 or |jz = −2〉
to be occupied. After projecting the Hamiltonian in Eq. (24)
onto these two states, the electric quadrupolar interaction is
completely quenched and the resulting effective Hamiltonian
is a trivial Ising Hamiltonian. One can readily find that, when
J ′ � 5J/38, the ground state is a ferromagnetic state with
an ordering wave vector p = 0, and when J ′ � 5J/38, the
ground state is an antiferromagnetic state with an ordering
wave vector p = 2π (100) or 2π (010). One may postulate from
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these anisotropic cases that the ground state for the actual
cubic Hamiltonian may either have a uniform state (p = 0)
or a two-sublattice state [p = 2π (001) and equivalent wave
vectors]. As we will see in the following sections, this guess is
correct for a large portion of the parameter space, but we also
find some interesting exceptions.

B. Orbital Hamiltonian

To understand the nature of the nonmagnetic quadrupolar
ground state of the model, it is sufficient to consider only
the electric quadrupole interaction V , given in Eq. (18). Note
that it involves only the three operators ñi,yz, ñi,xz, and ñi,xy

on each site. Since these are all time-reversal invariant, it is
apparent that they do not span the full space of j = 2 operators.
Thus, there must be additional constants of the motion, and
the Hamiltonian can be separated into sectors corresponding
to different irreducible representations (irreps) of the algebra
of these operators. Indeed, one can show that the single-site
Hilbert space decomposes into one two-dimensional irrep and
three one-dimensional irreps. The two-dimensional irrep is
spanned by the two states

|u〉 = 1√
2

(|jz = 2〉 + |jz = −2〉), (25)

|d〉 = |jz = 0〉. (26)

In this subspace, the orbital operators become

ñi,yz = 2

3
− 1

6
σ z

i + 1

2
√

3
σx

i , (27)

ñi,xz = 2

3
− 1

6
σ z

i − 1

2
√

3
σx

i , (28)

ñi,xy = 2

3
+ 1

3
σ z

i , (29)

where �σi are the Pauli matrices acting in the |u〉,|d〉 space. In
the first of the three one-dimensional irreps, we have⎛

⎝ñi,yz

ñi,xz

ñi,xy

⎞
⎠ =

⎛
⎝1/2

1/2
1

⎞
⎠. (30)

The other two one-dimensional irreps may be obtained by
permuting these values.

The ground state must consist of a single irrep on each site.
Which irrep occurs should be determined by minimization
of the energy. Consider the case in which each site has a
one-dimensional irrep. Then, we can specify the state of a site
by a “Potts”-type variable si = 1,2,3 specifying which of the
three orbital numbers equals 1, i.e.,

ñi,a = 1
2 + 1

2δsi ,a, (31)

with a = 1,2,3 corresponding to a = yz,xz,xy, respectively.
Then, the Hamiltonian for a bond in the XY plane becomes

H̃XY
ij

∣∣
1d irreps = −V

3
(δsi ,1 − δsi ,2)(δsj ,1 − δsj ,2)

+ 9V

16
(1 + δsi ,3)(1 + δsj ,3), (32)

with YZ and XZ plane bond interactions obtained by permuta-
tions. In this case, the Hamiltonian is purely classical and thus

the ground state can be exactly found by minimization. We find
that a ferromagnetic ground state is preferred, with constant
si (there are thus three such degenerate ground states), which
has an average energy of 65V/72 ≈ 0.903V per bond.

The other natural choice to consider is when the two-
dimensional irrep is chosen on each site. In this case, the
Hamiltonian can be written as

H̃XY
ij

∣∣
2d irrep

= V
[
1 − 25

36σx
i σ x

j + 1
4 �σi · �σj

]
, (33)

where the dot product involves only the x and z components
of the Pauli matrices, and we have dropped a term linear in the
Pauli matrices, which cancels when all three types of bonds
are added. In this case, the interactions for bonds in the other
two planes are obtained by the rotations σx

i → − 1
2σx

i ±
√

3
2 σ z

i ,
with the upper (lower) sign chosen for the XZ (YZ) plane. The
dot product is unchanged by this rotation.

The Hamiltonian in this subspace is a type of Kugel-
Khomskii model, similar to that studied in models of eg

orbitals. It is fully quantum and, thus, can not be solved exactly.
However, within mean-field theory, we find that the variational
ground state is simply the antiferromagnetic product state with
σx

i = (−1)z, i.e., with alternating sign on adjacent XY planes.
In this state, the expectation of the Hamiltonian can be taken,
and the energy is found to be Ev = 173V/216 ≈ 0.801V per
bond. Note that this is lower than the energy found for the
one-dimensional irreps. This is an upper (variational) bound
on the ground-state energy in this sector, so we indeed expect
the ground state to be in the two-dimensional irrep.

Physically, the mean-field state describes an orbitally
ordered phase with a two-sublattice structure with single-ion
wave functions

|A〉 = 1

2
|jz = 2〉 + 1√

2
|jz = 0〉 + 1

2
|jz = −2〉, (34)

|B〉 = 1

2
|jz = 2〉 − 1√

2
|jz = 0〉 + 1

2
|jz = −2〉, (35)

where A, B label the two different sublattices (planes with
even and odd z). Remarkably, these states are invariant under
time reversal. Since time-reversal symmetry is unbroken, there
is no magnetic order

〈ji〉 = 0. (36)

Therefore, this phase is a magnetic quadrupolar phase (or spin
nematic phase) and the orbital configuration is given by

〈ñA〉 =
(

2

3
+

√
3

6
,
2

3
−

√
3

6
,
2

3

)
(37)

〈ñB〉 =
(

2

3
−

√
3

6
,
2

3
+

√
3

6
,
2

3

)
. (38)

Here, we defined ñ ≡ (ñyz,ñxz,ñxy) for convenience.

C. Full cubic Hamiltonian

Although both the anisotropic limit and pure orbital
interaction support a two-sublattice ground state, it is still
questionable that the cubic Hamiltonian will also behave
likewise. In this section, we report the results of a systematic
investigation of the mean-field ground states of the full
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Hamiltonian, allowing for large unit cells (we considered
cells of up to four sites). We made no further assumptions
and variationally minimized the energy with respect to an
arbitrary wave function on every site of the unit cell. Finally,
we verified that each mean-field ground state is stable within
linear-flavor wave theory.9 The mean-field phase diagram is
depicted in Fig. 1, and the key features of each phase are listed
in Table I. Within the flavor wave theory, all seven phases
exhibit an energy gap. Next, we describe each of the seven
phases.

1. Antiferromagnetic (AFM100) state

For small J ′/J and V/J , the ground state is a typ-
ical antiferromagnetic phase with an ordering wave vec-
tor p = 2π (001). States with the equivalent momenta p =
2π (100),2π (010) are, of course, degenerate. To be specific,
we will take p = 2π (001) for all the two-sublattice phases
in the following. The variational mean-field ground-state
wave function on the A and B sublattices has the following
form:

|A〉 = x√
2

(|jz = 2〉 + |jz = −2〉) +
√

1

2
− x2|jz = 0〉

+ 1

2
(|jz = 1〉 + |jz = −1〉), (39)

|B〉 = x√
2

(|jz = 2〉 + |jz = −2〉) +
√

1

2
− x2|jz = 0〉

− 1

2
(|jz = 1〉 + |jz = −1〉), (40)

in which x is a real parameter, which is found by minimizing
the variational energy. Since, under time reversal, |jz = m〉 →
(−1)m|jz = m〉, these two states transform into one other
under time reversal. Therefore, the magnetic dipolar and
octupolar orders are antiparallel on two sublattices. Because
of the intrinsic strong SOC, the local moments are aligned by
crystalline anisotropy and in this state orient along the [100]
(or, equivalently, [010]) axis. A more precise description of
the symmetry breaking of the phase is given by introducing
the magnetic dipole and quadrupole moment operators. The
magnetic dipole moment is antiferromagnetically ordered,

〈jA/B〉 = ±m(1,0,0), (41)

with m = √
2x +

√
3(1 − 2x2). The magnetic quadrupole

tensor, however, is uniformly ordered,

〈
Q3z2

i

〉 ≡ 2
√

3(3〈ñi,xy〉 − 2) = q, (42)〈
Q

x2−y2

i

〉 ≡ 6〈ñi,yz − ñi,xz〉 = q ′ (43)

with q = 2
√

3(2x2 − 3/4) and q ′ = 2
√

3(1 − 2x2) + 3/2.
The uniform quadrupolar order (or orbital configuration)

can be understood to arise from the large NN AFM exchange
J , which favors time-reversal pairs on two sublattices. As the
ferromagnetic exchange and electric quadrupolar interaction

increase, the orbital-orbital interaction will become important
and the uniform orbital structure will break down.

2. Uniform ferromagnetic (FM111) state

With large J ′/J and small V/J , the ferromagnetic ex-
change dominates and favors a uniform ground state with the
spin polarization aligned with [111] or other equivalent lattice
directions. The mean-field ground state of this phase is a fully
polarized spin eigenstate with quantization axis along [111],
so that

〈ji〉 = m√
3

(1,1,1) (44)

with m = 2. And, the three orbitals are equally populated,

〈ñi〉 = (
2
3 , 2

3 , 2
3

)
, (45)

and the magnetic quadrupolar orders vanish,〈
Q3z2

i

〉 = 〈
Q

x2−y2

i

〉 = 0. (46)

3. Two-sublattice ferromagnetic (FM110) state

With large J ′/J and V/J , we obtain a FM110 state,
which is the same phase proposed in Ref. 9. This state can
be considered as a compromise between the tendencies of
J and J ′ to order the moments along the [100] and [111]
axes. The competition between these two effects allows the
orbital interaction to stabilize a coexisting quadrupolar order.
The result is that the orbital configuration has a two-sublattice
structure, and the magnetic moments on the two sublattices
are neither antiparallel nor parallel. The ground-state wave
function of this phase is parametrized by two complex numbers
x1 and x2:

|A〉 = 1√
2

(x2|jz = 2〉 + x2|jz = −2〉) + x0|jz = 0〉

+ 1√
2

(x1|jz = 1〉 + x1|jz = −1〉), (47)

|B〉 = 1√
2

(−x2|jz = 2〉 − x2|jz = −2〉) + x0|jz = 0〉

+ 1√
2

(−ix1|jz = 1〉 + ix1|jz = −1〉), (48)

where x0 =
√

1 − |x1|2 − |x2|2 and x1,2 is the complex conju-
gation of x1,2. From the wave function, we find that magnetic
dipole and quadrupole moments have the following form:〈

jA/B

〉 = m
1√
2

(1,1,0) ± m′ 1√
2

(1, − 1,0), (49)

〈
Q3z2

A/B

〉 = q, (50)〈
Q

x2−y2

A/B

〉 = ±q ′. (51)

Here, the actual expression of m,m′,q,q ′ in terms of x1 and
x2 is quite involved and not important for the purpose of
presentation. So, we will not write them out explicitly. Similar
omissions are made in later sections.

From Eq. (51), the total magnetic moment is along the
[110] direction, and the staggered magnetic dipole moment
is perpendicular to the total magnetic dipole moment and
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along the [11̄0] direction. The orbital configurations of the
two sublattices are similar to that in the quadrupolar phase
[see Eq. (38)].

4. Intermediate ferromagnetic (“∗”) state

Between the FM111 and FM110 phases, we find an
intermediate state, which we denote “∗”. This state also
has a two-sublattice structure with the ordering wave vector
p = 2π (001). We find that the ground-state wave function of
this phase is parametrized by four complex numbers x1,x2,x−1,
and x−2:

|A〉 = x2|jz = 2〉 + x1|jz = 1〉 + x0|jz = 0〉
+ x−1|jz = −1〉 + x−2|jz = −2〉, (52)

|B〉 = −x2|jz = 2〉 − ix1|jz = 1〉 + x0|jz = 0〉
+ ix−1|jz = −1〉 − x−2|jz = −2〉 (53)

with x0 =
√

1 − |x1|2 − |x2|2 − |x−1|2 − |x−2|2. The mag-
netic order in this phase interpolates between that of the FM111
and FM110 phases. The uniform magnetization orients along
an axis between the [111] and [110] directions. As in the
FM110 phase, the staggered magnetic dipole moment in phase
“∗” is along the [11̄0] direction. The orbital configuration has
the same two-sublattice structure as in the FM110 phase. The
corresponding order parameters are

〈jA/B〉 = (m1,m1,m2) ± m′ 1√
2

(1, − 1,0), (54)

〈
Q3z2

A/B

〉 = q, (55)〈
Q

x2−y2

A/B

〉 = ±q ′. (56)

5. Four-sublattice antiferromagnetic (“�”) state

In the region of a small J ′/J and an intermediate V/J , the
FM exchange interaction between time-reversal odd moments
has negligible effect, while the AFM exchange and electric
quadrupolar coupling are somewhat balanced. The keen com-
petition between these two interactions induces an interesting
intermediate phase: a four-sublattice antiferromagnetic phase,
which we denote “�”. The magnetic unit cell is the elementary
tetrahedron of the face-centered cubic (fcc) lattice. Similar to
the FM110 phase, the ground-state wave function is found to
be parametrized by two complex numbers x1 and x2:

|A〉 = 1√
2

(x2|jz = 2〉 + x2|jz = −2〉) + x0|jz = 0〉

+ 1√
2

(x1|jz = 1〉 + x1|jz = −1〉), (57)

|B〉 = 1√
2

(x2|jz = 2〉 + x2|jz = −2〉) + x0|jz = 0〉

+ 1√
2

(−x1|jz = 1〉 − x1|jz = −1〉), (58)

|C〉 = 1√
2

(−x2|jz = 2〉 − x2|jz = −2〉) + x0|jz = 0〉

+ 1√
2

(−ix1|jz = 1〉 + ix1|jz = −1〉), (59)

|D〉 = 1√
2

(−x2|jz = 2〉 − x2|jz = −2〉) + x0|jz = 0〉

+ 1√
2

(ix1|jz = 1〉 − ix1|jz = −1〉) (60)

with x0 =
√

1 − |x1|2 − |x2|2. The order parameters are

〈jA/B〉 = ±m(u1,u2,0), (61)

〈jC/D〉 = ±m(−u2,u1,0), (62)〈
Q3z2

A/B/C/D

〉 = q, (63)〈
Q

x2−y2

A/B

〉 = 〈
Q

x2−y2

C/D

〉 = ±q ′. (64)

It is easy to see from the above order parameters that
the orbital configuration still has a two-sublattice structure as
demanded by the orbital-orbital interaction, while the magnetic
dipolar order has a four-sublattice antiferromagnetic structure.
One can think of this state as breaking time-reversal symmetry
on top of a two-sublattice orbitally ordered state by developing
antiferromagnetic orders within each sublattice. States on
sublattices A and B form a time-reversal pair and states on
sublattices C and D form another time-reversal pair. But, it
is not a conventional antiferromagnetic state. In fact, in this
phase, the magnetic dipolar moment of the A or B sublattice
is nearly perpendicular to the magnetic dipolar moment of
the C or D sublattice. Consistent with strong magnetic
anisotropy, the staggered magnetizations 〈jA − jB + jC − jD〉
and 〈jA − jB − jC + jD〉 are oriented in a direction very close
to the [110] lattice direction.

6. Four-sublattice antiferromagnetic (“�”) state

In the intermediate J ′/J and the small V/J regimes, we
find another four-sublattice antiferromagnetic phase, the “�”
state. In this regime, the electric quadrupolar interaction may
be neglected, and we can understand the state as arising due to
the competition between FM and AFM exchange interactions.
In the AFM100 phase, every site has 8 NN AFM neighbors
and four NN FM neighbors. In the FM111 phase, every site has
0 NN AFM neighbors and 12 NN FM neighbors. In the “�,”
we find that, for every site, there are four NN AFM neighbors,
which is an intermediate case compared to the FM111 and
AFM100 phases. The ground-state wave function of this “�”
phase is parametrized by two complex numbers x1 and x2:

|A〉 = 1√
2

(x2|jz = 2〉 + x2|jz = −2〉) + x0|jz = 0〉

+ 1√
2

(x1|jz = 1〉 + x1|jz = −1〉), (65)

|B〉 = 1√
2

(x2|jz = 2〉 + x2|jz = −2〉) + x0|jz = 0〉

+ 1√
2

(−x1|jz = 1〉 − x1|jz = −1〉), (66)

|C〉 = 1√
2

(x2|jz = 2〉 + x2|jz = −2〉) + x0|jz = 0〉

+ 1√
2

(x1|jz = 1〉 + x1|jz = −1〉), (67)

094420-7



GANG CHEN AND LEON BALENTS PHYSICAL REVIEW B 84, 094420 (2011)

|D〉 = 1√
2

(x2|jz = 2〉 + x2|jz = −2〉) + x0|jz = 0〉

+ 1√
2

(−x1|jz = 1〉 − x1|jz = −1〉) (68)

with x0 =
√

1 − |x1|2 − |x2|2. As one can see from the wave
function, states on A and B sublattices form a time-reversal
pair and states on C and D sublattices form another time-
reversal pair. The magnetic dipolar and quadrupolar orders of
each sublattice are found to have the following relation:

〈jA/B〉 = ±m(u1,u2,0), (69)

〈jC/D〉 = ±m(u1, − u2,0), (70)〈
Q3z2

A/B/C/D

〉 = q, (71)〈
Q

x2−y2

A/B/C/D

〉 = q ′. (72)

Although both “�” and “�” states are four-sublattice states,
they are actually different phases. For instance, unlike in
the phase “�” discussed in the last section, the quadrupole
moments in the “�” phase are uniform. Intuitively, this is
because the orbital-orbital interaction is not large enough to
induce a two-sublattice structure in this regime.

7. Two-sublattice quadrupole (spin nematic) state

With an intermediate J ′/J and a large V/J , the orbital-
orbital interactions dominate over all other interactions in
the Hamiltonian. Therefore, the ground state reduces to
quadrupolar phase found in Sec. III B. The full set of order
parameters is

〈jA/B〉 = 0,
〈
Q3z2

A/B

〉 = 0,
〈
Q

x2−y2

A/B

〉 = ±q ′ (73)

with q ′ = 2
√

3.

8. T = 0 transitions

At the mean-field level, the nature of the transitions
between different phases can be understood from the
wave functions. If the wave function of one phase can
be continuously tuned to that of the neighboring phase,
then the phase transition between these two phases may
be continuous. Otherwise, it is first order. We find that the
possible continuous transitions are FM111-“∗”, “∗”-FM110,
FM110-quadrupolar, quadrupolar-“�,” and “�”-AFM100.
The remaining transitions are first order at mean-field level.
We do not discuss fluctuation effects here, which would be
required for a full understanding of the transitions.

IV. T > 0 PHASES

In this section, we study the effects of thermal fluctuations
on the phase diagram for T > 0. We do this by using standard
Weiss mean-field theory, taking into account the symmetry
structure of the phases identified in Sec. III. The mean-
field method produces self-consistent equations for the order
parameters, which can be solved, choosing the solution with
minimal free energy, to obtain the temperature dependence of
physical quantities. These equations are generally sufficiently

complicated that, even taking into account symmetry condi-
tions, only a numerical solution is possible.

Before presenting the numerical solution, we discuss a
few aspects of the phase diagram, which can be understood
analytically. Specifically, we consider the instabilities of the
paramagnetic state on decreasing the temperature from large
to small values. Several instabilities are possible, which
are signaled in the mean-field calculations by the appearance
of a solution of a given symmetry S at a temperature TS .
Mathematically, the temperature TS is defined by the vanishing
of the coefficient of the quadratic term in the order parameter
associated with the symmetry S in the Landau free energy or,
equivalently, the divergence of the mean-field susceptibility
of the S order parameter. The order parameters in question
are the magnetization vector and quadrupolar tensor at p = 0
and at p = Q = 2π (001) [note that the four-sublattice states
should be described by several p = 2π (001) wave vectors].
In this way, we obtain four temperatures Tm(0), Tm(Q), TQ(0),
TQ(Q). For a given value of the exchange parameters (J,J ′,V ),
the largest of these temperatures will determine the actual
instability of the paramagnetic state, and thus the first type
of order that is encountered upon lowering the temperature.
In principle, a first-order transition could also occur at a
temperature higher than this, but the full mean-field solution
shows that this does not occur except in a region where
J ′/J,V/J � 1.

The instability temperatures may be determined analyti-
cally. One finds

Tm(0) = 6J ′ − 2J

5
+

√
2J 2 − 20JJ ′ + 52J ′2

5
, (74)

TQ(0) = 7

60
(J − 6J ′ + 7V ), (75)

Tm(Q) = 2

15

[
J − 2J ′ + r cos

α

3

]
, (76)

TQ(Q) = 7

180
(−3J + 18J ′ + 43V ). (77)

Here, we defined

r =
√

6J 2 − 20JJ ′ + 32J ′2, (78)

α = Arg[5 − 72y + 204y2 − 160y3

+ i
√

(r/J )6 − (5 − 72y + 204y2 − 160y3)2], (79)

and y = J ′/J .
In the parameter space depicted in Fig. 1, TQ(p = 0) is

always smaller than the other three temperatures. Thus, there is
never an instability of the paramagnet to a uniform quadrupolar
ordered state. Comparing the remaining three temperatures,
we find three distinct regions shown in Fig. 2. In region I, the
highest transition temperature is Tm(Q), and magnetic order
with an enlarged unit cell sets in directly from the paramagnetic
state. In region II, the highest transition temperature is TQ(Q)
and two-sublattice quadrupolar (spin nematic) phase occurs
neighboring the paramagnetic state. In region III, the highest
transition temperature is Tm(Q), and the paramagnetic phase
undergoes a transition directly to a ferromagnetic one.

On further lowering of temperature, additional phases may
occur. Full mean-field calculations show that there are, in fact,
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FIG. 3. (Color online) Order parameters plotted for three subregions of region I: (a) Square (red) (〈Qx2−y2

A − Q
x2−y2

B 〉)/2, ball (blue) 〈Q3z2

A +
Q3z2

B 〉/2, diamond (yellow) |〈jA + jB〉|/2, and triangle (green) |〈jA − jB〉|/2. (b) Square (red)
∑

i=A,B,C,D〈Q3z2

i 〉, ball (blue)
∑

i=A,B,C,D〈Qx2−y2

i 〉,
diamond (yellow) |〈jx

A − jx
B + jx

C − jx
D〉|/4, and triangle (blue) |〈jy

A − j
y

B − j
y

C + j
y

D〉|/4. (c) Square (red) 〈Qx2−y2

A + Q
x2−y2

B 〉/2, ball (blue)

〈Q3z2

A + Q3z2

B 〉/2, and diamond (yellow) |〈jA − jB〉|/2.

10 different patterns of thermal evolution, indicated by the
different subregions in Fig. 2. We discuss this in further detail
below.

A. Region I

In region I, the system has a direct transition from
the high-temperature paramagnetic phase to low-temperature
magnetically ordered phases specified by the dashed curves in
Fig. 2. At mean-field level, the transitions to the FM110 phase
in region Ia and AFM100 phase in region Ic are found to be
first order, while a continuous transition to the four-sublattice
“�” phase is observed in region Ib (see Fig. 3).

B. Region II

In region II, there is a broad p = 2π (001) quadrupolar
phase in the intermediate temperature. Unlike the spin nematic
state in the ground-state phase diagram, this intermediate
temperature quadrupolar phase is actually a biaxial spin
nematic state in which the quadrupole moment 〈Qμν

i 〉 has three
distinct eigenvalues. At mean-field level, the transition from
the paramagnetic phase to quadrupolar phase is continuous
(see Figs. 4 and 5). Beyond mean-field theory, this transition is
believed to be in a three-dimensional O(3) universality class.9

As mentioned previously, the low-temperature phases
(FM110 in region IIa, phase “�” in region IIc) can be regarded
as further breaking the time-reversal symmetry coming from
the quadrupolar phase at intermediate temperature. This
transition is found to be continuous at mean-field level. The
symmetry breaking associated with this transition can be

described by several Ising order parameters (uniform and
staggered magnetization). This transition may be continuous
beyond mean field.9

The transition from quadrupolar phase to AFM100 in
region IId is found to be strongly first order in mean-field
theory (see Fig. 5). This is easy to understand from a simple
symmetry analysis. The AFM100 phase has a uniform orbital
configuration and its symmetry is not a subgroup of the
quadrupolar phase. Hence, it is almost impossible for the
transition to be continuous.

C. Region III

In region III, the intermediate temperature phase is FM111
(see Fig. 6). The transition from paramagnetic to FM111 is
found to be continuous at mean-field level. The transition from
FM111 to low-temperature phases (FM110 and phase “∗”)
is also found to be continuous in our mean-field analysis.
The transition from FM111 to phase FM110 can be simply
described by an Ising variable mz. Similarly, the transition
from FM111 to phase “∗” can also be described by an Ising
value, which is the staggered magnetization. Thus, these two
transitions could be continuous beyond mean field.

D. Magnetic susceptibility

In this section, we discuss the magnetic response at
T > 0. We focus particularly on the intriguing nonmagnetic
quadrupolar phase of region II in Fig. 2. The magnetic response
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FIG. 4. (Color online) Order parameters plotted in four subregions of region II: (a) Square (red) 〈Qx2−y2

A − Q
x2−y2

B 〉/2, ball (blue) 1
2 〈Q3z2

A +
Q3z2

B 〉, triangle (green) |〈jA + jB〉|/2, and diamond (yellow) |〈jA − jB〉|/2. (b) Square (red) 〈Qx2−y2

A − Q
x2−y2

B 〉/2 and ball (blue) 1
2 〈Q3z2

A + Q3z2

B 〉.
(c) Square (red) 〈Qx2−y2

A + Q
x2−y2

B − Q
x2−y2

C − Q
x2−y2

D 〉/4, ball (blue)
∑

i=A,B,C,D〈Q3z2

i 〉/4, and diamond (yellow) 〈Qx2−y2

A + Q
x2−y2

B 〉/2, upper
triangle (green) |〈jA − jB〉|/2, and down triangle (blue) |〈jA + jB〉|/2.

is found to be an important indicator for the quadrupolar
ordering transition.

The general features, observed in Fig. 7, are as follows.
At high temperatures, the magnetic susceptibility χ obeys
the Curie-Weiss law χ−1 ∼ A(T − 
CW), when T � 
CW.
The Curie-Weiss temperature is readily obtained from a
high-temperature series expansion


CW = −17J + 66J ′

25
. (80)

0.2 0.4 0.6 0.8 1.0 1.2

2

1

0

1
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T

FIG. 5. (Color online) Order parameters in region IId with

J ′ = 0.1J,V = 0.5J : square (red) 〈Qx2−y2

A − Q
x2−y2

B 〉/2, ball (blue)
1
2 〈Q3z2

A + Q3z2

B 〉, diamond (yellow) 〈jx
A − jx

B + j
y

C − j
y

D〉/4, and tri-
angle (green) 〈jy

A − j
y

B − jx
C + jx

D〉/4.

From the mean-field solution, we obtain the susceptibility at
lower temperature. At the quadrupolar ordering transition,
a cusp in χ is observed (see Fig. 7). This cusp separates
the true Curie-Weiss regime of the paramagnetic phase from
a second Curie-Weiss regime at intermediate temperatures.
The existence of two Curie-Weiss regimes can be under-
stood as due to the remaining magnetic degeneracy of the
quadrupolar phase. Specifically, the intermediate quadrupolar
phase partially lifts the fivefold spin-orbital degeneracy, giving
rise to a local doublet, which is a time-reversal pair. One
should note that this pair is not, however, a Kramer’s pair.
This doublet is responsible for the Curie-Weiss behavior at
the intermediate temperature regime. Looking in more detail,
since the spin nematic phase at intermediate temperature has a
tetragonal symmetry, we obtain two different susceptibilities:
parallel to the wave vector p = 2π (001) (χzz) and normal
to it (χxx = χyy). As the temperature is lowered further and
magnetic order develops, this is reflected in additional features
in the susceptibility.

V. DISCUSSION

In this paper, we introduced and analyzed a spin-orbital
model to describe the localized electrons in a 4d2 or 5d2

configuration on an fcc lattice, in which strong spin-orbit
coupling and the threefold degeneracy of the two-electron
orbital states combine to induce a local effective j = 2 mo-
ment. Nearest-neighbor antiferromagnetic and ferromagnetic
exchange interactions and electric quadrupolar interaction
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FIG. 6. (Color online) Order parameters plotted in three subregions of region III: (a) Uniform magnetization |〈ji〉|. (b) Square (red)

〈Q3z2

A + Q3z2

B 〉/2, ball (blue) 〈Qx2−y2

A − Q
x2−y2

B 〉/2, diamond (yellow) |〈jA − jB〉/2|, upper triangle (green) |〈j⊥A + j⊥B 〉/2|, and down triangle

(blue) |〈jzA + jzB〉/2|. (c) Square (red) 〈Qx2−y2

A − Q
x2−y2

B 〉/2, ball (blue) 〈Q3z2

A + Q3z2

B 〉/2, diamond (yellow) |〈jA − jB〉/2|, upper triangle (green)
|〈j⊥A + j⊥B 〉/2|, and down triangle (blue) |〈jzA + jzB〉/2|.

were included in the model Hamiltonian. We obtained the
ground-state and finite-temperature phase diagrams by Weiss
mean-field theory. Seven different ground states (or low-
temperature) phases were found. In a large portion of the
parameter space, the system develops a two-sublattice struc-
ture of orbital configuration, which is driven by the diagonal
orbital-orbital interaction. Most interestingly, a nonmagnetic
spin nematic ground state occurs in the ground-state phase
diagram and extends to a large portion of the phase diagram
at finite temperature. Moreover, we find 10 different ways for
the system to evolve from the high-temperature paramagnetic
phase to the 7 low-temperature phases.

Our theory has provided numerous predictions for experi-
ment. For the magnetic ordered phases that break time-reversal
symmetry, neutron scattering, NMR, and/or magnetization
measurements can probe the magnetic structure. For the spin
nematic phase, similar to the one-electron case discussed in
Ref. 9, the magnetic quadrupole order is expected to induce a
distortion of the lattice and lower the crystal symmetry. Specif-
ically, the quadrupolar phase corresponds to the tetragonal
space group P 42/mnm (number 136),9 distinct from the the
cubic space group Fm3̄m of the high-temperature phase. If
this distortion leads to a measurable effect, high-resolution
x-ray scattering should be able to identify the spin nematic
order. The low-temperature spin nematic state may also be
identified directly from measurements of the orbital state by
resonant x-ray scattering or x-ray reflectometry, which could
be compared with the theoretical wave functions in Sec. III B.

Now, we discuss the specific materials that have been
studied experimentally to date. We start from Ba2CaOsO6.13

It retains the cubic Fm3̄m structure down to 17 K. The
Curie-Weiss temperature of this material is −157 K. The
magnetic moment 1.61μB is much smaller than the spin-only
contribution 2.83μB for spin S = 1, but close to our prediction
1.25μB based on strong SOC in Sec. II A. The deviation
can be understood from the effect of hybridization of the
Os d orbitals with the oxygen p orbitals, which increases
the local magnetic moment.9 Both magnetic susceptibility
and specific-heat measurement find a single antiferromagnetic
phase transition at TN = 51 K. According to our theory, a single
magnetic transition corresponds to region I in Fig. 2. Since the
low-temperature phase of Ba2CaOsO6 is antiferromagnetic,
then the AFM100 and “�” phases are consistent with magne-
tization measurements. The enlarged unit cell and detailed
orientation of magnetic moments predicted here for these
phases should provide targets for future neutron scattering
measurements.

The structure of La2LiReO6 was observed to be monoclinic
(space group P 21/n).18 This material has a Curie-Weiss
temperature −204 K, indicating a large antiferromagnetic
exchange. The magnetic moment is 1.97μB, the smallest
of which suggests the importance of strong SOC. Magnetic
susceptibility, neutron diffraction, and μSR did not find
magnetic long-range order down to 2 K, pointing to a possible
quantum spin-liquid phase in this material. Since this crystal
structure of this material deviates strongly from a cubic one,
our predictions based on the cubic structure are not applicable.
Instead, some splitting of the j = 2 manifold should be taken
into account. Because this is a non-Kramers ion, one could
imagine a trivial nonmagnetic ground state at the single-ion
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FIG. 7. (Color online) Inverse magnetic susceptibility of different subregions of region II in Fig. 2. Blue (lower) curve: 1/χxx , red (upper)
curve: 1/χzz, green (middle) curve: 1/χpowder.

level. However, we note that, in Ref. 18, substantial differences
were observed between zero field and field-cooled samples
below 50 K, which was argued to be evidence against a
single-ion singlet. If the local ground state is instead a
doublet, an exotic ground state could be favored, as proposed
for the isostructural material La2LiMoO6.25 More theoretical
and experimental study of the crystal field splitting and
multiplet structure is required to further understand the ground
state.

Ba2YReO6 is another material with a cubic crystal structure
(space group Fm3̄m).18 The Curie-Weiss temperature is
−616 K, suggesting a predominant antiferromagnetic ex-
change. The magnetic moment 1.93μB is consistent with the
picture of strong SOC. The magnetic susceptibility data clearly
suggest two transitions and show two Curie regimes. The
first transition is at ∼ 150 K and the second (spin freezing)
transition is at ∼ 50 K. The second Curie regime appears at
the intermediate temperatures between 50 and 150 K. Neutron
diffraction shows the absence of detectable magnetic Bragg
peaks. μSR relaxation data observe spin freezing at low
temperature. We may speculate that the spin freezing results
from disruption by defects of an ordered phase that would
otherwise occur in an ideal sample. From the existence of two
Curie regimes, we postulate that Ba2YReO6 corresponds to
region II in the phase diagram Fig. 2. This would identify
the intermediate temperature phase as a spin nematic. Interest-
ingly, μSR measured below 100 K found evidence for two spin
components, which may be consistent with the two-sublattice
nature of the quadrupolar and spin nematic phases. Let us con-
sider the low-temperature phase. Given the very large negative
Curie-Weiss temperature, the ferromagnetic exchange is likely

weak in Ba2YReO6. Hence, comparing with Fig. 1, the natural
low-temperature phases are AFM100, the four-sublattice
“�” phase, or the spin nematic phase. Characterization of
the type of disorder in this material would be helpful in
further elucidating the physics. It would also be interesting
to more directly attempt to detect the proposed quadrupo-
lar order experimentally in the intermediate temperature
phase.

This paper (and the related study in Ref. 9) provide a
theoretical framework to understand the magnetism and orbital
physics of this class of materials. Looking to the future, there
is considerable room for refinement of the theory. It would
be useful and interesting to include the Jahn-Teller effect,
and to develop some microscopic understanding (perhaps
from ab initio calculations) of the crystal-field splittings in
noncubic materials. Within the present model, more studies
of thermal and quantum fluctuations beyond mean-field and
spin-wave approaches would be desirable. An understanding
of the types of disorder in these materials and their effects on
the magnetism is also needed. Hopefully, continued pursuit
and refinement of measurements on this interesting class of
materials will motivate further theoretical work on these and
other points.
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