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Vison states and confinement transitions of Z2 spin liquids on the kagome lattice
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We present a projective symmetry group (PSG) analysis of the spinless excitations of Z2 spin liquids on the
kagome lattice. In the simplest case, vortices carrying Z2 magnetic flux (“visons”) are shown to transform under
the 48 element group GL(2,Z3). Alternative exchange couplings can also lead to a second case with visons
transforming under 288-element group GL(2,Z3) × D3. We study the quantum phase transition in which visons
condense into confining states with valence bond solid order. The critical field theories and confining states are
classified using the vison PSGs.
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I. INTRODUCTION

Frustrated quantum magnets have a long history in con-
densed matter physics. Due to their relative simplicity in
comparison to itinerant electron systems, they provide an ideal
playground to study strongly correlated states of matter and
the effects of competing ground states. One long-standing goal
is to identify realistic systems that realize spin-liquid ground
states, i.e., strongly correlated states of localized spins that
do not break any symmetries. A promising candidate is the
antiferromagnetic spin-1/2 Heisenberg model on the kagome
lattice and its realization in nature in the from of the mineral
Herbertsmithite.1,2 Until recently several theoretical works
based on dimer model approaches, series expansions as well as
numerical calculations suggested that the ground state of this
model is not a spin liquid but a valence bond solid,3–7 i.e., a
state that does not break the spin rotation symmetry but instead
breaks a lattice symmetry. However, a recent DMRG study of
Yan et al.8 has provided striking evidence for a spin-liquid
ground state for the S = 1/2 Heisenberg antiferromagnet on
the kagome lattice. Yan et al. found a gap to all excitations,
and it is plausible that their ground state realizes a Z2 spin
liquid.9–16

The results of Yan et al. also indicate the presence of
proximate valence bond solid (VBS) states in which the
space group symmetry of the kagome lattice is broken and
the fractionalized excitations of the spin liquid are confined
into integer spin states. The confinement quantum phase
transition should be accessible in extended models with further
neighbor exchange interactions, and numerical studies of such
transitions can serve as a valuable probe of characteristics of
the spin liquid.

This paper shall classify elementary vortex excitations of
the Z2 spin liquid, carrying Z2 magnetic flux,9,17,18 often
called visons, which are analogous to the Abrikosov vortices
of BCS superconductors19 [after electromagnetism is replaced
by strong coupling to a compact U(1) gauge theory]. We will
compute their projective symmetry group20 (PSG) and their
spectrum using an effective frustrated Ising model.21 Note
that the Ising “spin” has nothing to do with the S = 1/2
spin of the underlying antiferromagnet, and it is instead the
creation or annihliation operator of the vortex excitation that is
centered on sites of a lattice dual to that of the antiferromagnet.
For the kagome antiferromagnet, the Ising model resides on
the dice lattice, and the simplest effective Ising model has

a degenerate momentum-independent spectrum.4,22 We shall
show how the PSG constraints allow a systematic analysis of
further neighbor interactions in the effective Ising model. Such
extended interactions must generically be present,23 and they
lead to well-defined vison states with a finite effective mass.
Depending on the values of these effective interactions, we
find two possibilities for the vison states: the simplest case
has them transforming under the 48-element group GL(2,Z3),
the group of 2 × 2 matrices with nonzero determinant whose
matrix elements belong to the fieldZ3. The more complex case
has visons states of the 288-element group GL(2,Z3) × D3.

Armed with this description of the vison states, we propose
quantum field theories for the confinement transitions of
Z2 spin liquids on the kagome lattice. These transitions
are associated with condensation of visons18,21,23–27 and are
expressed in terms of a multicomponent “relativistic” scalar
field; the field theory with GL(2,Z3) symmetry appears in
Eq. (3.14). These field theories also place constraints on the
specific patterns of spatial broken symmetry in the confining
VBS states found next to the quantum critical point and we will
present phase diagrams illustrating these states. Visualizations
of two possible VBS states are shown in Fig. 1. The left VBS
pattern in Fig. 1 appears for the simplest case of the GL(2,Z3)
visons, and it is interesting that it is closely related to the
“diamond pattern” that is enhanced in the numerical studies of
Yan et al.8 The right pattern in Fig. 1 is one of many possible
VBS states for the GL(2,Z3) × D3 visons and maps to the
“honeycomb” VBS states found in earlier studies.3–7

We will begin in Sec. II with a review of the basic
characteristics of Z2 spin liquids and of their vison excitations.
A key property of a vison is that it picks up a Aharanov-Bohm
phase of π on encircling every S = 1/2 spin on the sites of the
antiferromagnet,18,21,24,27 as will be described in Sec. II.

Section III contains our main new results. We begin with
general effective theories of vison motion that incorporate
the Aharanov-Bohm phase23,25 of π : for the kagome anti-
ferromagnet, these are conveniently expressed in terms of an
effective, fully frustrated Ising model on the dice lattice. A key
parameter in this Ising model is the sign of a particular next-
nearest-neighbor interaction. A “ferromagnetic” sign leads to
the simpler vison PSG and is discussed in Sec. III A; the
more complicated “antiferromagnetic” case is discussed in
Sec. III B. In both cases, we use the vison PSG to present
quantum field theories for the confinement transitions and
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FIG. 1. (Color online) Visualization of two different valence bond solid states as dimer coverings of the kagome lattice. Each dimer
represents a frustrated bond in the ordered phase of the corresponding Ising model on the dual dice lattice. The left pattern, representing the
VBS 1F phase (see text), is a hard-core dimer covering with a 12-site unit cell that maximizes the number of perfectly flippable diamonds
(highlighted in gray). Note, however, that the choice of diamonds is not unique because the dimer pattern is symmetric with respect to π/3
rotations around the hexagons marked by a black dot. The pattern on the right represents the VBS 1A phase (see text), has a 36-site unit cell,
and maximizes the number of perfectly flippable hexagons (highlighted in gray).

discuss renormalization group analyses of these quantum
critical points. The field theories are also used to classify the
patterns of lattice symmetry breaking in the confining valence
bond solid states.

In Appendix A the explicit calculation of a visons Berry
phase can be found. The results of a PSG analysis of visons
for different lattice geometries are summarized in Appendix B.

II. Z2 SPIN LIQUIDS AND VISONS

We begin by a review of the basic properties of Z2 spin
liquids, following the description in Ref. 11.

It is convenient to describe the S = 1/2 spins �Si using
Schwinger bosons28 biα (α = ↑,↓)

�Si = 1
2b

†
iα �σαβbiβ, (2.1)

where �σ are the Pauli matrices and the bosons obey the local
constraint ∑

α

b
†
iαbiα = 1 (2.2)

on every site i. Our analysis below can be easily extended to
gapped Z2 spin liquids obtained from the Schwinger fermion
formulation,10,14–16 but we will consider only the Schwinger
boson case for brevity.

The Z2 spin liquid is described by an effective boson
Hamiltonian

Hb = −
∑
i<j

Qij εαβb
†
iαb

†
jβ + H.c. + λ

∑
i

b
†
iαbiα, (2.3)

where ε is the antisymmetric unit tensor, λ is chosen to satisfy
the constraint in Eq. (2.2) on average, and the Qij = −Qji are
a set of variational parameters chosen to optimize the energy
of the spin-liquid state. Generally, the Qij are chosen to be
nonzero only on near-neighbor links. The “Z2” character of
the spin liquid requires that the links with nonzero Qij can
form closed loops with an odd number of links.9–11 If the state

preserves time-reversal symmetry, all the Qij can be chosen
as real.

This effective Hamiltonian also motivates a wave function
of the spin liquid13,29

|SL〉 = P exp

⎛
⎝∑

i<j

fij εαβb
†
iαb

†
jβ

⎞
⎠ |0〉, (2.4)

where |0〉 is the boson vaccum, P is a projection operator that
selects only states that obey Eq. (2.2), and the boson pair wave
function fij = −fji is determined by diagonalizing Eq. (2.3)
by a Bogoliubov transformation [see Eq. (A5) in Appendix A].

The Schwinger boson approach also allows a description
of the vison excited states.9,19 We choose the vison state as
the ground state of a Hamiltonian, Hv

b , obtained from H by
mapping Qij → Qv

ij [see Eq. (A1)]; the vison state |�v〉 then
has a wave function as in Eq. (2.4) but with fij → f v

ij [see
Eq. (A4)]. Far from the center of the vison, we have |Qv

ij | =
|Qij |, while closer to the center there are differences in the
magnitudes. However, the key difference is in the signs of
the link variables, as illustrated in Fig. 2: There is a “branch-
cut” emerging from the vison core along which sgn(Qv

ij ) =
−sgn(Qij ). This branch-cut ensures that the Z2 flux equals −1
on all loops which encircle the vison core, while other loops
do not have nontrivial Z2 flux. Such a configuration of the Qv

ij

is expected to be a metastable solution of the Schwinger boson
mean-field equations, representing a vison excitation.

The previous solution for the vison state19 was obtained
using a continuum field theoretic representation of the
Schwinger boson theory, valid in the limit of a small energy
gap toward spinful excitations. In principle, such a solution
can also be obtained by a complete solution of the Schwinger
boson equations on the lattice, but this requires considerable
numerical effort. Here, we illustrate the solution obtained in
the of a large spin gap. In the large spin gap limit,30 we
can integrate out the Schwinger bosons and write the energy
as a local functional of the Qij . This functional is strongly
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X

FIG. 2. (Color online) A vison on the kagome lattice. The center
of the vison is marked by the X. We have sgn(Qv

ij ) = −sgn(Qij ) only
on the links marked by the wavy lines.

constrained by gauge invariance: for time-independent Qij ,
this functional takes the form

E[{Qij }] = −
∑
i<j

(
α|Qij |2 + β

2
|Qij |4

)

+K
∑

even loops

QijQ
∗
jk . . . Q∗

	i (2.5)

Here α, β, and K are coupling constants determined by the
parameters in the Hamiltonian of the antiferromagnet. We have
shown them to be site independent, because we have only
displayed terms in which all links and loops are equivalent;
they can depend on links and loops for longer range couplings
provided the full lattice symmetry is preserved. We describe
the results of a minimization of E[{Qij }] on the simpler case
of the triangular lattice in Fig. 3. The magnitudes of Qv

ij are
suppressed close to the vison and converge to Qij as we move
away from the vison (modulo the sign change associated with
the branch cut), analogous to the Abrikisov vortices. Despite
the branch-cut breaking the threefold rotation symmetry, the
gauge-invariant fluxes of Qv

ij preserve the rotation symmetry.
Let us now consider the motion of a single vison. A

key ingredient is the Berry phase a vison accumulates while
moving through the background spin liquid. The gauge-
invariant Berry phases are those associated with a periodic
motion, and so let us consider the motion of a vison along a
general closed loop C. We illustrate the simple case where C
encloses a single site of the triangular lattice antiferromagnet
in Fig. 4. The Berry phase for this periodic motion can be
computed in a manner analogous to that presented in Sec. III A
of Ref. 32 for a monopole in a U(1) spin liquid; details appear
in Appendix A. The final gauge-invariant Berry phase turns
out to be given by the gauge transformation required to map
the final state to the initial state. The analysis in Fig. 4 shows
that the required gauge transformation is

biα → −biα, for i inside C
(2.6)

biα → biα, for i outside C.

By Eq. (2.2), each site has one boson, and so the total Berry
phase accumulated by |�v〉 is

π × (number of sites enclosed by C) , (2.7)

FIG. 3. (Color online) A vison on the triangular lattice (a similar
solution is expected on the kagome lattice). The center of the vison is
marked by the X. The wavy line is the “branch-cut” where we have
sgn(Qv

ij ) = −sgn(Qij ) only on the links crossed by the line. Plotted is
the minimization result of E[{Qij }] with α = 1,β = −2,K = −0.5.
Minimization is done with the cluster embedded in a vison-free lattice
with all nearest-neighbor links Qij . The numbers are (Qij − Qv

ij ) and
the thickness of the links are proportional to (Qv

ij − Qij )1/2. K < 0
gives rise to the zero flux state while K > 0 favors the π flux state
where the unit cell is doubled. The zero and π flux states without the
vison have been studied previously.11,31

as recognized in earlier works.18,21,23,25,27 It is also clear that for
a spin S antiferromagnet, the Berry phase would be multiplied
by a factor of 2S.

Finally, let us also mention the spinon states, although
these will not play a role in the subsequent analysis of the
present paper. These are created by applying the Bogoliubov
quasiparticle operator γ †

μα (Appendix A) on the spin-liquid
ground state; in this manner we obtain the spinon state

|μα〉 =
∑

	

(U−1∗)μ	|	α〉
(2.8)

|	α〉 = P b
†
	α exp

⎛
⎝∑

i<j

fij εαβb
†
iαb

†
jβ

⎞
⎠ |0〉,

where Uiμ is a Bogoliubov rotation matrix defined in
Appendix A. We can now also consider a spinon well separated
from a vison and describe the motion of a vison along a
large contour C which encircles the spinon. First, consider the
motion of a vison around the spinon state |	α〉 localized on the
site 	. Proceeding with the argument as above, the projection
onto states that obey Eq. (2.2) now implies that the Berry phase
for such a process is π × [(number of sites enclosed by C) −
1]. The transformation to the spinon state |μα〉 will not change
the result, provided the “wave function” (U−1∗)μ	 is localized
well within the contour C. Thus, relative to the Berry phase
in the case without a spinon, the vison acquires an additional
phase of π on encircling a spinon, i.e., the spinons and visons
are relative semions.17
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FIG. 4. (Color online) Periodic motion of a vison around a closed
loop C on the triangular lattice. Here C encloses the single site marked
by the filled circle. The wavy lines indicate sgn(Qv

ij ) = −sgn(Qij ),
as in Fig. 2. The bottom state is gauge equivalent to the top state, after
the gauge transformation biα → −biα only for the site i marked by
the filled circle.

III. PSG ANALYSIS OF THE FULLY FRUSTRATED ISING
MODEL ON THE DICE LATTICE

The analysis of Sec. II suggests a simple effective model for
the vison fluctuations about the Z2 spin-liquid ground state.
In the framework of the path-integral formulations of Ref. 11,
the visons are saddle points of the Qij with π flux, as shown
in Fig. 3. Each saddle point traces a world line in spacetime,
representing the time evolution of the vison. The Berry phase
computation in Sec. II shows that this world line picks up π flux
each time it encircles a kagome lattice site. We know, further,
that two such world lines can annihilate each other, because
2π magnetic flux is equivalent to zero flux. So if we interpret
the word lines as the trajectory of a particle, that particle must
be its own antiparticle and it has a real field operator. In this
manner, we see that the fluctuations represented as the sum

over all vison world lines is precisely that of a frustrated Ising
model in a transverse field18,21,27:

H = −
∑
i<j

Jij φiφj + . . . , (3.1)

where the product of bonds around each elementary plaquette
is negative ∏

plaq.

sgn(Jij ) = −1. (3.2)

Also, we have not displayed the transverse-field term, because
most of our symmetry considerations are restricted to time-
independent, static configurations.

In the following we will use a soft-spin formulation where
the φj ’s take real values. This model is invariant under
Z2 gauge transformations φj → σjφj , Jij → σiσjJij with
σj = ±1. For the case of the Z2 spin liquid on a kagome
lattice the dual Ising model lives on the dice lattice, shown
in Fig. 5. The dice lattice has three independent sites per
hexagonal unit cell; two of them are three-coordinated and
one is six-coordinated. Flipping a dual Ising spin changes the
flux through a plaquette on the kagome lattice by π , thereby
creating or annihilating a vison. The magnetically disordered
phase of the Ising model corresponds to a Z2 spin liquid with
deconfined spinon excitations, whereas the ordered phases
describe different valence bond solids where the visons are
condensed and fractional excitations are confined.

We study the confinement transitions of the spin liquid by
constructing a Ginzburg-Landau functional that is consistent
with the projective symmetry group (PSG), i.e., the combi-
nation of lattice-symmetry and Z2 gauge-transformations that
leave the Hamiltonian (3.1) together with (3.2) invariant. In
order to determine the PSG transformations we fix the gauge
of nearest-neighbor interactions as shown in Fig. 5, thereby
obtaining a unit cell with 12 sites. The generators of the dice
lattice symmetry group are translations by one of the two basis
vectors, e.g., u, reflections about one axis, e.g., the x axis,
and π/3 rotations about the central six-coordinated site. Since
our gauge choice is already invariant under rotations, we only
need to determine the gauge-transformations corresponding
to translations and reflections to specify the PSG. These are
shown in Fig. 6.

1

2

3

4

5

6

7

8

9

10

11

12CBA

u

v

FIG. 5. (Color online) (Left) Unit cell of the dice lattice consisting
of the three independent sites labeled A, B, and C. The A sites are
six-coordinated, whereas the B and C sites are three-coordinated. The
basis vectors u = (3/2,

√
3/2) and v = (3/2, − √

3/2) are indicated
by dashed arrows. (Right) Gauge choice for the fully frustrated Ising
model on the dice lattice with a 12-site unit cell. Red thick bonds are
frustrated, i.e., sgn(Jij ) = −1.
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The dispersion relations of the soft-spin modes can be ob-
tained directly from the Hamiltonian (3.1). The corresponding
action takes the form

S =
∑
�,q

φ
(i)
q,�

[
(�2 + m2)δi,j − J (ij )

q

]
φ

(j )
−q,−�, (3.3)

where the summation over the sublattice indices i,j = 1 . . . 12
is implicit and J

(ij )
q denotes the Fourier transform of the

interaction matrix Jij and we have included a kinetic energy
with frequency � (which descends from the transverse field)
and a mass term, m. As noted earlier,4,22 the frustrated Ising
model on the dice lattice with nearest-neighbor interactions
gives rise to three flat bands (each being fourfold degenerate
in our gauge choice with a 12-site unit cell), which would

result in infinitely many critical modes. In order to lift this
degeneracy we include further interactions beyond nearest
neighbors23 that are consistent with the PSG. Physically,
these interactions correspond to the hopping of visons beyond
nearest neighbors. Different masses on the three- and six-
coordinated sites would be allowed by the PSG, but they do not
give rise to a momentum dependence of the modes and thus
do not change the picture qualitatively. Of the five possible
additional interactions up to a distance of 2 times the nearest-
neighbor bond length only one is consistent with the PSG.
This interaction, shown in Fig. 7, connects different three-
coordinated lattice sites and gives rise to a nonflat dispersion.
The Fourier transform of the interaction matrix Jij takes the
form

J (ij )
q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 κ∗
1 0 0 0 e−i2qu 0 0 0 0

1 0 0 1 1 −1 0 0 0 0 −e−i2qv e−i2qv

1 0 0 ei2q(v−u) −1 0 1 0 0 e−i2qu 0 −e−i2qu

κ1 1 ei2q(u−v) 0 0 0 0 1 0 0 0 0

0 1 −1 0 0 0 0 0 1 0 0 κ∗
2

0 −1 0 0 0 0 0 1 1 0 κ∗
3 0

0 0 1 0 0 0 0 −ei2q(v−u) 1 κ∗
1 0 0

ei2qu 0 0 1 0 1 −ei2q(u−v) 0 0 −1 ei2q(u−v) 0

0 0 0 0 1 1 1 0 0 1 1 1

0 0 ei2qu 0 0 0 κ1 −1 1 0 0 0

0 −ei2qv 0 0 0 κ3 0 ei2q(v−u) 1 0 0 0

0 ei2qv −ei2qu 0 κ2 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.4)

Here we have abbreviated κ1 ≡ t(1 + ei2qu + ei2q(u−v)), κ2 ≡
t(1 + ei2qu + ei2qv), and κ3 ≡ t(1 + ei2qv + ei2q(v−u)), which
are the additional terms coming from the next-nearest-
neighbor interaction that is allowed by the PSG and t denotes
the relative strength of the interaction with respect the the
nearest-neighbor coupling J = 1. Diagonalizing J

(ij )
q results

FIG. 6. (Color online) Gauge transformations associated with
translations by u and reflections about the x axis. Shown is the unit
cell of the fully frustrated dice model after a lattice translation by u
(left) and after a reflection about the x axis (right). The corresponding
gauge-transformations consist of spin flips on the sites marked by blue
points, which restore the original gauge pattern as in Fig. 5.

in three dispersing bands, each being fourfold degenerate.
Depending on the sign of the next-nearest-neighbor interaction

FIG. 7. (Color online) Additional next-nearest-neighbor interac-
tions between three-coordinated sites on the dice lattice (shown as
dashed blue lines) that are allowed by the PSG. For illustrative clarity
not all additional bonds in the unit cell are shown. All other bonds
can be obtained from the ones that are shown via translations by the
basis vectors u and/or v.
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t , we get different transitions to valence bond solids that we
are going to discuss in the following.

A. Ferromagnetic next-nearest-neighbor interactions

For ferromagnetic next-nearest-neighbor interactions (t >

0) the dispersion minimum of the lowest band is at zero
momentum q = 0. The corresponding eigenvalue of the
interaction matrix J

(ij )
0 is given by λ+ = (3t + √

24 + 9t2)/2
and a convenient choice for the four degenerate eigenvectors is

v(1) =
[
λ−1

− 1 0λ−1
−

λ+
6

− λ−1
− 0 0 0 0 − λ−1

−
λ+
6

]
‖v‖−1,

(3.5)

v(2) =
[
λ−1

− 0 1 λ−1
− − λ+

6
0 λ−1

− 0 0λ−1
− 0 − λ+

6

]
‖v‖−1,

(3.6)

v(3) = [λ−1
− 0 0 λ−1

− 0 λ−1
− − λ−1

− 1 0 − λ−1
− λ−1

− 0]‖v‖−1,

(3.7)

v(4) =
[

0 0 0 0
λ+
6

λ+
6

λ+
6

0 1
λ+
6

λ+
6

λ+
6

]
‖v‖−1 (3.8)

with λ− = (3t − √
24 + 9t2)/2 and ‖v‖ = √

(λ2+ + 6)/6.
This set of eigenvectors forms an orthonormal basis for the
four critical modes at the transition to the confined phase.
In the magnetically ordered state the magnetization φj (R)
at lattice site R = 2nu + 2mv (n,m ∈ N) and sublattice site
j ∈ {1, . . . ,12} is given by

φj (R) =
∑

n=1...4

ψnv
(n)
j (3.9)

and is independent of the lattice site R for ferromagnetic
next-nearest-neighbor interactions, i.e., the ordered VBS
phases have a 12-site unit cell. The values of the four
mode amplitudes ψn are obtained by minimizing the
Ginzburg-Landau functional, which, in turn, is given by all
homogeneous polynomials in the mode amplitudes ψn that
are invariant under the PSG transformations. In order to
construct these polynomials we have to determine how the
mode amplitudes transform under the PSG. This can be done
by looking at the transformation properties of the eigenvectors
v(n). For example, the transformation properties of the mode
amplitudes with respect to translations Tu are determined via

T̂uφj =
∑

n

ψn T̂uv
(n)
j =

∑
n,m

(Tu)mnψnv
(m)
j

=
∑
m

(T̂uψ)mv
(m)
j . (3.10)

The resulting PSG transformation matrices for the amplitudes
of the four critical modes with respect to translations (Tu),
reflections (Ix), and rotations (R6) are given by

Tu =

⎡
⎢⎢⎢⎣

0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎦, (3.11)

Ix =

⎡
⎢⎢⎢⎣

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 −1

⎤
⎥⎥⎥⎦, (3.12)

R6 =

⎡
⎢⎢⎢⎣

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎦ . (3.13)

We used the GAP program33 to show that these three
matrices generate a finite, 48-element subgroup of O(4) that is
isomorphic to GL(2,Z3). We also determined that this group
is isomorphic to the group ± 1

2 [O × C2] in the classification
of Conway and Smith.34

Next we determined the most general Ginzburg-Landau
(GL) functional of the ψn. It turns out that there are three
fourth-order polynomials that are invariant under this group,
thus our functional for the four mode amplitudes depends
on the coupling constants, r , u, a, and b and takes the
form

L =
∑

n=1...4

[
(∇ψn)2 + (∂τψn)2 + rψ2

n + uψ4
n

]

+ a
∑
n<m

ψ2
nψ2

m + b
[
ψ2

1 (ψ2ψ3 − ψ2ψ4 + ψ3ψ4)

+ψ2
2 (ψ1ψ3 + ψ1ψ4 − ψ3ψ4) + ψ2

3 (ψ1ψ2 − ψ1ψ4

+ψ2ψ4) − ψ2
4 (ψ1ψ2 + ψ1ψ3 + ψ2ψ3)

]
. (3.14)

At b = 0 and a = 2u, this is just the well-known φ4 field theory
with O(4) symmetry, whose critical properties are described
by the extensively studied Wilson-Fisher fixed point. The
b coupling breaks the O(4) symmetry down to GL(2,Z3).
Remarkably, the renormalization group (RG) properties of just
such a quartic coupling have been studied earlier by Toledano
et al.;35 they denoted this symmetry class as [D3/C2; O/D2],
following the analysis of Du Val.36 Toledano et al. found that
the O(4) fixed point was unstable but were unable to find
a stable critical fixed point at two-loop order. It would be
interesting to extend the analysis of Eq. (3.14) to higher loop
order and search for a suitable fixed point by the methods
reviewed in Ref. 37.

Despite the difficulty in finding a suitable critical fixed
point, we can assume the existence of a second-order quantum
phase transition and use Eq. (3.14) to determine the structures
of possible confining phases. Minimizing this functional for
the magnetically ordered phase r < 0 gives rise to two possible
phases, depending on the values of the two parameters a and
b in the GL functional (3.14). The phase diagram is shown in
Fig. 8.

In the VBS 1F phase the GL functional (3.14) has 16
degenerate minima corresponding to different magnetization
patterns. Note, however, that the magnetization itself is not a
gauge-invariant quantity. In fact, all degenerate minima give
rise to the same bond patterns, which are related by simple
lattice symmetry transformations. The bond pattern in the VBS
1F phase is symmetric under rotations by π/3, translations by
2u and 2v, but it is not reflection symmetric. The 16 minima
thus correspond to eight different bond patterns that are related
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FIG. 8. (Color online) Phase diagram of Eq. (3.14) as a function
of the two couplings a and b (here we have set u = 1). The VBS
1F phase is not reflection symmetric, whereas the VBS 2F phase
is reflection symmetric. In the VBS 2F phase there is a crossover
(indicated by the dashed line) from a phase where one of the ψn’s is
zero (left of the dashed line) to a phase where three of the ψn’s are
zero (right of the dashed line).

by translations by u and v as well as by a reflection about the
x axis (the factor of 2 arises from a global spin flip symmetry).
In Fig. 9 we show the bond pattern in the VBS 1F phase,
i.e., we plot the gauge-invariant value of the bond-strength
Jijφiφj for every nearest-neighbor bond. In this figure we
mapped the bond pattern from the dice lattice back to the
kagome lattice by assigning the value of the bond strength on
the dice lattice to the bond on the kagome lattice that intersects
the dice lattice bond. Deep in the confined phase the bonds
plotted in Fig. 9 thus represent the expectation value 〈σx

ij 〉 of
the Z2 gauge field on the kagome bonds in the transverse-field
direction.

FIG. 9. (Color online) Bond pattern in the VBS 1F phase.
Plotted is the gauge-invariant bond-strength Jijφiφj for nearest-
neighbor bonds on the dice lattice at a = b = 1, which has been
assigned to each respective kagome bond. Black dashed lines indicate
satisfied bonds (−Jijφiφj < 0); red solid lines are frustrated bonds
(−Jijφiφj > 0). The thickness of the bonds is proportional to the
bond strength.

One way to relate the symmetries of valence bond solid
phases on the kagome lattice to the ordered phases of the
frustrated Ising model is to make use of the mapping between
hard-core dimer models and frustrated Ising models,38 i.e.,
by putting a dimer on every bond of the kagome lattice that
intersects a frustrated bond on the dual dice lattice. The
dimer covering that is obtained in this way for the VBS
1F phase is shown in Fig. 1. In comparison to previously
obtained dimer coverings of the kagome lattice4,26 which
maximize the number of perfectly flippable hexagons on a
36-site unit cell, this dimer covering maximizes the number
of perfect flippable diamonds on a 12-site unit cell. Note
that this bond pattern is similar to the diamond pattern
observed by Yan et al.8 It is important to note that this
mapping between the frustrated Ising model (3.1) and the
corresponding hard-core dimer model is strictly valid only
in the limit where the transverse field vanishes, i.e., deep
in the ordered phase. In this regime our GL approach is
quantitatively not reliable, however. It is thus no surprise
that not all of our dimer coverings are hard-core coverings
(see, e.g., the right dimer covering shown in Fig. 1). The
GL approach works well to determine broken symmetries
of VBS states as well as the critical properties close to the
confinement transition, where it is sufficient to keep only
the relevant terms up to fourth order in the functional. On
general grounds it would be necessary to include all higher-
order terms in the GL functional in order to obtain reliable
hard-core dimer coverings in the limit of small transverse
fields. Apparently, the VBS 1F phase is an exception to this
rule.

We note that the VBS 1F state has recently been identified
as the ground state of the deformed kagome lattice spin-1/2
antiferromagnet Rb2Cu3SnF12.39 It is possible that the spin
physics being discussed here played a role in the lattice distor-
tion observed in this experiment.40 Also in Zn-paratacamite,
ZnxCu4−x(OH)6Cl2, there is a transition41 between a spin-
liquid phase near x = 1 to a distorted kagome lattice near
x = 0, and it has been argued42 that a “pinwheel” VBS state,
which is identical in symmetry to our VBS 1F state, plays a
role in the latter case.

In the VBS 2F phase the GL functional (3.14) has eight
degenerate minima and the corresponding bond patterns have
an additional reflection symmetry as compared to the VBS 1F

phase. Moreover, there is a crossover from a phase where one
of the ψn’s is zero to a phase where three of the ψn’s are zero,
indicated by the dashed line in Fig. 8. The bond patterns are
shown in Fig. 10.

B. Antiferromagnetic next-nearest-neighbor interactions

If the additional next-nearest-neighbor interactions are
antiferromagnetic (t < 0) and smaller than a critical value
|t | < tc ∼ 1, the dispersion minimum of the lowest band
lies at the edges of the Brillouin zone, i.e., at q = ±Q1 =(
0, ± 2π

3
√

3

)
for our gauge choice with a hexagonal 12-site

unit cell. In this case, eight modes become critical at the
confinement transition and the resulting unit cell has 36 sites.
The corresponding eigenvalue of the interaction matrix J

(ij )
±Q1

is
√

6 and the eight eigenvectors occur in complex conjugate
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FIG. 10. Bond patterns in the VBS 2F phase. Plotted is the gauge invariant bond-strength Jijφiφj for nearest-neighbor bonds on the dice
lattice, shown on the corresponding kagome bonds. Black dashed lines represent satisfied bonds (−Jijφiφj < 0). In this phase there are no
frustrated bonds at all. The thickness of the bonds is proportional to the bond strength.

pairs

v
(1)
Q1

= v
(1)∗
−Q1

=
[

1√
12

1√
2

0
1√
12

1√
12

−1√
12

0000
eiπ/3

√
12

−eiπ/3

√
12

]
,

(3.15)

v
(2)
Q1

= v
(2)∗
−Q1

=
[

1√
12

0
1√
2

−eiπ/3

√
12

−1√
12

0
1√
12

00
−e−iπ/3

√
12

0
e−iπ/3

√
12

]
,

(3.16)

v
(3)
Q1

= v
(3)∗
−Q1

=
[−eiπ/3

√
12

00
1√
12

0
1√
12

e−iπ/3

√
12

1√
2

0− 1√
12

−e−iπ/3

√
12

0

]
,

(3.17)

v
(4)
Q1

= v
(4)∗
−Q1

=
[

0000
1√
12

1√
12

1√
12

0
1√
2

1√
12

1√
12

1√
12

]
.

(3.18)

Note that in this case the magnetization at lattice site R =
2nu + 2mv and sublattice site j is given by

φj (R) = eiQ1·R
∑

n=1...4

ψnv
(n)
Q1,j

+ c.c. (3.19)

The PSG transformations of the four complex mode ampli-
tudes ψn can be determined similarly to the ferromagnetic
case. Quite generally they are defined by

Ôφj (R) = Re

[
eiQ1·(ÔR)

∑
n=1...4

ψn Ôv
(n)
Q1,j

]

.= Re

[
eiQ1·R

∑
n=1...4

(Ôψ)n v
(n)
Q1,j

]
. (3.20)

If we define the vector � = (ψ1, . . . ,ψ4,ψ
∗
1 , . . . ,ψ∗

4 ), the PSG
transformation matrices corresponding to translations by u,

reflections about the x axis, and rotations by π/3 around the
central site that act on the vector � take the form

Tu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0

ei2π/3 0 0 0 0 0 0 0
0 ei2π/3 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 e−i2π/3 0 0 0
0 0 0 0 0 e−i2π/3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.21)

Ix =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 e−i2π/3 0
0 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 ei2π/3 0 0 0 0 0
0 0 0 −1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.22)

R6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0
0 0 0 0 0 0 e−i2π/3 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 ei2π/3 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.23)

As in the previous subsection, we used the GAP program to
determine that these three matrices generate a 288-element
subgroup of O(8) that is isomorphic to GL(2,Z3) × D3 The
Ginzburg-Landau functional is again given by all homoge-
neous polynomials that are invariant under this group. At
fourth order there are five such polynomials, thus the GL func-
tional depends on the coupling constants r,u,a1, . . . ,a4 and
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is given by

L4 =
∑

n=1..4

(
rψ2

n + uψ4
n

) + ψ2
2 ψ2

3 [a1 − 2a4 cos(2(θ2 − θ3))] + ψ2
1 ψ2

2 [a1 + a4 cos(2(θ1 − θ2)) +
√

3a4 sin(2(θ1 − θ2))]

+ψ2
1 ψ2

3 [a1 + a4 cos(2(θ1 − θ3)) +
√

3a4 sin(2(θ1 − θ3))] + ψ2
1 ψ2

4 [a1 + a4 cos(2(θ1 − θ4)) −
√

3a4 sin(2(θ1 − θ4))]

+ψ2
2 ψ2

4 [a1 + a4 cos(2(θ2 − θ4)) +
√

3a4 sin(2(θ2 − θ4))] + ψ2
3 ψ2

4 [a1 + a4 cos(2(θ3 − θ4)) +
√

3a4 sin(2(θ3 − θ4))]

+ψ1ψ
2
2 ψ4[−a2 cos(θ1 − θ4) − 2a3 cos(θ1 − 2θ2 + θ4) −

√
3a2 sin(θ1 − θ4)]

+ψ1ψ
2
3 ψ4[a2 cos(θ1 − θ4) + 2a3 cos(θ1 − 2θ3 + θ4) +

√
3a2 sin(θ1 − θ4)]

+ψ1ψ2ψ
2
4 [a2 cos(θ1 − θ2) + 2a3 cos(θ1 + θ2 − 2θ4) −

√
3a2 sin(θ1 − θ2)]

+ψ2
1 ψ2ψ4[2a3 cos(2θ1 − θ2 − θ4) + a2 cos(θ2 − θ4) −

√
3a2 sin(θ2 − θ4)]

+ψ2ψ
2
3 ψ4[−a2 cos(θ2 − θ4) + a3 cos(θ2 − 2θ3 + θ4) +

√
3a2 sin(θ2 − θ4) +

√
3a3 sin(θ2 − 2θ3 + θ4)]

+ψ1ψ2ψ
2
3 [−a2 cos(θ1 − θ2) + a3 cos(θ1 + θ2 − 2θ3) +

√
3a2 sin(θ1 − θ2) −

√
3a3 sin(θ1 + θ2 − 2θ3)]

+ψ1ψ3ψ
2
4 [a2 cos(θ1 − θ3) + 2a3 cos(θ1 + θ3 − 2θ4) −

√
3a2 sin(θ1 − θ3)]

+ψ2
1 ψ2ψ3[a3 cos(2θ1 − θ2 − θ3) + 2a2 cos(θ2 − θ3) +

√
3a3 sin(2θ1 − θ2 − θ3)]

+ψ2
2 ψ3ψ4[−a3 cos(2θ2 − θ3 − θ4) + a2 cos(θ3 − θ4) +

√
3a3 sin(2θ2 − θ3 − θ4) −

√
3a2 sin(θ3 − θ4)]

+ψ2
1 ψ3ψ4[−2a3 cos(2θ1 − θ3 − θ4) − a2 cos(θ3 − θ4) +

√
3a2 sin(θ3 − θ4)]

+ψ1ψ
2
2 ψ3[−a2 cos(θ1 − θ3) + a3 cos(θ1 − 2θ2 + θ3) +

√
3a2 sin(θ1 − θ3) −

√
3a3 sin(θ1 − 2θ2 + θ3)]

+ψ2ψ3ψ
2
4 [−2a2 cos(θ2 − θ3) − a3 cos(θ2 + θ3) −

√
3a3 sin(θ2 + θ3)]. (3.24)

Here we have expressed the complex mode amplitudes in
terms of their absolute value and phase ψne

iθn . Note that
this fourth-order Ginzburg-Landau functional has a remaining
continuous U(1) symmetry, since it is invariant under a
change of all phases θn → θn + χ . The “magnetization” (3.19)
is not invariant under this U(1) transformation, however.
In order to break this continuous degeneracy we need to
include higher-order terms in the Ginzburg-Landau functional.
Among the invariant sixth-order polynomials there are five
that break the U(1) symmetry. A full analysis of the invariant
GL functional at sixth order is beyond the scope of this
paper, and we restrict ourselves to the simplest U(1)-breaking
sixth-order term. The U(1)-invariant sixth-order terms are not
expected to qualitatively change our results at the confinement
transition.

In the remainder of this section we are going to consider the
following fourth-order GL functional, including the simplest
invariant sixth-order U(1)-breaking polynomial, which takes
the form

L = L4 +
∑

n=1...4

ψ6
n (a5 + a6 cos[6θn]). (3.25)

In total our simplified GL functional thus has seven coupling
constants. Again, a complete analysis of the phase diagram
as a function of these seven couplings is hardly feasible. A
representative slice of the phase diagram is shown in Fig. 11,
where we have fixed the values43 u = 1, a1 = 1/2, a3 = a2,
a5 = 1/20, and a6 = −1/25 and show the different phases
as function of the two remaining parameters a2 and a4. All

phases have a 36-site unit cell and are invariant with respect to
translations by 4u − 2v and 4v − 2u. In the above-mentioned
parameter regime there are four different ordered phases.
VBS 1A has a π/3 rotational symmetry but is not reflection
symmetric. A dimer representation of this state is shown in
Fig. 1, which was obtained by putting a dimer on every
kagome bond that intersects a frustrated bond on the dice
lattice. This dimer covering suggests that our VBS 1A state
is identical to previously found valence bond solid states on

VBS 1

VBS 2

VBS 3

VBS 4

a
4

a2

A

A

A

A

0.4 0.2 0.2 0.4

0.4

0.2

0.2

0.4

FIG. 11. (Color online) Phase diagram obtained from the GL
functional (3.25) as a function of the couplings a2 and a4. The other
parameters are fixed at u = 1, a1 = 1/2, a3 = a2, a5 = 1/20, and
a6 = −1/25. The different phases are described in the text.
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FIG. 12. (Color online) Bond patterns in the VBS 1A, 2A, 3A, and 4A phase (clockwise, starting from the upper left). Again we plot the
gauge-invariant bond-strength Jijφiφj for nearest-neighbor bonds on the dice lattice, mapped to the corresponding kagome bonds. Black dashed
lines represent satisfied bonds (−Jijφiφj < 0), red lines are frustrated bonds. The thickness of the lines is proportional to the bond strength.

the kagome lattice that maximize the number of perfectly
flippable hexagons.4,26 The VBS 2A phase is symmetric under
2π/3 rotations and has a reflection symmetry. No rotational
symmetry is present in the VBS 3A and 4A phases. The 3A

phase has a reflection symmetry, however, which is not present
in the 4A phase. Bond patterns of all four phases are shown in
Fig. 12.

We performed a one-loop RG calculation for (3.24)
and found six additional fixed points besides the Gaussian
one, but all of them turned out to be unstable. Again,
it would be useful to revisit this issue using higher loop
methods.37

IV. CONCLUSIONS

We have studied confinement transitions of Z2 spin liq-
uids of Heisenberg antiferromagnets on the kagome lattice
by constructing field theories that are consistent with the
projective symmetry group of the vison excitations. Depending
on the sign of the next-nearest-neighbor interaction between
the visons, we found that the visons transformed under the
group GL(2,Z3) for the simpler case and under GL(2,Z3) ×
D3 for the other case. Our analysis shows that possible
VBS phases close to the confinement transition are strongly
constrained by the vison PSG. We found VBS states that
break the translational symmetry of the kagome lattice with
either 12- or 36-site unit cells for the two vison PSGs,

respectively. The two possible VBS states with 12-site unit
cells do not break the rotation symmetry of the kagome
lattice but one of them breaks the reflection symmetry;
this state is closely connected to the “diamond pattern”
enhancement observed in the recent numerical study of Yan
et al.8 As far as possible VBS states with 36-site unit cells
are concerned, our analysis is not exhaustive. Nevertheless,
we found different VBS states with full, reduced, or no
rotation symmetry, as well as states that do or do not break
the reflection symmetry of the kagome lattice. Our results
should be useful in more completely characterizing spin
liquids in numerical or experimental studies of the kagome
antiferromagnet.

Analogous analyses for Z2 spin liquids on other lattices
have been carried out in other cases (see Appendix B). In all
other cases, the effective theory for confining transition has an
emergent continuous symmetry, and the criticality can be com-
puted using properties of the Wilson-Fisher fixed point; reduc-
tion to the discrete lattice symmetry appears only on including
higher-order couplings that are formally “irrelevant” at the
critical fixed point. The kagome lattice is therefore the unique
case (so far) in which the reduction to discrete lattice symmetry
appears already in the critical theory: this is the theory in
Eqs. (3.14), and its relevant quartic couplings are invariant only
under discrete symmetries. This suggests that the numerical
studies of confinement transitions may be easier on the kagome
lattice.
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APPENDIX A: BERRY PHASE OF A VISON

This appendix will compute the Berry phase of a vison
moving around a S = 1/2 spin of the antiferromagnet, as
illustrated in Fig. 4. We will follow the method of Sec. III A
of Ref. 32, generalized to a Z2 spin liquid as in Ref. 11.

We consider the time-dependent Schwinger boson Hamil-
tonian

Hv
b(τ ) = −

∑
i<j

Qv
ij (τ )εαβb

†
iαb

†
jβ + H.c. +

∑
i

λv
i (τ )b†iαbiα,

(A1)

where the τ dependence of Qv
ij and λv

i is chosen so that
the vison executes the motion shown in Fig. 4, while always
maintaining the constraint in Eq. (2.2).

We compute the Berry phase by working with the instan-
taneous ground state of Hb(τ ). This is facilitated by a diag-
onalization of the Hamiltonian by performing a Bogoliubov
transformation to a set of canonical Bose operators, γμα , where
the index μ = 1 . . . Ns , where Ns is the number of lattice sites.
These are related to the biα by

biα =
∑

μ

[Uiμ(τ )γμα − V ∗
iμ(τ )εαβγ

†
μβ]. (A2)

The Ns × Ns matrices Uiμ(τ ),Viμ(τ ) perform the Bogoliubov
transformation and obey the following identities:11

(
λv −Qv

−Qv∗ −λv

) (
U

V

)
= ω̂

(
U

V

)

U †U − V †V = 1

UU † − V ∗V T = 1 (A3)

V T U + UT V = 0

UV † + V ∗UT = 0,

where ω̂ is a diagonal matrix containing the excitation energies
of the Bogoliubov quasiparticles, and all quantities in Eq. (A3)
have an implicit τ dependence.

We can use the above transformations to write down the
instantaneous (unnormalized) wave function of the vison as
the unique state that obeys γμα |�v〉 = 0 for all μ, α:

|�v〉 = exp

⎛
⎝∑

i<j

f v
ij εαβb

†
iαb

†
jβ

⎞
⎠ |0〉, (A4)

where

f v
ij =

∑
μ

(U−1†)iμ(V †)μj . (A5)

Then the Berry phase accumulated during the τ variation of
Hb(τ ) is

i Im〈�v| d
dτ

|�v〉
〈�v|�v〉 = i Im Tr

[
V †V

(
U−1 dU

dτ
− V −1 dV

dτ

)]
.

(A6)

We now assume that the Hamiltonian in Eq. (A1) preserves
time-reversal symmetry. Then, we can always choose a gauge
in which the Qij , Uiμ, and Viμ are all real. Under these
conditions, the expression in Eq. (A6) vanishes identically.
It is clear that this argument generalizes to the case where
we project the wave function to boson states that obey the
constraint in Eq. (2.2).

We have now shown that no instantaneous Berry phase is
accumulated during the vison motion of Fig. 4. Under these
conditions, the total gauge-invariant Berry phase is simply
equal to the phase difference between the wave functions in
the initial and final states.9 As shown in Fig. 4, this phase
difference is π .

APPENDIX B: EFFECTIVE ISING MODELS FOR VISONS
ON VARIOUS OTHER LATTICE GEOMETRIES

In this appendix we summarize the results of a Ginzburg-
Landau analysis of frustrated transverse-field Ising models
(TIMs) on various lattice geometries. These models describe
the low-energy properties of different frustrated Heisenberg
antiferromagnets in terms of their vison exciations. Some of
these results have been discussed previously in the literature.

1. Triangular lattice

The vison excitations of a Heisenberg antiferromagnet on
the triangular lattice are described by a frustrated TIM on the
dual honeycomb lattice, which has been studied previously by
Moessner and Sondhi.24 A Ginzburg-Landau analysis reveals
four critical modes and the corresponding PSG transformation
matrices generate a 288-element subgroup of O(4) which is
isomorphic to [C3 × GL(2,Z3)] � C2,33 where Cn denotes the
cyclic group of order n. PSG matrices for a specific gauge
choice can be found in Ref. 24. An O(4)-breaking term appears
at sixth order in the GL functional, the minimization of which
gives rise to a single confined phase with a 24-site unit cell (i.e.,
a 12-site unit cell on the triangular lattice) that is symmetric
under 2π/3 rotations and reflections. Bond patterns of this
phase are shown in Fig. 13. Note that there is a crossover
when the sign of the O(4)-breaking term changes.

2. Honeycomb lattice

For the frustrated honeycomb lattice antiferromagnet
the visons are described by an antiferromagnetic TIM on the
dual triangular lattice. There are two critical modes at the
Brillouin zone edges Q = ±(4π/3,0) and the PSG matrices
corresponding to translations T by any basis vector, rotations
R6 and reflections Iy about the y axis of the two mode
amplitudes are given by

T = −(12 + i
√

3 σz)/2, R6 = Iy = σx, (B1)

where σi denote the Pauli matrices. These PSG matrices gener-
ate the six-element dihedral group D3, i.e., the symmetry group
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FIG. 13. Confining phase on the triangular lattice. Plotted is the gauge invariant bond-strength Jijφiφj for nearest-neighbor bonds on the
frustrated honeycomb lattice, shown on the corresponding triangular lattice bonds. Black lines represent satisfied bonds (−Jijφiφj < 0). There
are no frustrated bonds in the confining phase. The thickness of the bonds is proportional to the bond-strength. The two different patterns arise
due to a crossover when the sign of the O(4)-breaking term in the GL-functional changes.

of the equilateral triangle. The invariant Ginzburg-Landau
functional has been discussed previously by Blankenschtein
et al.,44 who showed that an O(2) symmetry breaking term
appears at sixth order.23 Minimizing the GL functional gives
rise to only one possible confining phase that breaks the
translational symmetry. For a particular sign of the sixth-order
term,23 the confining phase has a three-site unit cell (i.e.,
six sites per unit cell on the honeycomb lattice) and is
symmetric both with respect to rotations and reflections; the
corresponding dimer pattern on the honeycomb lattice has
the maximal number of one perfectly flippable hexagon per
six-site unit cell24 and is identical to the VBS state found in
Ref. 32. A plaquette-like phase is obtained for the other sign
of the sixth-order term.23 More complex minima structure for
the vison dispersion have also been considered in Ref. 23.

3. Square lattice

The effective vison model for the frustrated square lattice
Heisenberg antiferromagnet is a frustrated TIM on the dual

square lattice.21,45 In an appropriate gauge the two critical
modes appear at zero momentum46 and the corresponding
(gauge-dependent) PSG matrices for translations Tx , rotations
R4, and reflections Ix take the form

Tx = (σx + σz)/
√

2, R4 = σz, Ix = 12. (B2)

These matrices generate the 16 element dihedral group D8.
An invariant GL polynomial that breaks the O(2) symmetry
appears only at eighth order, as discussed by Blankenschtein
et al.47 Depending on the sign of this eighth-order term,
two different confining phases are possible. Both phases are
reflection symmetric, break the translational symmetries and
have a four-site unit cell. One of the two phases is invariant
under π/2 rotations, whereas the other one has a reduced
rotational symmetry and is invariant only with respect to π

rotations. These are the familiar “plaquette” and “columnar”
VBS states.48

More complex vison dispersion structures, with further-
neighbor couplings, have been described recently in
Ref. 23.
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