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Size-dependent magnetic ordering and spin dynamics in DyPO4 and GdPO4 nanoparticles
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Low-temperature magnetic susceptibility and heat-capacity measurements on nanoparticles (d ≈ 2.6 nm) of
the antiferromagnetic compounds DyPO4 (TN = 3.4 K) and GdPO4 (TN = 0.77 K) provide clear demonstrations
of finite-size effects, which limit the divergence of the magnetic correlation lengths, thereby suppressing the bulk
long-range magnetic ordering transitions. Instead, the incomplete antiferromagnetic order inside the particles
leads to the formation of net magnetic moments on the particles. For the nanoparticles of Ising-type DyPO4

superparamagnetic blocking is found in the ac susceptibility at �1 K, those of the XY -type GdPO4 analog show a
dipolar spin-glass transition at �0.2 K. Monte Carlo simulations for the magnetic heat capacities of both bulk and
nanoparticle samples are in agreement with the experimental data. Strong size effects are also apparent in the Dy3+

and Gd3+ spin dynamics, which were studied by zero-field muon spin rotation (μSR) and high-field 31P-nuclear
magnetic resonance (31P-NMR) nuclear relaxation measurements. The freezing transitions observed in the ac
susceptibility of the nanoparticles also appear as peaks in the temperature dependence of the zero-field μSR rates,
but at slightly higher temperatures, as to be expected from the higher frequency of the muon probe. For both bulk
and nanoparticles of GdPO4, the muon and 31P-NMR rates are for T � 5 K dominated by exchange-narrowed
hyperfine broadening arising from the electron spin-spin interactions inside the particles. The dipolar hyperfine
interactions acting on the muons and the 31P are, however, much reduced in the nanoparticles. For the DyPO4

analogs the high-temperature rates appear to be fully determined by electron spin-lattice relaxation processes.
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I. INTRODUCTION

The last few years have witnessed a dramatically increased
level of interest in quantum size effects in ligand-stabilized
magnetic nanoparticles, notably the so-called single-molecule
magnets, in which the nanoparticles carry large net magnetic
moments due to the ferro- or ferrimagnetic spin arrangements
inside the magnetic cores of the macromolecules. In contrast,
size effects in nanosized particles of antiferromagnetic insu-
lators with compensated sublattices (in bulk) have received
much less attention, in spite of their potential fundamental
importance.1–4 In this paper, we present a study of the
thermodynamic properties and spin dynamics of nanoparticles
of two different types of 3D antiferromagnets, that is, the well-
known anisotropic Ising antiferromagnet DyPO4 and its more
isotropic counterpart GdPO4. In bulk DyPO4 strong ligand
field effects leave an effective spin S = 1

2 Kramers doublet
as the lowest-lying magnetic level, with highly anisotropic
g tensor, g‖ � 19.5 and g⊥ � 0. A transition to long-range
antiferromagnetic (AF) ordering occurs around TN = 3.4 K.5

For GdPO4 recent heat capacity experiments evidenced a
magnetic transition at TN = 0.77 K.6 Since, thus far, no
detailed magnetic measurements appear to have been reported
on this material, we have studied the magnetic behavior of a
bulk-GdPO4 single crystal by field-dependent ac-susceptibility
measurements. Our data confirm that GdPO4 has a transition

to an AF ordered state at TN = 0.77 K and that below TN

it magnetically behaves as a compensated antiferromagnet
with strong planar (XY -type) anisotropy induced by the
combination of crystal-field effects and dipolar interactions.

The comparison of our susceptibility and magnetic heat-
capacity data on the nanoparticles with the corresponding
bulk quantities reveals interesting experimental examples of
finite-size effects on the magnetic phase transitions, which had
previously been mainly studied theoretically.2 Monte Carlo
(MC) simulations performed for either Ising spins or classical
Heisenberg spins on the appropriate lattices are also reported,
and they compare favorably with the experimental data for both
the bulk and the nanoparticle samples. Pronounced size effects
are likewise found in the phonon contributions to the heat
capacity data, as measured from 10 K up to room temperature.
Finally, effects of finite size on the spin dynamics were studied
by means of 31P-nuclear magnetic resonance (31P-NMR) and
μSR experiments. The analysis of the temperature dependence
of the measured relaxation rates in the region of the magnetic
ordering phenomena proved to be fully consistent with the
results from the thermal and magnetic data. At more elevated
temperatures, the rates appear to be determined by electron
spin-spin fluctuations (of exchange and dipolar origin) for
the GdPO4 case and by various forms of electron spin-lattice
relaxation for the DyPO4 analogs.
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II. EXPERIMENTAL DETAILS

Phosphates of the cerium group (RPO4 with R = La up
to and including Gd) have a monoclinic monazite structure,
whereas those of the yttrium group (RPO4 with R = Dy to
Lu) have a tetragonal xenotime structure. The two structure
types are closely related, such that the monazite structure
can be viewed as a low-symmetry derivative of the zircon
structure. Dy3+ is a magnetic rare-earth ion with an electronic
configuration Xe 4f 9. The ground-state multiplet is 6H15/2,
corresponding to L = 5 and S = 5

2 . In the DyPO4 lattice,
the multiplet becomes split into eight Kramers doublets by
the crystal field of tetragonal symmetry.5,7 Since the distance
separating the lowest excited states from the ground doublet is
about 100 K or higher, the low-temperature magnetic proper-
ties of the Dy3+ ion can be described in terms of an effective
spin S = 1

2 with a very anisotropic g tensor, that is, g‖ = 19.5
and g⊥ = 0.5. Neutron diffraction measurements8 confirmed
that DyPO4 has the tetragonal zircon crystal structure, with
linked DyO4 and PO4 tetrahedra sharing O atoms.9 As opposed
to Dy3+, Gd3+ with the electronic configuration Xe 4f 7, is a
more isotropic magnetic rare-earth ion. Since its ground-state
multiplet is 8S7/2, corresponding to S = 7

2 and L = 0, and thus
no orbital moment, crystal field effects can only occur in higher
order, by mixing excited states into the ground state. Bulk
GdPO4 belongs to the class of monazites, with a monoclinic
unit cell, space group P 21/n. There are four nonequivalent
Gd3+ ions in the unit cell. Each Gd3+ ion is surrounded by six
nearest-neighboring ions at distances varying between 4.0 and
4.2 Å.

Powder samples of DyPO4 and GdPO4 nanoparticles were
prepared according to the methods described in Refs. 10
and 11. The nanoparticles are stabilized by nonmagnetic
tris-(ethyl-hexyl)-phosphate ligand molecules, abbreviated
TEHP = (C8H17O)3PO. In our powder samples, the spherically
shaped nanoparticles are densely packed in a random orienta-
tion. The narrow size distribution of the RPO4 cluster cores
was revealed by x-ray diffraction (XRD), tunneling electron
microscopy (TEM), and small-angle x-ray scattering (SAXS)
measurements. Dynamic light-scattering measurements show
an overall particle size, that is, including the organic ligand
shell, of about 3.5 nm. From the SAXS and TEM studies,
the average size of the RPO4 cores was found to be about
2.6 nm for both DyPO4 and GdPO4, corresponding to about
150 rare-earth ions per particle and a surface-to-volume ratio
for the cores of about 2/3. In agreement with the TEM pictures,
the x-ray-powder-diffraction patterns of the powder samples
through the rare-earth series reveal a good crystallinity for
the particles, in particular for the smaller-size (Ce to Sm) and
larger-size (Er to Lu) rare-earth ions. These nanoparticles have
an average size of 3 to 5 nm and are found to show exactly the
same crystal structure as their bulk counterparts, that is, the
monoclinic monazite structure from Ce up to Gd phosphate
and the tetragonal xenotime from Dy up to Lu phosphate. In
the bulk materials, the Tb phosphate (Tb being neighbored
by Gd and Dy) is reported to be dimorphic. In the case of
the nanoparticles, this separation line between the two phases
is spread into an intermediate region stretching from Eu to
Ho, that is, including the Gd and Dy phosphates that directly
border the Tb phosphate. For these rare-earth ions the average

particle core size is found to be much smaller, about 2 nm, and
the x-ray-powder-diffraction patterns appear to be appreciably
broadened, exhibiting apparently a “mixed” crystal phase that
shares the characters of both the monoclinic and tetragonal
phases. Both features can be attributed to the smaller size of the
particles in this intermediate lanthanide region, in combination
with the near equivalency of the lattice energies for the two
crystal phases in this region. The proximity in energy of the two
phases and the large surface fraction likely entails a relatively
large number of lattice defects that may lead to the occurrence
of different crystallographic domains in the same particle core.

Magnetic (dc) data down to 2 K and in fields up to 5 T were
obtained with a commercial SQUID magnetometer. The ac
susceptibility in the range 50 mK < T < 6 K was measured
with a home-built mutual inductance susceptometer, mounted
in a dilution refrigerator and operating at frequencies between
100 Hz and 7 kHz. Low-temperature heat capacity was
measured in the same dilution refrigerator with a home-built
calorimeter, using a thermal relaxation method. Additional
heat capacity data up to room temperature were recorded
in a commercial (Quantum Design MPMS) apparatus. The
31P-nuclear magnetic resonance (31P-NMR) studies (I = 1

2 ,
γ /2π = 17.2333 MHz/T) were performed by standard pulse
NMR techniques in magnetic fields of Bapp = 9.4 and 5.6 T.
The μSR measurements were performed at ISIS (Rutherford
Appleton Laboratory) on the MUSR beam line in zero field
(ZF) and in a longitudinal field (LF), using a statistics of about
20 × 106 events.

III. MAGNETIC MEASUREMENTS

Figure 1 shows the temperature dependence of the molar
susceptibility χnano of the nanoparticles for both DyPO4 (from
Ref. 12) and GdPO4, as measured by SQUID magnetom-
etry down to 2 K and complemented by ac-susceptibility
measurements to lower temperatures. The ac and dc data
showed perfect overlap in the range 2 K–5 K in all cases.
For comparison, relevant susceptibility data for the bulk coun-
terparts are included. For GdPO4 the bulk is represented by the
average of the susceptibility measured for the different crys-
tallographic directions, noting that the susceptibility already
becomes independent of orientation above T ≈ 1.2 × TN (see
Appendix). For DyPO4, we compare with the published5

parallel susceptibility χ‖ of the bulk, the susceptibility in
the perpendicular directions being negligibly small due to the
strong uniaxial g anisotropy. As seen in Fig. 1, in the region
near to and below the bulk magnetic ordering temperatures,
the susceptibility, χnano, of the nanoparticles becomes strongly
different from the bulk behaviors. In both cases, apart from a
slight discontinuity, not visible on the scale of Fig. 1, no sign
of the bulk AF ordering phenomenon is discernible in χnano at
temperatures corresponding to the bulk TN . Instead, frequency-
dependent cusps appear in χnano at lower temperatures, that is,
around 0.2 K and 1 K for GdPO4 and DyPO4, respectively. In
Fig. 2, we report the frequency-dependent ac-susceptibility
measurements of these cusps. We note further that in the
paramagnetic range, that is, far above the bulk TN , the curves
for χnano and χbulk are found to have the same temperature
dependence and can thus be directly scaled upon one another,
which is, in fact, to be expected. For isotropic GdPO4 this
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FIG. 1. Low-field susceptibility χ (T ) and measured (reversible)
magnetization curves (insets) of the DyPO4 (top) and GdPO4 (bottom)
nanoparticles. The parallel susceptibility (χ‖) of bulk DyPO4 (from
Ref. [ 5]) and the powder susceptibility measured for bulk GdPO4 are
included for comparison.

is self-evident; the only scaling factor between the powder
susceptibilities being the mass ratio between the RPO4 cores
and the ligands in the nanoparticle sample. For DyPO4, the
powder χnano is compared to the bulk χ‖ so an additional
scaling factor of 1/

√
3 arises since, with g⊥ � 0, the effective

g value for the nanoparticle powder becomes g‖/
√

3. Since
the mass fraction of the RPO4 cores in the ligand-capped
nanoparticles could only approximately be determined from
the chemical syntheses, more accurate values were obtained
from this direct scaling of χnano to χbulk at high temperatures,
yielding an RPO4 fraction of about 2/3 in both cases indeed.
The same value for the mass fraction was further deduced from
the scaling of the measured saturation molar magnetization
values at the lowest temperature (see insets of Fig. 1) to the
expected bulk powder values, that is, ≈5.1NμB for DyPO4

and 7NμB for GdPO4.
The strongly different behavior of χnano as compared to

χbulk in the low-T range can be fully understood in terms
of finite-size effects. First, since the increase of the magnetic
correlation length as T → TN is limited by the particle size, the
phase transition to long-range AF order becomes suppressed.2

Second, missing magnetic neighbors at the particle surfaces
will lead to net magnetic moments μ per particle due to
incomplete compensation of the AF sublattices and, thus, to a
superparamagnetic signal superposed upon the AF background
susceptibility.3 To obtain an estimate of μ, we subtracted the

FIG. 2. (Color online) Frequency dependence of the ac suscepti-
bility measured for the GdPO4 (left) and DyPO4 (right) nanoparticles
in the region near to the cusps. In the lowest frames, the frequency
dependence of the temperatures of the maxima is analyzed in terms
of the Arrhenius law. An additional data point determined from μSR
experiments (see Sec. VI) is included for both.

bulk susceptibilities from the (scaled) χnano curves and fitted
the remaining signals to the Curie-Weiss law. From the so-
obtained Curie constants, the average number of unpaired spins
per particle can be estimated. For the DyPO4 nanoparticles,
this number is found to be as high as ≈20%. Since the mean
particle core diameter is 2.6 nm,11 implying ≈150 Dy3+ spins
per particle, one-third of which will be in the inner core and,
thus, fully AF coordinated, this fraction would then correspond
to ≈30 uncompensated spins and ≈70 compensated spins
in the surface layer of the DyPO4 particle cores. For the
GdPO4 nanoparticles, on the other hand, we find μ ≈ 80μB ,
corresponding to about 11 uncompensated Gd3+ (S = 7

2 ) spins
per particle only. The effective number of uncompensated spins
in the surface layer is, therefore, only about 10% as compared
to 30% for the DyPO4 analog. Since in both cases the number
of surface spins with missing magnetic neighbors will be
similar, we attribute the difference to the more isotropic nature
of the AF interaction between the Gd3+ spins, as opposed to
the strongly anisotropic Ising interaction in DyPO4. The lower
the anisotropy of the interaction, the easier it will be for the
spins inside a finite volume to arrange themselves in such a
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configuration that the resulting net moment of the particle will
be a minimum.

Furthermore, the properties of the superparamagnetic
contributions associated with the net moments per particle
will also depend strongly on the type and strength of the
anisotropy. For the highly anisotropic Ising system DyPO4,
the origin of the observed cusp in χnano can be attributed to
the well-known phenomenon of superparamagnetic blocking,
occurring when the thermal energy becomes less than the
anisotropy barrier EA opposing inversion of the net particle
moment (μ). From the value of the freezing (blocking)
temperature, Tf ≈ 1 K, EA can be estimated as ≈10 K.
Analyzing the frequency dependence observed for the cusp
in χac, as shown in Fig. 2, in terms of a simple Arrhenius law
with relaxation time τ = τ0 exp(EA/kBT ), yields the same
value for EA = (10.5 ± 0.3) K indeed, with τ0 ≈ 4 × 10−10 s.
Interestingly, the plot can be extended to much higher
frequency (MHz range) since, as is shown below, the blocking
phenomenon is likewise observed in the μSR data, giving the
additional data point in this plot.

For the magnetically more isotropic GdPO4 nanoparticles,
the cusp in χnano is observed at much lower temperature,
that is, ≈0.2 K, and the dependence on the ac frequency
of the temperature of the susceptibility maximum is much
less pronounced (see Fig. 2). Thus, although we attribute
the cusps in both cases to “freezing” of the net particle
moments μ at low-enough temperature, in the case of DyPO4

the freezing arises primarily from the Ising-type anisotropy
of the particles, that is, from superparamagnetic blocking,
whereas for GdPO4 it is ascribed to the dipolar interactions
between the net particle moments. Since the particles are
closely packed in a random array, these interactions result
in a dipolar spin glass. Indeed, when using the value for
μ ≈ 80μB determined from χnano for GdPO4 and the estimated
distance r ≈ 6 nm between two neighboring particle moments,
the estimated dipolar energy μ2/r3 just equals the thermal
energy kBTmax corresponding to the observed Tf ≈ 0.2 K.
Furthermore, a major difference to be noted from Fig. 2 is
that the χnano for GdPO4 extrapolates to a large finite value for
T → 0, as expected for an (isotropic) spin glass,13 whereas it
extrapolates to zero for the DyPO4 case, in agreement with
superparamagnetic blocking. Last, when characterizing the
frequency dependence of the freezing temperatures by the
derivative �Tf /(Tf � log f), we obtain a value of 0.08 for this
quantity for the case of GdPO4, as compared to 0.18 for the
DyPO4 analog. The small value found for GdPO4 is, indeed,
typical for spin glasses, whereas that for DyPO4 is comparable
to those reported for superparamagnetic blocking.13 As shown
in Fig. 2 (bottom), the frequency dependence of the cusp in
χac can be nicely fitted to the Arrhenius law, in this case with
relaxation time τ0 ≈ 5.6 × 10−10 s and activation energy EA =
2.3 K. Similarly to that seen with the DyPO4 nanoparticles,
also in this case, an additional data point in the MHz range
in this plot is provided by the μSR data discussed below, in
which the freezing phenomenon is likewise observed.

IV. HEAT-CAPACITY MEASUREMENTS

Figure 3 shows our measurements of the ZF heat capacity
C/R of the nanoparticles, together with data for their bulk

FIG. 3. (Color online) Temperature dependence of the ZF heat
capacity for GdPO4 and DyPO4 nanoparticles and their bulk coun-
terparts. Data for nonmagnetic bulk LaPO4 are included. The solid
curves are the estimated lattice contributions. We note that the molar
heat capacity values displayed here were calculated on the basis of
the RPO4 molecular weights for both bulk and nanoparticle samples
(compare with Fig. 6).

counterparts and for nonmagnetic LaPO4. Data for bulk
DyPO4 were taken from the paper by Wright et al.5 (up to
4 K) complemented by our own results taken in the range
4 K–300 K. Data for bulk GdPO4 and LaPO4 were taken
from the paper by Thiriet et al.6 The magnetic heat capacities
in Fig. 3 are seen to be superposed on the lattice phonon
contribution Cph, which for bulk monazites, is expected to be
given to a high approximation by the data for the nonmagnetic
LaPO4 isomorph. Indeed, for T � 15 K, the data for GdPO4

and LaPO4 are seen to nicely coincide. As shown by the
solid curve drawn through these data, they can be well
fitted by a simple Debye model, following the well-known
T 3 approximation up to ≈20 K with a calculated Debye
temperature �D = 227 K. The lattice heat capacity of the
bulk DyPO4 compound, having the tetragonal zircon lattice,
is seen to lie substantially above that of the monazites from
10 K up to about 70 K, after which it converges to the same
high-temperature limit. At the highest temperatures, the three
bulk heat capacities all appear to extrapolate to the value
of 18 R, which would be in agreement with the classical
Dulong and Petit law, predicting a contribution of 3 R for
every degree of freedom (per atom in the chemical formula).
The value estimated for the Debye temperature for DyPO4 is
�D � 150 K, much lower indeed than that found for the La and
Gd monazites. This indicates the tetragonal DyPO4 lattice to be
“softer” than the monoclinic sister compounds, in agreement
with the larger size of its unit cell.11 For the nanoparticles,
we observe quite similar phonon contributions above 10 K for
both Dy and Gd. The phonon contributions are, thus, much
higher than for the bulk materials, which can be attributed
principally to the extra vibrational contributions coming from
the TEHP ligand molecules, as is further discussed below.

We first concentrate on the magnetic heat-capacity con-
tributions obtained by subtraction of the phonon portions
approximated by the T 3 temperature dependencies, as indi-
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FIG. 4. (Color online) Magnetic entropies obtained by integration
of the (zero-field) magnetic heat capacity contributions for the
different samples, as indicated.

cated by the solid lines in Fig. 3. For the bulk samples, the
magnetic heat capacities clearly show the pronounced λ-type
anomalies at TN = 0.77 K and 3.4 K for GdPO4 and DyPO4,
respectively, associated with the transitions to long-range
magnetic order. As mentioned above for the nanoparticles,
the finite particle size sets a limit on the magnetic correlation
length and, thereby, prohibits the development of a long-range
magnetically ordered state. Accordingly, instead of the λ-type
bulk heat capacity peaks, broad anomalies are found at lower
temperatures, reflecting the development of short-range AF
correlations inside the nanoparticles. The temperatures of these
maxima, about 0.4 K and 1.0 K, respectively, are close to the
respective freezing temperatures found in the susceptibility,
which is consistent, since the occurrence of freezing of the (net)
particle moments obviously necessitates the presence of well-
developed intra particle magnetic correlations as a precursor.

By subtracting the lattice phonon contributions Cph as
described from the raw data, the magnetic heat capacity
contributions Cm are obtained. Thus, by taking the integral∫

(Cm/T )dT , the magnetic entropies involved in the ordering
processes can be calculated (see Fig. 4). To enable the
integration for bulk GdPO4, the data below 0.5 K in Fig. 3 were
extrapolated by a T 3 dependence, expected from spin-wave
theory for the three-dimensional Heisenberg antiferromagnet.
At high temperatures, the magnetic heat capacities for all
samples can be well approximated by a T −2 dependence,
that is, the high-temperature limiting behavior common to
all magnetic substances. After scaling the magnetic heat
capacities of the nanoparticles with the factor of 2/3 obtained
in the above for the mass fractions of RPO4 in the samples,
these estimates lead in all four cases to the correct values
of R ln(2S + 1) expected for the total magnetic ordering
entropies, that is, the value R ln(2) for nano- and bulk
DyPO4 (with spin S = 1

2 ) and R ln(8) for the Gd counterparts
(S = 7

2 ).
In addition to these ZF measurements, field-dependent

heat-capacity measurements were made on the DyPO4

nanoparticles, as displayed in Fig. 5. As before, the magnetic

FIG. 5. (Color online) Temperature dependence of the magnetic
heat capacity for the DyPO4 nanoparticles in applied fields (Bapp =
0,1 T, and 3 T). Solid curves, calculated Zeeman-split contributions
(adding Bint = 0.27 T to Bapp; see text); dotted curve, estimated
nuclear heat capacity Chf .

contributions are obtained by subtracting the lattice term
indicated in the figure. The thus-obtained Schottky-type heat
capacity anomalies were analyzed in the following way: in
a mean-field approach, the onset of intraparticle magnetic
correlations can be interpreted in terms of an interaction
field Bint, producing a Zeeman splitting of the (otherwise
degenerate) Dy3+ ground doublet and, thus, leading to a
Schottky-type anomaly, as observed. As is further discussed in
the following section, the interaction field Bint stands for the
combination of the magnetic exchange and magnetic dipolar
interactions; that is, it is the sum of the exchange and dipolar
fields. When measuring C(T ) in applied field Bapp, the total
field becomes the sum of Bint and Bapp, so the anomaly should
shift toward higher temperature with increasing Bapp. This
effect is indeed observed in Fig. 5, which shows Cm(T ) of
the nanoparticles for Bapp = 0 together with data measured
for Bapp = 1 T and 3 T. We calculated Cm(T ) arising from the
Zeeman-split ground doublet by considering averages over
random orientations of the particles’ anisotropy axes with
respect to Bapp. To analyze the Cm(T ) for Bapp = 0, the splitting
of the Dy3+ doublets due to Bint was introduced as a free
parameter. As shown in Fig. 5, an excellent description of the
Bapp = 0 curve is obtained for Bint = 0.27 T. For Bapp = 1 T
and 3 T, we add Bint to Bapp, obtaining the solid lines in Fig. 5,
which nicely reproduce the data except at lowest temperatures,
where one notices an upward curvature following the law
CT 2/R � 2.4 × 10−3 K2 (dotted curve). Since this term, Chf ,
is independent of Bapp, it is ascribed to the hyperfine splitting
(hf) of the magnetic levels of the Dy nuclei (the associated
hyperfine fields Bhf are much larger than Bapp). The dotted
line represents Chf as calculated with hyperfine constants
Ahf = 65 mK and Ahf = 92 mK for the 161Dy and 163Dy
isotopes, respectively. These values are close to those reported
by Cooke and Park14 and correspond to Bhf ≈ 24T � Bapp.
The value found for Bint is, however, a factor of three smaller
than the Bint = 0.78 T known for bulk DyPO4.5 The much
smaller value should be due to the fact that a substantial
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fraction of the surface spins are not fully antiferromagnetically
coordinated in the DyPO4 clusters, in combination with a
decrease of the magnetic interactions due to lattice expansion
and/or lattice defects as seen in the XRD patterns. Also, the
dipolar contribution to the magnetic interaction, which in bulk
DyPO4 is comparable to the exchange part, can be expected to
be reduced in the nanoparticles. The MC simulations discussed
in the next section are found to agree with these qualitative
arguments.

Besides the integral
∫

(Cm/T )dT , giving the magnetic
entropy, the integral of the magnetic heat capacity curve itself,
that is,

∫
CmdT , should be equal to the total magnetic energy,

Em = Eex + Ecf + Edip, involved in the magnetic ordering
process. Here the three terms on the right-hand side stand
for the magnetic exchange, the crystal-field interaction and
the dipolar interaction energies, respectively. Neglecting zero-
point corrections to the AF ground state, the full expression
for the energy per spin, Em/N , can be written as

Em/N = z|J |S2 + (1/3)|D|S(2S − 1) + (1/2)gμBSBdip,

where z is the number of nearest magnetic neighbors and
a crystal-field interaction of uniaxial symmetry is assumed,
that is, a term −DS2

α in the Hamiltonian. Bdip stands for the
dipolar field acting on a given spin due to the other moments
in the crystal. Furthermore, these same parameters J , D, and
Bdip enter in the expression for the coefficient of the limiting
high-temperature T −2 term of the magnetic heat capacity, for
which theory15 predicts

CT 2/R = 2nz[S(S + 1)|J |/3kB]2 + D2S(S + 1)(2S − 1)

× (2S + 3)/10k2
B + g2μ2

BS(S + 1)B2
dip/3k2

B.

Here the numerical factor n in the exchange term should be
taken as n = 1, 2, and 3 for Ising, XY , and Heisenberg type
of magnetic interaction. Since the magnetic studies on bulk
GdPO4 presented in the Appendix evidence a large planar
anisotropy (large compared to the exchange), we shall use the
value n = 2 in the above formula. Furthermore, the exchange
constant estimated from these data is zJ/kB = −0.080 K,
in good agreement with the value found from the MC
simulations (see Sec. V), which yield the effective values
zJ̃ /kB = −0.084 K and zJ̃ /kB = −0.047 K for bulk and
nanosample of GdPO4, respectively. The reduction by a factor
of two of the (average) exchange interaction in the nanosample
arises in the simulations from the missing magnetic neighbors
near the surface of the particles and from the introduction of
an average expansion by about 5% of the unit cell parameters,
assuming a 12th power dependence of the exchange interaction
on the interionic distances. The same MC simulations give the
values Bdip = 0.36 T and D/kB = 0.08 K for bulk GdPO4,
on the basis of which we calculate the total magnetic energy
as Em = Eex + Ecf + Edip � 1.0 + 0.6 + 0.8 = 2.4 K, which
compares favorably with the experimental value Em � 2.2 K
obtained from the integration of the heat-capacity curve. In
the case of the GdPO4 nanoparticles, the experimental Em

amounts to ∼1.4 K. Assuming the same anisotropy value
for bulk and nanosamples, and adopting the value for the
effective exchange zJ̃ /kB = −0.047 K mentioned above, we
calculate Edip = Em − Eex − Ecf � 1.4 − 0.6 − 0.6 = 0.2 K,
from which we obtain Bdip � 0.1 T, in fair agreement with the

dipolar field calculated in the MC simulations (see below).
For the coefficient of the T −2 term, the resulting sum of
exchange, dipolar, and crystal-field contributions amounts,
therefore, to 0.1 + 0.6 + 1.2 = 1.9 K2 for the bulk sample
and 0.04 + 0.60 + 0.08 = 0.72 K2 for the nanoparticles, to
be compared with the experimental results of ∼1.1 K2 and
∼0.6 K2, respectively. Although the quantitative agreement is
less perfect in this case, the strong differences in the values
obtained for bulk and nanoparticle samples are again well
accounted for.

For DyPO4, the crystal-field term in the above equations
is not present since it vanishes for (a Kramers doublet with
effective) spin S = 1

2 . For bulk DyPO4, the values of the AF
exchange constant and the dipolar interactions have been well
established in the literature.5 This compound is particular
since it was found that, although the long-range dipolar
interactions are comparable in strength to the (short-range)
superexchange interactions, the material is nevertheless a
good approximation of an Ising system with only interactions
between nearest neighbors. This arises because exchange
and dipolar interactions from further-than-nearest neighbors
almost completely cancel one another, their sum amounting
to a mere 3% of the interaction between nearest neighbors.
The dipolar and exchange contributions to the latter are in
the ratio 40/60, and their sum can be represented to good
approximation by an “effective” nearest-neighbor “exchange”
interaction, J/kB = −2.50 K. This is, indeed, confirmed by
the MC simulations discussed below. In this approximation,
therefore, one simply obtains Em = Eex = z|J |S2 = 2.50 K
for the total magnetic energy of the bulk sample. Alternatively,
in terms of a nearest-neighbor (nn) exchange interaction in
combination with the (total) dipolar interaction, the magnetic
properties are found to be well described by a nn exchange
J/kB = −1.80 K, corresponding to an exchange field Bex =
0.550 T in the mean-field formalism, plus a dipolar field
Bdip = 0.237 T. The formula for the magnetic energy then
becomes Em = Eex + Edip � 1.80 + 0.79 = 2.59 K. For the
nanosample, the MC simulations again point to a strong
reduction of the average magnetic interactions that can be
described in terms of a unit cell expansion of 7%, leading
to J̃ /kB = −0.44 K and dipolar field Bdip = 0.116 T. The
resulting total interaction field Bint is, thus, 0.252 T as
compared to 0.787 T for the bulk case, confirming the
substantial reduction of Bint in the nanoparticles found in the
analysis of the field-dependent heat capacity measurements,
which yielded the estimate Bint = 0.27 T. For the nanosample
the prediction for the magnetic energy, therefore, becomes
Em = Eex + Edip � 0.44 + 0.38 = 0.82 K. Experimentally,
the areas under the heat-capacity curves yield total energies
Em � 2.38 K and 0.95 K for bulk and nanosample, in
good agreement, given the experimental uncertainties and
averages over particles involved. The same reduction can
be seen in the experimental coefficient of the T −2 term,
which experimentally for the DyPO4 nanoparticles, is indeed
a factor of four to five smaller than for the bulk, namely,
CT 2/R = 0.7 K2 versus 3.3 K2 (see Fig. 3). From the above
theoretical expression for the coefficient of the experimental
T −2 term, now with the Ising value n = 1, the calculated values
for the bulk sample are 3.1 K2 and 4.0 K2, depending on
whether the single effective nn interaction or the combination
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of nn exchange plus dipolar interaction is used. For the
nanosample the mentioned values for J̃ /kB and Bdip yield
the value 0.67 K2. The agreement with experiment is again
satisfactory for both samples.

We conclude this section with a discussion of the phonon
heat-capacity contributions in the two nanosamples. These are
obtained by subtracting from the heat capacity per gram of
sample, Cnano

g , as measured in the range T > 5 K, the magnetic
contributions (likewise per gram) discussed above, namely, the
associated high-temperature T −2 tails of the broad magnetic
anomalies. As an approximation, we may consider in the
analysis the RPO4 cores of the particles as being embedded
in a softer medium formed by the TEHP-ligand “shells” that
surround these cores. Such an approach has been successfully
applied previously in studies of the (structurally similar)
molecular metal cluster compounds, namely, for the analysis of
the heat-capacity measurements and the Mössbauer recoilless
fractions (Debye-Waller factors).16,17 The lattice vibrations are
then divided in two different classes, the (high-energy/small-
wavelength) intracluster vibrations of the atoms in the much
stiffer particle cores and the (low-energy/long-wavelength)
intercluster vibrations corresponding to the center-of-mass
motions of the cores in the surrounding medium. In the
analysis, the two types of vibrations are taken to be decoupled,
an assumption that is justified a posteriori by the fact that
the associated intra- and intercluster Debye temperatures are
found to differ by an order of magnitude, with �inter

D 
 �intra
D .

It is of interest to note that the measured low-temperature
heat capacities of molecular magnetic cluster compounds can
indeed be likewise described by a large fraction of low-energy
excitations, with Debye temperatures of the order of 10 K–
30 K.18

Proceeding along these lines and taking into account the
RPO4 mass fraction of about 2/3 found in the above from the
magnetic data, we consider the contributions to Cnano

g from
RPO4 cores and ligands to be additive and write

Cnano
g = 2

3CREPO4
g + 1

3C ligand
g .

In order to obtain an estimate of C
ligand
g , we further assume

the phonon contributions from the RPO4 cores to be the
same as those of their bulk counterparts. Although this may
certainly be questioned, the error involved will be small since
the RPO4 contributions are, at any rate, much smaller than the
ligand part. This can already be directly inferred from Fig. 3
from the fact that above 5 K the lattice heat capacities of
the nanoparticles lie far above the bulk data and are almost
equal in spite of the fact that the bulk data are much larger
for R = Dy3+ than for R = Gd3+, and the volume ratio of the
Dy and Gd nanoparticles is of the order of (3.5/2.6)3 = 2.4.
A large ligand contribution is also expected on theoretical
grounds since the number of vibrational degrees of freedom
(i.e., the number of atoms per chemical formula unit) of the
TEHP = (C8H17)3PO4 molecules is evidently much larger
than that of the RPO4. Thus the expected high-temperature
Du Long and Petit limit for the molar heat capacity of TEHP
is 240 R as compared to 18 R for RPO4. The thus-derived
estimates of C

ligand
g for the two samples are plotted in Fig. 6

and fitted to the Debye function, giving a Debye temperature
of �inter

D � 55 K, much lower indeed than the above-obtained

FIG. 6. (Color online) Temperature dependence of the estimated
lattice heat capacity contributions from the TEHP ligands (Cnano

g ).
The solid curve shows the fitted Debye function with �inter

D � 55 K.
We note that the values for the molar heat capacity in this figure were
calculated using the molecular weight of the TEHP ligand (compare
with Fig. 3).

values for the bulk RPO4 compounds. Dividing by the
molecular weight of the TEHP ligand yields the molar ligand
heat capacity, C ligand/R, as given by the vertical scale of
Fig. 6. The thus-obtained two estimates for the ligand heat
capacity appear to be in reasonable agreement, given all the
uncertainties involved. It may be observed that the molar heat
capacity at high temperatures tends, in fact, to values of the
order of 100 R, in agreement with the Du Long and Petit
prediction.

V. MONTE CARLO SIMULATIONS

For further analysis of the experimentally observed finite-
size effects, we have performed MC simulations for the ZF
heat capacity for bulk systems and nanoparticles made of
crystallites of DyPO4 and GdPO4. We consider crystals of
magnetic moments gμBSi, where Si are classical spins of
modulus S placed on the N sites i of the crystal lattices. The
Hamiltonian used reads

H = −J

nn∑
i,j

∑
α

Sα
i Sα

j − 1

2

∑
i,α

(
gμBSα

i

)
Bα

i,dip −
∑

i

D
(
S

y

i

)2
,

(5.1)

where the first sum is over Nz nn pairs (z is the number
of nearest magnetic neighbors). Note that (i,j ) and (j,i)
appear as different pairs in the summation, J stands for the
exchange energy, D for the uniaxial anisotropy, and Bα

i,dip
for the α component (α = x,y,z) of the dipolar field Bdip at
site i:

Bα
i,dip = μ0

4π
gμB

∑
j,β

r3
ij

(
δαβ − 3rα

ij r
β

ij r
−2
ij

)
S

β

j . (5.2)
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Within the effective field formalism Eq. (5.1) can be
rewritten as follows:

H = −1

2

∑
i,α

(
gμBSα

i

)
Bα

i,ex − 1

2

∑
i,α

(
gμBSα

i

)
Bα

i,dip

− 1

2

∑
i

(gμBS
y

i )By

i,an, (5.3)

where

Bα
i,ex = (2J/gμB )

z∑
j=1

Sα
j and B

y

i,an = (2D/gμB)Sy

i

represent the local exchange and anisotropy fields, respec-
tively, acting on the components (α = x,y,z) of a reference
spin Si .

For DyPO4, in its low-temperature pure Ising state, only
a single spin component remains, say α = z, so that Bex =
2zJS/gμB for bulk systems. Since the crystal-field effects
leave an effective spin S = 1

2 as the only populated doublet,
the anisotropy term [the third term on the right-hand side of
Eq. (5.1)] is not relevant in this case. In order to compare
the MC simulations with the experimental results for the
nanoparticles, we find it useful to define

z̃ =
∑
j=1

Sα
j /S.

Note that z̃, when averaged over ensembles of nanoparticles,
may not coincide with z. We define an effective exchange
constant as J̃ = z̃J/z. In general, |J̃ | < |J | given that J̃

includes the effect of missing bonds and defects on the surface
of the nanoparticles. The effective field Bex and J̃ are directly
related by Bex = 2zJ̃ S/gμB . In a similar way as in Sec. IV, the
exchange energy per spin can be written as Eex/N = z|J̃ |S2.

The dipolar interaction terms are included in Eq. (5.1)
since the associated interaction energies between pairs of nn
magnetic moments are on the order of 0.5 K and 1 K for
GdPO4 and DyPO4, respectively, that is, comparable to the
thermal energies kBTN associated with the magnetic transition
temperatures observed for the bulk compounds. In fact, for
bulk DyPO4, it has been reported5,19 that the dipolar and
exchange contributions to the magnetic interaction between
nearest neighbors are in the ratio 40/60. The material is rather
unique in that it is a good example of a magnetic compound
with nearest-neighbor-only magnetic interactions, in spite of
the fact that the long-range dipolar interactions play such
an important role. The explanation is that the dipolar and
exchange contributions with further (than nn) neighbors are
again similar in magnitude, but of different sign. As a result,
they almost fully cancel one another, leaving a net interaction
with further neighbors that amounts to only about 3% of the
nn interaction.5,19

In the calculations for DyPO4, a tetragonal zircon lattice
has been taken with a = b = 6.917 Å, c = 6.053 Å, and
four Dy3+ ions per unit cell. Each Dy3+ has four equivalent
magnetic nn at a distance 3.78 Å. We use a Cartesian system
of axes, with the c axis coinciding with the z direction.
The Dy3+ magnetic moments are represented by classical
Ising spins, oriented along z, that can take values Sz

i = ± 1
2 ,

with g = 19.5. For GdPO4 we adopt the reported monoclinic

monazite structure, with four Gd3+ per unit cell and axes
a = 6.643 Å, b = 6.841 Å, c = 6.328 Å. In our Cartesian
system of axes, we take a and b to coincide with the x and z

axes, respectively; the y axis, denoted by c′ in the Appendix,
is then nearly coincident with the crystallographic c axis (at an
angle of about 14◦). Each Gd3+ has six magnetic nn at distances
lying in the interval [4.00 Å, 4.22 Å]. We treat the Gd3+
magnetic moments as classical three-dimensional spin vectors,
with S = 7

2 (g = 2) and the restriction that Sz
i can take only

values (−7/2, − 5/2, . . . , + 7/2), with arbitrary azimuthal
angles around the z = b axis. Here we are predicating on
the analysis of the field-dependent measurements of the
differential susceptibility in the region of magnetic order, as
discussed below in the Appendix. These data evidence a strong
preference for the moments to lie within the ab (xz) plane, with
the b axis as the most preferred direction in this easy plane.

For the bulk samples, we simulate systems of 16 × 16 × 16
unit cells and use periodic boundary conditions. For the
nanoparticles, we simulate spherical crystallites of diameter
d = 2.6 nm, assuming the same lattice structure as for the
bulk systems. The results are averaged over some hundreds
of spheres, centered at different positions within the unit
cells. The simulations follow the standard Metropolis MC
algorithm.20 Starting from a disordered configuration at high
temperature (well inside the paramagnetic phase), the temper-
ature is lowered in steps �T = 0.05 K. At each temperature,
averaging is done over 5 × 105 MC sweeps, after having
discarded the first 5 × 104 MC sweeps to let the system
equilibrate. We obtain the heat capacity as the derivative of the
magnetic energy E, and check that it agrees with the associated
energy fluctuations via the relation C = δE2/(NT 2), where N

is the number of magnetic moments.
MC data for the heat capacity C versus T for bulk DyPO4

are exhibited in the top panel of Fig. 7. As expected, the
ground state obtained for the bulk sample is, indeed, the simple
two-sublattice AF structure known from the literature. The
thick solid red line stands for a MC simulation corresponding
to an exchange field Bex = 0.550 T (J/kB = −1.80 K) for the
nn exchange interaction and Bdip = 0.237 T for the dipolar
field from all neighbors, giving a total interaction field of
0.787 T acting on a reference spin (the dipolar field from nn
neighbors only is 0.346 T). These numbers agree quite well
with published results in the literature.5,19 The calculated heat-
capacity curve is seen to coincide nicely with the experimental
bulk data. It is worth mentioning that a MC simulation in
which only an effective exchange interactions between nearest
neighbors is assumed, that is, not including the dipolar terms,
likewise reproduces the experimental results reasonably well,
yielding an effective nn exchange interaction constant J/kB =
−2.50 K (thin solid green line in Fig. 7, top). The explanation
for this result can be traced to the remarkable property of this
material as cited above, that is, the near cancellation of further
neighbor (exchange plus dipolar) interactions.

For the DyPO4 nanoparticles, the MC simulation yields
the dotted blue line plotted in the same figure if the dipolar
interactions are included and the value J/kB = −1.80 K
found for bulk is taken for the nn exchange. Similarly, as
in the experiment and as expected for a finite system, a
broad anomaly is found, instead of the λ-type peak found
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FIG. 7. (Color online) Temperature dependence of the experi-
mental ZF magnetic heat capacities for DyPO4 (top) and GdPO4

(bottom) for both nanoparticles and bulk, compared to the MC
simulations (lines) explained in the text.

for the bulk case. The maximum of the anomaly, however, is
then centered at a temperature T � 2 K instead of T � 1 K
as in the experiment (cf. Fig. 3). MC averages taken over
particles with a size distribution of δd/d = 0.2 and mean size
d = 2.6 nm do not change appreciably this finding. Guided
by the experimental indications for a strong reduction of the
magnetic interaction in the nanoparticles, as discussed above,
we performed simulations on dilated samples, assuming a
12th-power decay of the nn exchange with increasing nn
distance.21–25 Much better agreement was indeed obtained for
lower values of J/kB . In particular, the thick dashed blue
line in the top panel of Fig. 7 stands for results obtained
for a dilation of the crystal lattice parameters by about 7%,
which gives J̃ /kB = −0.44 K (exchange field Bex = 0.135 T).
The dipolar field due to all neighbors is now obtained as
Bdip = 0.116 T, giving a total interaction field of 0.252 T
instead of the 0.787 T found for bulk. This reduction by a factor
of three of the total magnetic interaction in the nanosample
agrees quite well with the analysis of the field-dependent
heat-capacity data discussed above, from which the value
0.27 T was deduced for the total magnetic interaction field.
As mentioned before, the combination of lattice expansion
in the nanoparticles, lattice defects, and missing magnetic
neighbors near the surface of the particles should explain
the lower effective value for the magnetic interactions in the
nanoparticles.

We next turn to the MC results for GdPO4. As noted
above, the magnetic data taken on the bulk single crystal

presented in the Appendix show a strong preference for the
moments to lie in the ab (xz) plane with the b direction
as the easiest axis. For this reason, an easy-plane-type
uniaxial anisotropy term −D

∑
i(S

y

i )2 was included in the
Hamiltonian of Eq. (5.1) (with D < 0). We note that, although,
generally speaking, crystal-field effects will be small for Gd3+
compounds, the Gd3+ ion being in an 8S7/2 ground state, the
crystal-field anisotropy can nevertheless become important
in compounds with sufficiently small exchange interactions,
such as the present material. We recall that for the closely
related compounds GdVO4 and GdAsO4 a uniaxial anisotropy
term with D/kB = 0.03 K has been reported.26 With S = 7

2
the corresponding anisotropy energy amounts to DS2/kB =
0.37 K, quite comparable to the TN value of GdPO4.

Our MC results for the heat capacity of bulk GdPO4 are in
good agreement with experiments for D/kB = −0.081 K and
an exchange field of 0.435 T, directed along the z axis (solid
black line in Fig. 7, bottom). This would correspond to a nn
exchange constant zJ̃ /kB = −0.084 K. In this configuration,
the components [Bx

dip,B
y

dip,B
z
dip] of the dipolar field (in teslas)

are found to be [0.019, 0.044, 0.354]. The ground state
obtained is that of a compensated antiferromagnet, since two
of the four Gd3+ moments of a given unit cell are pointing
up and the other two are pointing down (along the z = b

axis). Nevertheless, the magnetic ground state is rather peculiar
in that, of the six nearest neighbors of a given Gd3+ spin
that is pointing up, only four are pointing down and two
are pointing up, and hence z̃ = 2 (calculations assuming
inequivalent exchange constants for different nn neighbors
would become rather complicated and were not attempted).
We further note that, when the anisotropy term is omitted,
it is found that exchange plus dipolar interactions push the
spins onto a plane perpendicular to b, with the a axis as the
most preferred. Finally, simulations considering only dipolar
interactions resulted in AF configurations favoring the ab

plane. Thus, only the combination of the planar anisotropy
term together with the exchange plus dipolar terms resulted
in an AF ground state with spins pointing along the b axis, as
observed experimentally. Last, results obtained by considering
only nn exchange interactions, that is, leaving out the dipolar
terms, yielded the thin solid red line in the same figure,
with the value zJ̃ /kB = −0.098 K. The observed strong
disagreement of this calculation with the experimental data
shows unambiguously the crucial importance of the inclusion
of the dipolar contributions to the heat capacity, in particular
as concerns the T −2 tail at temperatures above TN .

Similarly, as for the DyPO4 nanoparticles, we have explored
in our MC calculations different values for the dilation of
the crystal lattice parameters for the GdPO4 nanoparticles
in order to get the maximum of the broad heat-capacity
anomaly at a temperature in agreement with the experimental
one. Comparably good fits could be obtained for varying
combinations of a small degree of dilation and the strength
of the anisotropy. The MC curve shown as the dashed line
in the bottom panel of Fig. 7 has been calculated adopting a
dilation of about 5%, which results in zJ̃ /kB � −0.047 K,
and adopting an anisotropy parameter of the same order as
in the bulk sample. In this calculation, the components of the
exchange field and dipolar field in the ground configuration
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were found to be [Bx
ex,B

y
ex,B

z
ex] = [0.044,0.0003,0.119] and

[Bx
dip,B

y

dip,B
z
dip] = [0.060,0.051,0.166], respectively.

VI. μSR RELAXATION STUDIES

Size effects on the spin dynamics of magnetic nanoparticles
are of considerable interest from both a fundamental and
application point of view, and few experimental studies have
been performed to date. We, therefore, decided to study in
addition to the thermodynamic behavior the spin dynamics
in our samples by performing 31P-NMR studies and μSR
experiments. Whereas the NMR experiments were done in
high magnetic fields (9.4 and 5.6 T) for reasons of sensitivity,
the μSR experiments (in longitudinal geometry) have the
advantage that they can be done in ZF or in a small LF (BL),
thus providing most valuable information complementary to
the NMR data. We first discuss and analyze the μSR data,
postponing the NMR results to the following section.

The μSR spectra were taken at variable temperatures down
to 0.04 K at the ISIS facility. To correct for a possible muon
response coming from the TEHP ligands, measurements were
also performed on structurally and morphologically similar
YPO4 nanoparticles. The depolarization was then found very
small and temperature-independent; see, for example, the
μSR spectra collected for three representative temperatures
in Fig. 8. Therefore, any contribution coming from the TEHP
ligands can be safely neglected in what follows. We recall
that depolarization of the muon spins in magnetic systems can
result from a combination of dephasing, due to a distribution

FIG. 8. Zero-field μSR spectra collected at the indicated temper-
atures for nanoparticles of YPO4.

in the static magnetic (dipolar) fields exerted at the muon sites
by neighboring electronic or nuclear magnetic moments, and
relaxation arising from dynamic fluctuations of these hyperfine
fields.27 Here the distinction between static and dynamic is
determined by the time scale of the μSR experiment, which
is of the order of 1 to 10 μs. In our magnetic samples, a
transition from the dynamic to the static regimes is expected
as the temperature is lowered. In the paramagnetic regime,
the hyperfine fields from the electron spins will be rapidly
fluctuating due to electron spin-lattice relaxation (ESLR)
and/or electron spin-spin interactions of exchange and dipolar
origin. In the long-range ordered magnetic state of the bulk
sample, as well as below the freezing points of the nanoparticle
moments, the fluctuations slow down to below the muon
frequency window as the (quasi)static regime is reached.

Starting with the data for bulk-GdPO4, ZF-μSR spectra
taken at two representative temperatures above and below
TN = 0.77 K are shown in Fig. 9 (top panel). We find the time
evolution of the depolarization (the asymmetry) for T > TN

to be well described by the function

Pz(t) = Pz(0)GKT (t,σ ) e(−λt). (6.1)

Here GKT is the Kubo-Toyabe function, representing the
depolarization arising from a distribution (of half width at half
maximum � = σ/γμ) in the static local fields experienced
by the muons, and λ is the μSR rate associated with the
dynamic fluctuations of the hyperfine fields exerted by the
Gd3+ electronic spins.27 We recall that the Kubo-Toyabe
function is defined as

GKT (t) =
{

1

3
+ 2

3
[1 − (�t)α]e

[
−(�t)α

α

]}
.

The concentrated limit is best described by a Gaussian
distribution, for which α = 2, whereas in the dilute limit the
correct distribution function is a Lorentzian, with α = 1. We
note that values of α between 1 and 2 are often found in the
literature.28 The static contribution is, in this case, attributed to
local fields arising from the nuclear moments surrounding the
muon. It is found to be temperature-independent for T > TN ,
the fit in this range yielding σG = 0.28(μs)−1 for the width of
the Gaussian distribution. Keeping this value fixed leaves the
relaxation rate λ as the only remaining free parameter, and the
temperature dependence of this quantity resulting from the fits
is given in the bottom panel of Fig. 9. It is seen that λ remains
fairly constant down to T ≈ 2TN , then decreases rapidly to a
low-valued plateau that is reached below T ≈ TN , suggesting
the dynamical relaxation component to become decoupled due
to the (static) internal fields arising from the ordering of the
Gd3+ moments below TN .29 Measuring in applied LFs BL at
temperatures above 2 K reveals, indeed, that decoupling occurs
for fields exceeding 5 mT, much smaller than the dipolar
hyperfine fields expected in the magnetically ordered state.
The temperature-independent value of about 5 MHz found
for the damping rate above 2 K is in good agreement with
the estimated exchange-narrowed hyperfine broadening due
to electron spin-spin interactions. Similar to the longitudinal
nuclear-spin-lattice relaxation rate in NMR (see Sec. VII), the
μSR rate will be given by the formula30

λ = (2π )1/2(γμBhf )2/3ωex. (6.2)
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FIG. 9. (Top) Zero-field μSR spectra collected at the indicated
temperatures for bulk GdPO4. Solid curves are fits of the data to the
Gaussian Kubo-Toyabe function, as described in the text. (Bottom)
Temperature dependence of the ZF muon relaxation rate as obtained
from the fits to the spectra.

Here S = 7
2 is the Gd3+ spin, γμ = 8.516 × 108 Hz/T is the

gyromagnetic ratio of the muon, Bhf is the dipolar hyperfine
field at the muon site from the Gd3+ spins, and ωex is
the exchange frequency, which is related to the Gd3+-Gd3+
spin-spin interaction J/kB by h̄ωex = |J |(2zS(S + 1)/3)1/2.
With z = 6 and J/kB � 0.01 K, as found above, one obtains
ωex � 1.5 × 1010 rad s−1. From the experimental value λ ≈
5.5 MHz, the dipolar hyperfine field at the muon site is
calculated as Bhf ≈ 0.36 T, which is just equal to the dipolar
field at the Gd3+ site in the bulk crystal calculated in the
MC simulations. Unfortunately, the position of the muon is
not known precisely, so the agreement may be accidental.
However, in the NMR section below we shall find the same
value for the dipolar hyperfine field seen by the 31P nuclei in
the bulk GdPO4 sample.

FIG. 10. (Color online) (Top) Zero-field μSR spectra collected
at the indicated temperatures on GdPO4 nanoparticles. Solid curves
are fits to the data as described in the text. (Bottom) Temperature
dependence of the static local field σ/γμ seen by the muons and
the muon relaxation rate λ as obtained from the fits to the spectra.
The solid line is the exponential increase of λ with lowering T for
0.3 K < T < 0.7 K, see text.

As clearly seen from the (representative) ZF-μSR spectra
shown in Fig. 10 (top panel), the behavior found for the GdPO4

nanoparticles is drastically different. The spectra for T > 1 K,
that is, far above the freezing point of 0.2 K observed in the
ac susceptibility, are predominantly exponential with a fast
decay, indicating rapidly fluctuating random fields at the muon
sites. The shape of the curves appears consistent with what
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one would expect for a paramagnetic system, that is, when
no static field is present. Below about 0.5 K, the spectra are
seen to change drastically. As exemplified by the spectra taken
at the low temperatures of T = 40 and 260 mK (top panel
in Fig. 10), the depolarization does not decay monotonically.
Similar as for the bulk spectra, such a nonexponential decay
can be described by the Kubo-Toyabe function and indicates
the gradual development of a static internal field experienced
by the muons, leaving only one degree of freedom along
the longitudinal direction. We note, however, that the gradual
decay of the 1

3 tail observed at longer times indicates that not
all the particle moments are blocked within the time window
of the muon probe, even at 40 mK. The overall temperature
dependence exhibits the same characteristic behavior as
observed for a spin-glass system.27 The spectra could be
well fitted to Eq. (6.1) assuming a Lorentzian distribution of
the static internal fields, as expected for a diluted magnetic
system. The resulting temperature dependencies of the half
width at half maximum of the Lorentzian field distribution
experienced by the muons (σ/γμ) and the μSR rate λ are
shown in the bottom panel of Fig. 10. One observes a gradual
transition to the frozen spin state, similar to that found in
the ac susceptibility at the (frequency-dependent) freezing
temperature Tf � 0.2 K. Upon cooling below about 0.7 K,
the μSR rate starts to increase. At about 0.4 K–0.5 K, a static
local field develops, and its value extrapolates to about 6 mT
for T → 0, while concomitantly λ drops sharply (Fig. 10).
Above 0.7 K, the rate remains nearly temperature independent,
similar to the effect found for the bulk sample but now at a
value of 1 MHz, that is, about five times lower. We attribute
the μSR above 0.7 K to the same mechanism as in the bulk,
namely, the fluctuations of the Gd3+ spins inside the particles
due to the Gd3+-Gd3+ spin-spin interactions. Using Eq. (6.2)
and noting that the J value found in the MC calculations
for the nanoparticles is about a factor of two lower than
in the bulk, one would expect the average dipolar hyperfine
field Bhf in the particles to be a factor of

√
5.5 × 2 � 3.3

smaller than in the bulk, which very nicely agrees with the
values of Bdip � 0.1 T and 0.36 T for nanoparticles and bulk
GdPO4, respectively, reported above in the MC calculations
and heat capacity analyses. In the NMR section below, we
shall encounter a similar reduction of the dipolar hyperfine
field at the 31P nuclei when going from the bulk GdPO4 to the
nanoparticles.

Guided by the results from the susceptibility and heat
capacity, the μSR data found below 0.7 K can thus be
explained as follows.31,32 When the bulk magnetic ordering
temperature is approached below 1 K, the Gd3+ electronic
spins inside each particle become (at least to large ex-
tent) ordered antiferromagnetically, implying that the high-
temperature relaxation channel for the μSR arising from
the intraparticle spin-spin interactions gradually disappears.
Instead, a new relaxation channel appears in the form of
spin-lattice relaxation associated with the flipping of the net
superparamagnetic moments developed at the nanoparticles. In
the ac-susceptibility study, this superparamagnetic relaxation
was found to be described by the Arrhenius law, with a re-
laxation time τ = τ0 exp(EA/kBT ), with an activation energy
EA/kB = 2.3 K and τ0 ≈ 5.6 × 10−10 s. In the fast fluctuating

limit, that is, when 1/τ is much faster than the typical muon
precession frequency, the μSR rate is just proportional to τ ,
namely, λ = 4σ 2

Lτ .31 The sharp increase in λ observed in
between 0.7 K and 0.3 K can, therefore, be directly related
to the exponential increase of τ with decreasing temperature,
that is, λ = λ0 exp(EA/kBT ), depicted as the solid line in the
bottom panel of Fig. 10, corresponding to EA/kB = 2.3 K
and λ0 ≈ 300 s−1. As the freezing temperature is approached,
however, these fluctuations become slow compared to the μSR
time scale and the (quasi-)static regime is entered (below about
0.3 K). In the static limit, the damping rate is simply given by
σL, and from the T → 0 extrapolated value of 6 mT for σL/γμ

in Fig. 10, bottom panel, one calculates λ(T = 0) ≈ 0.8 MHz,
in good agreement with the lowest observed experimental λ

value. The temperature range at which the transition from the
dynamic to the static regime should occur can be roughly
estimated by equating the just mentioned dynamic and static
expressions for λ, predicting this to happen when λ ≈ 1/4τ .
From the value of 2 MHz reached by λ at the maximum,
this should correspond to the temperature at which τ ≈
0.125 × 10−6 s. From the Arrhenius law, one then calculates
a temperature of 0.43 K for the transition, in reasonable
agreement with the position of the maximum in λ found
experimentally (≈0.37 K). The higher value of the freezing
temperature observed here in the μSR data as compared to
0.2 K in the frequency-dependent ac-susceptibility, is thus
simply due to the much shorter μSR time scale as compared
to the frequencies in the χac experiment, and we can fit the
freezing temperatures derived from the susceptibility as well
as from the μSR data in a single Arrhenius plot, as shown in
Fig. 2, with the mentioned activation energy of EA = 2.3 K
and τ0 = 5.6 × 10−10 s. Finally, the upturn observed at the
lowest temperatures in λ in Fig. 10, that is, below 0.2 K, is
attributed to the previously mentioned fluctuations that remain
even at 40 mK, arising most probably from loose spins at the
surface layers of the magnetic cores.

For the case of DyPO4, experiments were only performed
in LFs on the nanoparticle sample. We note, however, that
ZF-μSR data have been published on bulk DyVO4, a material
which, in several respects, resembles the DyPO4 compound.33

We did not observe any precession signal as usually associated
with the presence of a static internal field, even for tempera-
tures T 
 TB � 1 K. Instead, the data indicate that the muon
polarization relaxes due to dynamical field fluctuations down
to our lowest temperature reached, T � 40 mK. We conclude
this from the fact that (i) the depolarization shows monotonic
decay without recovery to 1

3 and (ii) the dependence of the
depolarization on BL is very weak, since even the highest field
BL = 2.5 kOe achievable in the experiment was not strong
enough to decouple the signal.29 We thus analyzed the μSR
data in terms of ESLR. Within this context, the previously
noted square root-exponential decay ∝exp[−(λt)0.5] is ex-
pected in the fast fluctuation limit.34 The fit to this function was
found satisfactory at all temperatures, as illustrated in the top
panel of Fig. 11 for some representative temperatures. In the
bottom panel of the same figure, the temperature dependence
of the thus-obtained ZF muon longitudinal relaxation rate λ is
plotted.

As can be seen in Fig. 11 (bottom), we have to account
for two maxima in λ(T ), a pronounced one at about ∼35 K
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FIG. 11. (Top) Zero-field μSR spectra collected at the indicated
temperatures on DyPO4 nanoparticles. The solid curves are fits of
the data as described in the text. (Bottom) Temperature dependence
of the muon relaxation rate as obtained from the fits to the spectra.
The solid line is the exponential fit to the higher-temperature data
(see text).

and a weaker and broader one in the 1 K–4 K temperature
range. We will explain the high-T peak in terms of spin-lattice
relaxation of the individual Dy3+ spins, whereas the low-T
feature is attributed to the superparamagnetic blocking process
of the particles that is also observed for lower frequencies in
the ac susceptibility. Indeed, the low-temperature part of the

μSR rate is seen to be similar to that found for the GdPO4

nanoparticles, although the maximum is, in this case, much less
pronounced. Recalling that for the DyPO4 nanoparticles the
superparamagnetic blocking in the susceptibility is described
by the Arrhenius law τ = τ0 exp(EA/kBT ), with activation
energy EA = 10 K and τ0 ≈ 4 × 10−10 s, we estimate the
expected temperature of the maximum in λ with the same
criterion as used above, that is, when λ ≈ 1/4τ . Noting that
the maximum value reached here by λ is again about 2 MHz,
we then find this relation to be satisfied for T ≈ 2 K, in accord
with the temperature range where the transition takes place
in Fig. 11. We can, thus, fit the freezing temperatures derived
from the susceptibility as well as from the μSR data in a
single Arrhenius plot, as shown in Fig. 2. The fact that the
transition anomaly is much less pronounced as compared to
the GdPO4 case can be attributed to the higher degree of
magnetic disorder inside the DyPO4 nanoparticles as found
in the above. The much larger amount of missing magnetic
neighbors implies a broader distribution in the EA values for
the DyPO4 nanoparticles and, thus, in the associated freezing
temperatures. Moreover, the amount of spin fluctuations
remaining present even far below the blocking temperature will
also be much larger, explaining the high value for λ found at our
lowest temperature (∼1.8 MHz instead of ∼0.6 MHz for the
GdPO4 case). The higher value for the blocking temperature
in the μSR, about 2 K–3 K compared to 1 K in the ac
susceptibility, can again be simply attributed to the much
shorter μSR time scale as compared to that of the χac data.32

As mentioned, we interpret the high-temperature depen-
dence of λ seen in Fig. 11 in terms of the fluctuations
of the individual Dy3+ spins originating from electronic
spin-lattice relaxation (ESLR).35 Assuming Lorentzian (single
exponential) relaxation for the electron spins, the relation
between λ and the electronic relaxation time τe is given more
generally by

λ = 2(γμB⊥)2 τe

1 + ω2
Lτ 2

e

, (6.3)

with ωL = γμBL the angular muon frequency corresponding to
BL, and B⊥ is the magnitude of the perpendicular component
of the fluctuating dipolar hyperfine field. Since we are in the
fast-fluctuating limit and measure in ZF, that is, ωL = 0, this
equation reduces to λ = 2(γμBhf )2τe for the present case. We
show in Fig. 11 as the solid curve, the calculated contribution to
λ(T ) from ESLR, taking for τe(T ) the data obtained by Forester
and Fernando from Mössbauer spectra (in ZF) in the range
10 K–100 K.36 They attributed the observed relaxation to an
Orbach process involving the excited level at ≈110 K, resulting
in an exponential decrease of τe with temperature given by
τe = τ0e

�/kBT , with τ0 = 5 × 10−11 s and � = 110 K. Here
� is the energy separation between the ground doublet and the
first excited doublet of the Dy3+ electron spin. With an average
hyperfine field of B⊥ = 50 mT, this predicts an exponential
dependence of λ given by λ(T ) = λ0e

�/kBT , with λ0 = 2 ×
105s−1 and the above value for �. As seen in Fig. 11, this
prediction fits the experimental data remarkably well in the
whole range above the maximum. This strongly indicates that
the energy distance between the two lowest doublets is indeed
comparable to what is known for the bulk. We note that the
value obtained here for B⊥ is comparable to the dipolar field of

094408-13



MARCO EVANGELISTI et al. PHYSICAL REVIEW B 84, 094408 (2011)

about 120 mT at the Gd3+ site obtained in the MC calculations.
Below about 30 K, the τe becomes of the order of the muon
frequency, explaining why λ goes through a maximum. Below
about 10 K, the fluctuations of the individual Dy3+ spins due
to ESLR have become much too slow; their contribution to
λ decreases and the relaxation by the collective fluctuations
of the Dy3+ spins in each particle due to superparamagnetic
relaxation becomes the most important process.

VII. 31P NMR STUDIES

As mentioned above, we have further studied the Gd3+
and Dy3+ spin dynamics by performing 31P-NMR studies on
powdered samples of both nanoparticles and bulk in fields of
9.4 and 5.6 T. In the NMR data at 9.4 T the 31P-NMR signal
is found to be centered around 162 MHz, with linewidths of
a few MHz at room temperature. For the nanoparticles the
linewidth starts to increase linearly with inverse temperature
below �200 K. The broadening arises most likely from
inequivalent rare-earth sites in the nanocluster cores, the
corresponding envelope signals being exchange-narrowed at
high temperatures. For all four samples, the temperature
dependencies of the 31P-nuclear spin-lattice relaxation (NSLR)
time T1 were measured at the center of the line.

Data obtained on the GdPO4 samples are shown in Fig. 12.
Over a large temperature range, the curves for both nanopar-
ticles and the bulk material are flat, indicating an analysis
in terms of exchange narrowing to be appropriate, similar to
that applied to the μSR data. The difference is that, in this
case, we have to take into account the presence of the large
(9.4 T) NMR field, that is, much larger than the exchange field
(0.4 T) associated with the Gd3+-Gd3+ spin-spin interaction.
Accordingly, the data are interpreted by means of the formula

1/T1 = (2π )1/2
(
γ 2

n B2
hf /3ωex

)
(1 − tanh2X),

where X = gμBSBapp/kBT and Bapp is the applied field. The
main difference between the formula for the ZF case [Eq. (6.2)]
is thus the factor (1 − tanh2X) that takes into account the effect

FIG. 12. (Color online) Temperature dependence of 31P-NSLR
rates for GdPO4 nanoparticles and bulk, as labeled.

of the polarization of the electron spins at low temperatures
by Bapp. When the electron spins become polarized, they can
no longer take up energy from the nuclear spins, leading to an
exponential decrease of the nuclear 1/T1 of the form exp(−X).
In the present case, the applied field of 9.4 T will split the
Gd3+ S = 7

2 multiplet over an energy span of 44 K. Thus, one
may, indeed, expect a decrease in 1/T1 to start below about
50 K, that is, when the depopulation of the upper spin levels
starts. The exponential decrease is clearly visible in the bulk
data (see the dashed curve in Fig. 12). In the nanoparticle
sample, the decrease is much less pronounced, which points
to an additional source of fluctuations remaining active even
at low temperature. We recall that the μSR study also revealed
the presence of appreciable fluctuations even at about 40 mK.
This suggests the magnetic disorder in the nanoparticles due
to missing neighbors at the surface as a possible explanation.
The strong increase observed for the nanosample 1/T1 above
about 250 K is probably also a surface effect; we attribute
it tentatively to additional fluctuations induced by thermal
motions of the outer atoms in the particles.

Apart from the field term, the only difference in the formulas
for λ and 1/T1 is the different gyromagnetic ratio for the
muon and for the 31P nucleus, for which γn = 2π × 1.723 ×
107 Hz/T, giving a ratio (γμ/γn)2 = 62.2. This predicts the
(temperature independent) values obtained for λ and 1/T1 to
be in this same ratio, which is indeed observed in the case
of the bulk sample, for which we find λ ≈ 5.5 MHz and
1/T1 ≈ 0.08 MHz (see Fig. 12). We conclude that, as regards
the bulk sample, the experiment shows the dipolar hyperfine
fields at the muon site and at the 31P nucleus to be equal within
the errors involved (about 0.36 T, as in the MC calculations).
For the nanosample, the temperature-independent value of
1/T1 is ≈35 times smaller than in bulk (Fig. 12). Noting as
before that ωex is directly proportional to |J | and hence is about
half that in bulk, we would expect a

√
35 × 2 � 8.3-times

smaller dipolar hyperfine field in the nanosample. Thus,
the reduction of the dipolar field at the 31P nucleus in the
nanoparticles as compared to bulk appears to be a bit larger
than the corresponding reduction at the muon site.

As in the case of the μSR data, in case of DyPO4 the analysis
of the NMR data should be done in terms of ESLR. Unam-
biguous conclusions are, however, hardly possible because of
the complications inherent in a field-dependent study on a
powder sample of such an anisotropic magnetic system. From
the inelastic neutron-scattering data on bulk DyPO4,7 it was
concluded that the distances in energy (in ZF) of the first five
excited doublets above the ground-doublet are given by 99 K,
110 K, 186 K, 211 K, and 259 K, the remaining two doublets
lying at about 440 K. The doublets will be split considerably
by the large Bapp, in particular along the directions of large
g values, and as a consequence of the (strongly) anisotropic
properties, the amount of splitting will depend heavily on the
orientations of the crystallites in the powder. Consequently, the
mutual distances of the levels will vary. Even when restricting
the analysis to the temperature range below 100 K, where only
the first two excited doublets will be appreciably populated,
one encounters the difficulty that the admixtures of the excited
states in the ground doublet will depend on the orientation,
since the amount of mixing depends on the square of the
interlevel distances. Taking as our example the direct process
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for the ESLR of a ground-state Kramers doublet in the presence
of a nearby excited state, the full expression for the ESLR rate
1/τe is given by15

τ−1
e = Rdirh̄ω5coth

(
h̄ω

2kBT

)
, (7.1)

where Rdir = 3V 2/2πρv5h̄4�2, h̄ω = gμBBapp, and � ≈
100 K is the energy separation to the nearest excited level.
V is the matrix element between the two levels of the ground
Kramers doublet.15 Of particular importance here is that for
a Kramers ground doublet V �= 0 only through the admixture
of excited levels by Bapp, implying that the ESLR rate will
vary strongly with orientation. The same is true for the
above-mentioned Orbach process, which does not depend
directly on the field but only indirectly, since it depends
exponentially on the interlevel separation, which will vary
with orientation. All of this implies that only a few qualitative
conclusions can be drawn from the data obtained here.

As shown in Fig. 13, between 140 K and 200 K, the
temperature dependence of the 31P-NSLR rate is (much)
stronger in the bulk than in the nanoparticles. Interestingly,
both nanoparticle and bulk samples show a broad maximum at
about the same Tmax ≈ 40 K. As noted above, we assume the
nuclear relaxation to arise from fluctuations of the individual
Dy3+ spins induced by ESLR, which produce fluctuating
hyperfine fields on the nearby 31P nuclei. Assuming single
exponential relaxation for the ESLR, the nuclear T1 can be
related to the ESLR time τe by the well-known expression

T −1
1 = A2 τe

1 + ω2
Lτ 2

e

. (7.2)

Here A = γnB⊥ gives the amplitude of the (transverse compo-
nent of) the fluctuating hyperfine field and ωL ≈ 1 × 109 Hz
is the 31P-NMR Larmor frequency corresponding to the
applied field of 9.4 T. In the high-T /fast-fluctuation limit
(ωLτe 
 1), one has T −1

1 ≈ A2τe, whereas in the opposite
limit T −1

1 ≈ A2/ω2
Lτe. Above the maximum, occurring for

FIG. 13. Temperature dependence of 31P-NSLR rates for DyPO4

nanoparticles and bulk, as labeled. The dotted curves show the
different temperature dependencies of the rates discussed in the text.

ωL ≈ τe, the temperature dependence of the nuclear T −1
1

for the nanoparticles can be well reproduced by taking for
the ESLR rate a quadratic dependence on temperature, that
is, τ−1

e (T ) ∝ aT 2, which would correspond to the high-T
limit of the two-phonon Raman process (for T > �D).15 This
then leads to T −1

1 (T ) ∝ T −2 in this range. Quantitatively, the
fit shown in Fig. 13 involves for the prefactor a the value
a = 6.27(19) × 105 K−2 s−1 down to ≈60 K, which would
imply the Debye temperature of the nanoparticles to be of order
50 K, that is, a factor of three lower than in the bulk. Below
the maximum in the T −1

1 (T ), the high-T limit of the direct
process, that is, τ−1

e ∝ T , appears to become the dominating
contribution since, in the range 10 K–40 K, one observes that
T −1

1 (T ) ∝ T .
For bulk DyPO4, the T −1

1 data at highest temperatures
(>200 K) in Fig. 13 also show the T −2 dependence attributed
to the high-temperature Raman process, although with a factor
of four faster rate. Below 200 K, the temperature dependence
changes drastically to ∝T −9, which is, in fact, the dependence
expected on basis of the ESLR two-phonon Raman process for
temperatures T < �D .15 The crossover temperature of about
200 K is, indeed, not too far from the �D = 150 K found above
from the bulk heat capacity. At ≈140 K, a second crossover is
seen to occur where the rate appears to become governed by
the high-temperature limit of the direct process for ESLR; that
is, τ−1

e ∝ T and thus (above the maximum) T −1
1 ∝ T −1. The

fact that the T −9 term is not observed for the nanoparticles in
the same temperature range as in the bulk would, therefore, be
in agreement with the much lower �D value of about 50 K. We
thus ascribe the broad maximum (at which ωL ≈ τe) found at
about the same temperature of 40 K for both nanoparticles
and the bulk to the direct process for the ESLR of the
Dy3+ Kramers doublets. We finally note that the decrease
of the nuclear T −1

1 below the linear term observed for both
nanoparticles and bulk at lowest temperatures (below 3 K) is
probably due to the above-discussed effect of the polarization
of the electronic spins, occurring when kBT 
 gμBBapp (the
term [1 − tanh2(h̄ω/2kBT )]) and predicting an exponential
decrease of T −1

1 at lowest temperatures. The decrease is
particularly pronounced for the nanoparticles for which it
is seen that, in agreement with this prediction, the relative
decrease of T −1

1 is strongest in the highest (9.4 T) applied
field (see data points above 2 K), whereas the data at high
temperature T � 30 K show no appreciable field dependence.

VIII. CONCLUDING REMARKS

We have presented an extensive study of size effects in
the magnetic properties of AF insulating materials, occurring
when the sample sizes are reduced in volume to about 10 nm3,
in our case, corresponding to about 150 magnetic atoms
per particle. The theoretically predicted suppression of the
transition to magnetic long-range order familiar for the bulk
samples has been evidenced most clearly by measurements
of the magnetic heat capacity and susceptibility for both bulk
and nanoparticle samples. Missing magnetic neighbors and
surface disorder in the nanoparticles lead to net moments per
particle, which in our densely packed powder samples interact
via dipolar interactions and, thus, become frozen into glassy
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spin states at low temperatures. By contrasting nano- and bulk
samples of the well-known highly anisotropic Ising compound
DyPO4 with its more isotropic analog GdPO4, specific effects
related to the anisotropy could be distinguished.

These physical measurements were backed up by MC
simulations, which proved to be very valuable by not only
confirming qualitatively the trends observed, but, in addition,
providing quantitative estimates of the magnetic exchange
and dipolar interaction parameters, thereby supporting the
experimental analysis. The simulations strongly suggest sub-
stantial reductions of these parameters in the nanoparticles,
not surprising in view of the expected expansion of the lattice
parameters in particles of nanometer size.

In addition to the static thermodynamic behavior, studies
of the spin dynamics were performed, on one hand at low
frequencies (102–104 Hz) by ac-susceptibility measurements,
and on the other, at high frequencies (MHz) by (ZF) μSR
experiments and (high-field) NMR relaxation experiments.
The low-frequency experiments on the nanoparticles provided
clear evidence for the freezing transitions occurring at low
temperature and the characteristic difference in behavior
between the Dy and Gd nanoparticles related to the strong
Ising anisotropy of DyPO4. In the high-temperature range, that
is, high compared to the bulk magnetic ordering temperatures,
these high-frequency dynamics probe the fluctuations due to
either spin-lattice relaxation or spin-spin exchange interactions
inside the particles. At low temperatures the magnetic long-
range ordering in bulk and the freezing phenomena in the
nanoparticles could be clearly distinguished in the μSR
experiments. In quantitative respect the magnetic interaction
parameters and dipolar fields obtained from the analysis of the
dynamic measurements were found to be fully consistent with
those derived from the MC simulations and the thermodynamic
data.
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APPENDIX: MAGNETIC PROPERTIES OF BULK GdPO4

As mentioned in the Introduction, a brief characterization of
the magnetic behavior of the bulk compound GdPO4 has been
made by measuring the differential (ac) susceptibility along
three mutually perpendicular directions of a single-crystal
sample in the magnetic ordering region as a function of tem-
perature and field (0.1 K < T < 4 K; 0 < Bapp < 1 T). The
results are displayed in Figs. 14(a)–14(d). Antiferromagnetic
order was expected (and found) in view of the known properties
of the related compounds GdVO4 and GdAsO4, which order

TABLE I. Compilation of exchange and anisotropy parameters
for GdVO4, GdAsO4, and GdPO4. The Néel ordering temperature,
exchange field, anisotropy field, and exchange constant are denoted
by TN , Bex, Ban, and |J |/kB , respectively.

TN (K) Bex (T) Ban (T) |J |/kB (K)

GdVO4 2.50 1.43 0.37 0.068
GdAsO4 1.26 0.82 0.37 0.039(3)
GdPO4 0.77 0.4 0.37 0.02

antiferromagnetically below TN = 2.5 K and TN = 1.3 K,
respectively.26,37–41 In Table I, a compilation has been made of
the transition temperatures and the exchange and anisotropy
parameters for the three compounds.

The crystal structure of GdPO4 is monoclinic, space group
P 21/n, with lattice parameters a = 6.643 Å, b = 6.841 Å,
c = 6.328 Å, and β = 104.01◦ (α = γ = 90◦).6 There are four
inequivalent Gd3+ ions per unit cell. A given Gd3+ reference
ion is surrounded by six nearest magnetic neighboring ions
at distances varying between 4.0 and 4.2 Å. As indicated in
Fig. 14(a), measurements were taken along three mutually
perpendicular directions, namely, the crystallographic a and
b axes and the c′ direction, which is perpendicular to the
ab plane and will thus make an angle of about 14◦ with
the crystallographic c axis. As seen in Fig. 14(a), the ZF ac
susceptibility is independent of direction down to 1.5 K, that is,
about twice the TN = 0.77 K. Above 1 K, the susceptibility is
well described by the Curie-Weiss law for an antiferromagnet,
χ = C/(T + θ ), with θ ≈ 0.9 K and C = 7.9 K emu/mole,
as expected for g = 2 and S = 7

2 . Although the susceptibility
curves in Fig. 14(a) indicate compensated antiferromagnetism
(no evidence for a weak ferromagnetic moment), in none
of the three directions does the susceptibility appear to
vanish completely for T → 0, as would be appropriate for
the parallel susceptibility (parallel to the easy axis) of a
simple compensated two-sublattice antiferromagnet. Thus,
either the b axis is not the true parallel direction but somewhere
intermediate or the AF structure is more complex, as suggested
by the MC simulations. A more complex magnetic structure
is, moreover, not unexpected in view of the four inequivalent
Gd3+ sites per unit cell, leading to variations in the distances
with the six nearest neighbors and, accordingly, in the magnetic
interactions. No attempt was made for further refinement of
the magnetic structure, however, since only a quick survey was
intended in this work.

Using mean-field theory for the simple two-sublattice
antiferromagnet, the exchange constant J/kB can be esti-
mated from the susceptibility data in two ways, that is,
from the formula for the Curie-Weiss temperature θ =
−2z|J |S(S + 1)/3kB and from the value of the susceptibility
reached at the Néel temperature χ = Ng2μ2

B/4z|J |. From
θ ≈ 0.9 K one obtains z|J |/kB ≈ 0.08 K and from χ (T =
TN ) ≈ 6.8 emu/mole one finds z|J |/kB ≈ 0.052 K. These
values compare favorably with the ones deduced from the
magnetic heat capacity (Sec. IV) and from the field-dependent
susceptibility isotherms discussed below.

What can be further inferred from the data in Fig. 14(a) is
that the a and b axes apparently define an easy plane, with
small in-plane anisotropy and the b axis being (closest to)

094408-16



SIZE-DEPENDENT MAGNETIC ORDERING AND SPIN . . . PHYSICAL REVIEW B 84, 094408 (2011)

FIG. 14. (Color online) Experimental sus-
ceptibility performed on a single-crystal of
GdPO4. In (a) comparison between ZF ac
susceptibility as a function of the direction. In
(b)–(d) are shown the Bc vs T magnetic phase
diagrams for fields oriented along the three
directions indicated in the inset of (a), namely
in (b) along the b axis (crystal symmetry axis);
(c) along the a axis (perpendicular to b); (d)
along the c′ axis perpendicular to the ab plane.
The Bc values were obtained from the χ vs Bapp

data shown in the insets.

the most preferred direction. The out-of-plane anisotropy is
much larger, the c′ axis being apparently the hardest direction.
Further proof for this interpretation was obtained from field
sweeps below TN , in which the differential susceptibility was
recorded while the dc field was swept at a slow rate of
0.05 T/min at constant temperatures. Some representative
curves of susceptibility versus field are shown in the Figs.
14(b)–14(d). The real component, χ ′ has been plotted; only for
the field parallel to the b axis the imaginary component χ ′′ was
found to be appreciable and is also shown. The maxima in these
plots (better decribed as the points where the susceptibility
starts to drop steeply) should indicate the transitions from
the AF phase to the paramagnetic phase. Above these field
values (Bc), the associated Zeeman energies become larger
than the combination of AF exchange and anisotropy energies.
Plotting these Bc values as a function of temperature yields an
AF phase diagram that is similar to what is expected for a
two-sublattice antiferromagnet with biaxial anisotropy of the
easy plane type. Indeed, the values obtained by extrapolating
to T = 0 the critical fields Bc are almost the same when the

field is along the b axis or the a axis, namely, B(b)
c � 0.24 T

and B(a)
c � 0.26 T, respectively, the latter being slightly higher,

reflecting a weak in-plane anisotropy in the plane formed by
these two axes. The c′ axis clearly is the hardest direction,
with B(c′)

c � 0.60 T, reflecting the much larger out-of-plane
anisotropy.

Due to the lack of more detailed experimental information,
we analyze the critical fields thus determined by simple
mean-field theory for the two-sublattice antiferromagnet with
orthorhombic (biaxial) the anisotropy of the easy plane (XY )
type. Defining the AF exchange field as Bex = 2z|J |S/gμB

and the in-plane and out-of-plane anisotropy fields as B in
an

and Bout
an , the expressions for the critical fields become

B(b)
c = Bex − B in

an, B(a)
c = Bex + B in

an, and B(c′)
c = Bex + Bout

an .
Using the above experimental values for the extrapolated
critical fields then yields Bex = 0.25 T, Bout

an = 0.40 T, and
B in

an = 0.03 T. The value calculated for the exchange constant
from Bex is thus z|J |/kB = 0.05 K, in reasonable agreement
with the other determinations found above. The out-of-plane
anisotropy field is of the same order as reported for the
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two related Gd compounds (see Table I), but the present
compound distinguishes itself in that the anisotropy is of
the easy-plane instead of the easy-axis type and that the
exchange field has become so small as to be of the same
order as the anisotropy field. As discussed in the literature,
the anisotropy in these materials arises from the combination
of higher-order crystal-field effects on the Gd3+ ion and the

anisotropy associated with the dipolar interactions developed
in the ordered phase. Last, we note that the features observed
around 0.1 T in the field sweeps with the field parallel to the
b axis are probably a reorientation phenomenon within the
easy plane, associated with the weak in-plane anisotropy. This
lower field-induced transition is most clearly observed in the
imaginary component of the susceptibility.
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3.78 Ådistance.

10O. Lehmann, H. Meyssamy, K. Kömpe, H. Schnablegger, and
M. Haase, J. Phys. Chem. B 107, 7449 (2003).

11E. Suljoti, M. Nagasono, A. Pietzsch, K. Hickmann, D. M. Trots,
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