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Yttria (Y2O3) is a well-known ceramic material extensively used in industry. We report new neutron inelastic
scattering measurement of the phonon density of states (PDOS) and lattice dynamic calculations using the
ab-initio density functional theory and interatomic potential model, which are found to be in good agreement
with each other. The model is then used in extensive free-energy calculation to understand the stability of
various phases as a function of pressure and temperature. We find that one of the Y-O bonds shows a very large
compression with increasing pressure, involving change of coordination around the Y atoms. This seems to
provide the mechanism of the transition from the monoclinic phase to the hexagonal phase at the high pressure.
We find that this transition is displacive in nature, and we also identify how the change of coordination affects
the phonon spectra of the various phases.
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I. INTRODUCTION

Yttria (Y2O3) is chemically and structurally very close to
the rare earths’ oxides and hence falls in the category of rare-
earth sesquioxides. It is an industrially and technologically
very useful ceramic material that is used to increase the
ductility of aluminum oxide (alumina ceramics)1 and also to
stabilize the cubic and tetragonal phases of zirconia, which
is particularly important in the design of solid oxide fuel
cells. Among the many different uses of Yttria, one can also
mention that its dense polycrystalline form has been used
in nuclear applications2 and its nanoparticles in biomedical
field.3 Another important aspect of ceramic materials con-
cerns the continuous laser action that has been obtained in
crystals such as Er2O3, Yb2O3, and Y2O3.4 These compounds
exhibit three structural polymorphisms: cubic, monoclinic, and
hexagonal, commonly known as C-, B-, and A-type structures,
respectively.5 The Cubic6,7 form of Y2O3 being stable at room
temperature and ambient pressure. The structural stability
of yttria with pressure and temperature makes it useful in
many industrial applications. The study of its thermodynamic
properties and phase transition is therefore of great importance
and is the subject of the current paper.

Many attempts have been made to understand the structural
stability of yttria under high pressure and temperature. The
evidence of its high pressure phase transition from cubic to
monoclinic phase was first reported8 at 2.5 GPa and 1273 K.
Later the reversible nature of the transition and enhanced
stability of the monoclinic phase under higher pressure and
temperature have been reported,9 while the hexagonal phase
was proposed to be the next favorable stable high pressure
phase. Single crystals of the monoclinic phase of Y2O3 were
synthesized10 from high pressure experiments carried out
on a sample in the cubic phase. The Raman11 spectroscopy
measurements on these yttria single crystals reported two
phase transitions, viz. cubic to monoclinic and monoclinic
to hexagonal at 12 and 19 GPa, respectively. Recent12 high
pressure x-ray diffraction experiments on cubic Y2O3 at room
temperature showed coexistence of the cubic, monoclinic, and

hexagonal phases in a pressure range from 15 GPa to 25.6 GPa.
On further compression the sample completely transformed to
the hexagonal phase at 25.6 GPa. The cubic phase of Sc2O3 was
reported to remain stable12 up to 30 GPa at room temperature,
whereas a transition to a Gd2S3 (Pnma, Z = 4) type phase
was observed at much lower pressure (at 18 GPa) and higher
temperatures. Another specific aspect stands in the kinetics
that seems to play a major role in determining the sequence
of phase transitions for yttria. As well, synchrotron x-ray
diffraction measurements show that Eu-doped Y2O3 exhibit a
cubic-monoclinic-hexagonal sequence of phase transitions13

under pressure at ambient temperature, while pure cubic
Y2O3 shows a direct transition to hexagonal phase under
these conditions. The changes that occurred in the lattice
vibrations and electronic states of Y2O3 by Eu doping seem
to be responsible for these differences. Shock studies14 have
been reported on Y2O3 that indicate phase transition to the
monoclinic structure over a pressure range of 12 to 20 GPa.

The measurements of the elastic moduli of yttria from
300–1473 K have been reported by James et al.15 Yttria is
found to be stable up to about 2705 K. The cubic phase
transforms16 to the hexagonal phase at 2512 K just before
melting. The phase is also identified as the disordered cubic
fluorite phase. The stability of the crystalline phases of Y2O3 at
high pressures has also been studied by calculating12 enthalpy
in various phases using the ab-initio method. A molecular
dynamic study17 using a Pauling-type pair potential was
carried out to study the melting process of yttria, but the
authors failed at reproducing the correct melting temperature.
Later, another Buckingham potential was used to study18 the
structure and melting of Y2O3. Ab-initio molecular dynamics18

study of the structure of crystalline yttria (Y2O3) up to 5000 K
indicated melting at 3150 K.

Recent experimental investigations11 performed on good
quality single crystals of rare-earth oxides have brought
considerable insights into the thermodynamical properties.
The assignment of the Raman spectra for the cubic phase
of yttria was proposed19 on the basis of a valence force model
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consisting of 20 adjustable parameters. We have carried out
extensive lattice dynamical studies to provide insight into the
phase transition mechanism of yttria. The phonon spectrum
has been calculated using the shell model as well as ab-initio
approach. We have also performed inelastic neutron scattering
investigations to derive the phonon density of states (PDOS) of
CUBIC y2O3 ceramics at ambient pressure and temperature.
The shell-model calculations results are in good agreement
with the inelastic neutron data and ab-initio calculations. This
allowed testing of our model, which is used to explore the
high pressure and high temperature part of the phase diagram.
Further the model has been used for calculation of free energy
in various phases of Y2O3. Our approach allows us to calculate
the pressure dependence of the vibrational energy contribution
to the Gibbs free energy, as discussed in Sec. VB, which
may be computationally expensive to calculate using ab-initio
approach as cubic and monoclinic phase of Y2O3 has 40 and
30 atoms/primitive cell. We have calculated thermodynamic
properties and found a fair agreement with various available
experimental data.

Our paper is organized as follows. In Sec. II we discuss the
structure of yttria in the different phases, while Secs. III and
IV provide details on the inelastic neutron scattering investiga-
tions and the model calculations, respectively. The discussion
of the results is organized in four parts in Sec. V: part VA deals
with the lattice dynamics, VB treats essentially the free-energy
calculations of the phase diagram, VC the thermodynamics
observables, and VD the mean-squared amplitudes of atoms
in various phases of yttria.

II. STRUCTURE

The cubic structure of yttria crystallizes in the space group
Ia3 (Fig. 1). The body-centered cubic structure has eight
formula units/primitive cell. The structure has two types of
yttrium atoms, Y1 and Y2, occupying 8b ( 1

4 , 1
4 , 1

4 ) and 24d (x,
0, 1

4 ) crystallographic positions with the oxygen atoms placed
at 48e (x, y, z). The structure consists of Y1O6 and Y2O6

polyhedral units. The application of pressure on the cubic cell
changes the structure (Fig. 1) to a monoclinic cell (space group
is C2/m) with six formula units/primitive cell. In this particular
structure there are three types of yttrium atoms, Y1, Y2, Y3,
and five different types of oxygen atoms, namely, O1, O2, O3,
O4, and O5. All the atoms in the monoclinic cell are placed at
4i (x, 0, z) positions except for O5 which is at 2b (0, 0.5, 0)
site. The monoclinic phase further transforms to the hexagonal
phase with increasing pressure. The hexagonal primitive cell
(space group P 3m1) has only one formula unit. The yttrium
atoms and the O2-type oxygen atom in the hexagonal phase
are placed at 2d (1/3, 2/3, z), while O1 oxygen atoms occupy
1a (0, 0, 0).

III. EXPERIMENTAL

The polycrystalline sample in the cubic phase of Y2O3 was
characterized using x-ray diffraction. The analysis of powder
diffraction data indicated that the sample is in single phase. The
inelastic neutron scattering experiments were performed using
the thermal time-of-flight neutron spectrometer IN4 at the
Institute Laue Langevin (ILL) located in Grenoble (France).

A quantity of 25 grams of polycrystalline Y2O3 sample was
placed inside a thin aluminum sample holder. The incident
neutron wavelength of 2.4 Å (14.2 meV) was chosen, which
allowed the spectra to be obtained in the neutron energy gain
mode at 300 K. We used a Fermi chopper speed of 28 000 RPM
to allow for a time focusing condition in the inelastic regime
(inelastic-time focusing). The detector bank of IN4 covers
scattering angles up to 120◦. After usual correction (see, for
example, Ref. 20), the spectra at all detector angles were
summed up to increase the statistics and to average out the
coherent effect which is necessary to allow for a correct
estimation of the PDOS (the so-called “incoherent approx-
imation”). In the final stage the dynamical structure factor
S(Q, E) is obtained, from which the neutron weighted “gen-
eralized” PDOS g(n)(E) can be extracted using the following
expression21:

g(n)(E) = A

〈
e2Wk (Q)

Q2

E

n(E,T )
S(Q,E)

〉
,

where E is the energy transfer from the sample to the neu-
tron n(E,T ) = [exp(E/kBT) − 1]−1, A is the normalization
constant, and the quantity within 〈—〉 represents the proper
average over all Q values at a given energy. 2W(Q) is the
Debye-Waller factor.

The neutron-weighted PDOS writes,

gn(E) = B
∑

k

{
4πb2

k

mk

}
gk (E),

where B is the normalization constant and σ k, mk, and gk(E)
are total neutron scattering cross section, mass, and partial
density of states of the kth atom in the unit cell, respectively.
The values of the scattering cross section can be found from

Ref. 21. The weighting factors 4πb2
k

mk
for various atoms in the

units of barns/amu are Y = 0.086 and O = 0.265 barns/amu,
which imply that the main contribution of the signal originates
from oxygen modes (75%).

IV. LATTICE DYNAMICAL CALCULATIONS

Lattice dynamical calculations require information about
the interatomic forces that can be obtained either by using
a quantum-mechanical ab-initio formulation or by using
semi-empirical interatomic potentials. We have performed
calculations using both the methods. The pseudopotential
generated by PBE exchange correlation functional22 under
generalized gradient approximation (PBE-GGA) has been
used for ab-initio calculations in cubic phase of Y2O3. The
calculations have been carried out using plane-wave basis sets
and Quantum Espresso software package.23 We have chosen
4 × 4 × 4 k-mesh for self-consistent field calculations with
energy cutoff of 45 Rydberg, which is found to be sufficient for
convergence of the order of meV. The k-point mesh has been
generated using the Monkhorst-pack method.24 Dynamical
matrices were calculated on a 3 × 3 × 3 mesh in the irreducible
Brillouin zone.

The shell model is based on a transferable potential that
consists of long-range Coulmbic interaction, short-range Born-
Mayer type repulsive terms, and weakly attractive van der
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FIG. 1. (Color online) Polyhedral representation of the cubic (space group Ia3), monoclinic (C2/m), and hexagonal (P 3m1) phases of
Y2O3.

Waals terms. The form of the interatomic potential used in our
model is given by the following expression,

V (r) = e2

4πε0

Z(k)Z(k′)
r

+ a exp

( −br

R(k) + R(k′)

)
− C

r6
,

where, a = 1822 eV and b = 12.364 are empirical constants.
We have successfully used25,26 this set of parameters in

the lattice dynamical calculations of several complex solids.
The term C = 100 eVÅ6 accounts for the van der Waals
interaction between O-O pairs. The effective charge Z(k) and
radii R(k) parameters used in our calculations are Z(Y) =
2.4, Z(O) = −1.6, R(Y) = 1.931 Å, and R(O) = 1.89 Å.
The polarizability of the oxygen atoms is introduced in the
framework of the shell model.27,28 The shell charge and
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TABLE I. Comparison between the calculated (0 K) and experimental (300 K) structural parameters of Y2O3. The structural parameters for
the cubic phase calculated using the ab-initio approach are given in parentheses. For cubic phase (space group Ia3) the Y1, Y2, and O atoms
are located at 8b ( 1

4 , 1
4 , 1

4 ) and 24d (x, 0, 1
4 ), and 48e (x, y, z), respectively. For monoclinic structure (space group C2/m) there are three types

of yttrium atoms, Y1, Y2, Y3, and five different types of oxygen atoms namely, O1, O2, O3, O4, and O5. All the atoms in the monoclinic cell
are placed at 4i (x, 0, z) position except for O5, which is at 2b (0, 0.5, 0) site. In the hexagonal structure (space group P 3m1) the Y, O1, and
O2 atoms are located at 2d (1/3, 2/3, z), 1a (0, 0, 0) and 2d (1/3, 2/3, z), respectively.

Cubic Present calculation (0 GPa, 0 K) Experimental data (0 GPa, 300 K)6,7

a(Å) 10.61 (10.63) 10.604
V/primitive cell (Å3) 597.2 (600) 596.18

x y z x y z
Y(1) 0.250 0.250 0.250 0.2500 0.2500 0.2500
Y(2) −0.033(−0.033) 0.000 0.250 −0.0290 0.0000 0.2500
O 0.389(0.391) 0.154(0.152) 0.378(0.380) 0.3910 0.1540 0.3804

Monoclinic Present calculation (15 GPa, 0 K) Experimental data (12 GPa, 300 K)10

a(Å) 13.54 13.871
b(Å) 3.41 3.449
c(Å) 8.43 8.586
β 99.7 100.12
V (Å3) 383.3 404.37

x y z x y z
Y(1) 0.635 0 0.490 0.6352 0 0.4885
Y(2) 0.692 0 0.141 0.6896 0 0.1364
Y(3) 0.966 0 0.184 0.9667 0 0.1864
O(1) 0.127 0 0.284 0.1240 0 0.2810
O(2) 0.829 0 0.028 0.8230 0 0.0310
O(3) 0.794 0 0.374 0.7900 0 0.3780
O(4) 0.472 0 0.340 0.4720 0 0.3440
O(5) 0 0.5 0 0 0.5 0

Hexagonal Present calculation (48 GPa, 0 K) Experimental data (0 GPa, 2570 K)30

a(Å) 3.58 3.810
c(Å) 5.41 6.080
V(Å3) 60.0 76.43

x y z
Y 0. 333 0. 667 0.242
O1 0.000 0.000 0.000
O2 0. 333 0. 667 0.667

shell-core force constants for oxygen atoms are −3.75 and
170 eV/Å2, respectively. The crystal structure parameters were
obtained by minimizing the free energy at T = 0 K. We find
that the calculated structure is close to that obtained using
diffraction experiments. The interatomic potential model also
satisfies the dynamic equilibrium condition of the lattice, i.e.,
the phonon frequencies have real values for all the wave vectors
in the Brillouin zone for the calculated structure. We have
used a mesh of 10 × 10 × 10 k-points for the calculation of the
PDOS and for the thermal expansion in the cubic phase. The
parameters of the potential were fitted to reproduce various
other available experimental data, namely the structure, the
elastic constants, etc. The good agreement between the calcu-
lated and experimental structure (Table I) and other dynamical
properties indicate that our model is quite satisfactory. The
potential is then extended for the calculations in the high-
pressure monoclinic and hexagonal phases. The calculations
are carried out using the software DISPR29 developed at
Trombay.

V. RESULTS AND DISCUSSION

A. Structure and PDOS

The calculated structures (Table I) in the cubic and
monoclinic phases agree very well with the experimental data.
Yttria is known to transform11,12 to the hexagonal phase at
high pressures. The structure of the hexagonal phase at high
pressure has not been refined yet, but x-ray measurements
performed at 2570 K enabled the lattice parameters of
Y2O3 to be measured30 in the hexagonal phase. Nd2O3 is
iso-structural to Y2O3 and is known to crystallize in the
hexagonal structure31 at ambient pressure. To proceed with
the calculation in the hexagonal phase of Y2O3, we have taken
the atomic coordinates of Nd2O3 in the hexagonal phase and
have minimized the structure with the potential parameters of
Y2O3. We find that the hexagonal phase of yttria is stable
only above 26 GPa. The calculated lattice parameters in
the hexagonal phase at 48 GPa and 0 K are compared with the
experimental data30 obtained at 2570 K at 0 GPa in Table I.
We find that the calculations compare satisfactorily (Table I)
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TABLE II. Comparison between the calculated and
experimental15 elastic constants and bulk modulus in the cubic phase
of Y2O3 at T = 0 K and ambient pressure (in GPa units).

Calculated

Experimental15 Potential Model ab-initio

C11 223.7 206 233
C12 112.4 103 139
C44 74.6 59 72
B 156 138 170

with the experimental structure at high temperatures. The
calculated elastic properties of the cubic phase agree fairly
well with available experimental data15 (see Table II). The
calculations indicated stability of the monoclinic and hexag-
onal phases above 15 and 48 GPa, respectively (as discussed
subsequently in Sec. VB). The bulk modulus values have been
calculated at these pressures. The calculated values are 207 and
292 GPa for monoclinic and hexagonal phases, respectively.

The comparison between the experimental and calculated
neutron-weighted PDOS of yttria in the cubic phase using the
potential model as well as ab-initio approach is shown in Fig. 2.
The experimental spectrum can be divided into two parts: the
low-frequency part (below 40 meV) consists of a series of
weak features (14, 17, and 20 meV) superimposed to a general
curve having a maximum at 20 meV; the high frequency part
features intense contributions at 45 meV (a multicomponent
peak), 60 meV, and 72 meV. No modes are observed for

FIG. 2. The comparison of the calculated and experimental
neutron-weighted PDOS for cubic phase of yttria at ambient pressure.
The ab-initio as well as potential model calculations in the cubic
phase are carried out at 0 K, while the measurements were performed
at 300 K. For better visibility the experimental and calculated
phonon spectra using ab-initio approach are shifted along the y-axis
by 0.04 meV−1 and 0.02 meV−1, respectively. The multiphonon
contribution calculated using the Sjolander formalism38 has been
subtracted from the experimental data. The calculated spectra have
been convoluted with a Gaussian of FWHM of 10% of the energy
transfer in order to describe the effect of energy resolution in the
experiment.

frequencies higher than 80 meV. The general characteristics
of the experimental features are well reproduced by the
calculations. Both the calculations agree very well with the
experimental data. In particular the calculations reproduce
very well the low-frequency part of the spectrum where the
modes involving mainly Y vibrations dominate the dynamics,
as indicated by the partial density of states (see Fig. 3). The
comparison of calculated partial density of states (Fig. 3) of
various atoms in cubic Y2O3 from both the potential as well as
ab-initio calculations indicates slight difference in the phonon
spectra for oxygen atoms above 40 meV.

Our calculations performed on the monoclinic phase in-
dicate that the phonon modes in this phase are stable only
for pressure above 15 GPa. The transition from the cubic to
the monoclinic phase (as discussed subsequently in Sec. VB)
involves a 5.7% drop in unit cell volume and a change of
the coordination of the Y atoms. In the cubic phase all the Y
atoms have six-fold coordination with their oxygen neighbors,
while in the monoclinic unit cell, Y atoms form YO6 and YO7

polyhedral units in the ratio of 1:2. The calculated density
of states, at 15 GPa, of the cubic and the monoclinic phases
are presented in Fig. 3, together with that in the cubic phase
at 0 GPa. If the volume reduction from 0 GPa to 15 GPa
in the cubic phase is reflected by an overall hardening of
the phonon modes, the unit cell contraction between the
monoclinic and the cubic cell at 15 GPa only results in a
general smoothing of the structure of the cubic DOS, which is
typical of symmetry reduction, without clear transfer of DOS
weight in the investigated frequency range.

In Fig. 3 we compare the phonon modes in the monoclinic
and hexagonal phases at 48 GPa. Our calculations show that
the phonon modes in the hexagonal phase are stable from a
pressure of 26 GPa. The monoclinic to hexagonal transition
(as discussed subsequently in Sec. VB) involves a volume drop
of only 1%, and all the Y atoms form YO7 polyhedra in the
hexagonal phase. Due to their large mass, Y atoms in both
phases mainly contribute at low energies up to 45 meV, while
the oxygen atoms contribute in the whole energy range. The
most important difference between the spectra is observed in
the oxygen spectrum where a double peak structure located at
45 meV in the monoclinic is up-shifted by 10 meV in the
hexagonal phase. The rather small changes in the phonon
spectra suggest that both phases are rather similar as far as
dynamics is concerned.

The phonon dispersion has been calculated (Fig. 4) along
the high symmetry directions in the cubic phase using potential
model as well as ab-initio method. In general the calculated
nature of dispersion relation is nearly the same from both the
methods, as also reflected in the calculated density of states
(Figs. 2 and 3). We note that the transverse acoustic modes near
the zone boundary along (110) (Fig. 4) are less dispersive in
model potential calculations than in the ab-initio calculations.
This smaller dispersion results in a peak in the density of states
calculations (Figs. 2 and 3) from model potential at 7 meV.
These vibrations mainly involve Y atoms (Fig. 3).

B. Free energy and phase diagram

As shown previously, the calculated phonon spectra from
the model as well as ab-initio calculations agree very well with
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FIG. 3. (Color online) The calculated partial densities of states in various phases of Y2O3. The calculations in the cubic phase at 0 GPa are
carried out using both the ab-initio and potential model, while at high pressure the calculations in various phases are performed only using the
potential model.

the experimental data, indicating that the potential model can
be used to obtain the phase diagram of yttria. The Gibbs free
energy was calculated using the model potential in the various
phases of Y2O3. The Gibbs free energy of the nth phase is
given by

Gn = φn + PVn − T Sn,

where, φn, Vn, and Sn respectively relate to internal energy,
lattice volume, and vibrational entropy of the nth phase. The
Gibbs free energy of the various phases of Y2O3 are then
compared at different pressures for a fixed temperature, which
allows deriving the phase diagram presented in Fig. 5. We
find that above 15 GPa at 300 K the monoclinic phase has
lower free energy as compared to the cubic phase, and the
phonon modes are stable. The calculations therefore predict
the transition from cubic to monoclinic phase at this critical
pressure, while experimental data11 report this transition at
12 GPa at room temperature.

The difference between the free energies of the competing
monoclinic and hexagonal phases of Y2O3 as a function of
pressure (at 300 K) is reported in Fig. 6. The calculations
show that the transition from the monoclinic to the hexagonal
phase at 48 GPa (Fig. 5) is of first order in nature, as can
be seen from the nonzero slope of the free-energy difference
(Fig. 6) between the two phases at the transition pressure. The
experimental data12 show that the hexagonal phase is stable at
pressures above a critical pressure of 25.6 GPa. The Gibbs free-
energy calculation qualitatively reproduces the phase diagram
of yttria. This is highly satisfactory since usually it is very
difficult to reproduce free-energy differences with requisite

high accuracy for phase diagram calculation. It is also a very
difficult task to identify equilibrium phases from experiments
at high pressure due to large hysteresis. The critical pressure
for phase transition is also affected by the kinetics and also
depends on the doping13 of rare-earth ions in Y2O3. Such
effects are not accounted for in our investigations.

The calculated equations of state of the monoclinic and
hexagonal structures overlap above 62 GPa, as discussed
in Sec. VC. This is reflected in the vanishing value of the
free-energy difference (Fig. 6) between the two phases above
this pressure. The calculated atomic coordinates and unit cell
parameters at 62 GPa used for plotting the structure in the
monoclinic and hexagonal phases [Fig. 1(c), 1(d)] show that
both structures are actually identical. In other words we can
find a hexagonal cell inside the monoclinic cell beyond 62 GPa.
We have also tried to sketch a hexagonal unit cell (Fig. 7) inside
the larger monoclinic cell at 48 GPa. As expected, the cell we
could find is not perfectly hexagonal, but the figure shows the
relationship between the two structures and the way the atoms
have to move during the phase transition. This indicates that
the transition from monoclinic to hexagonal phase involves
small atomic displacements.

Recently, density functional theory calculations12 for Y2O3

have been carried out in the local density approximation (LDA)
and GGA approximations. The stability of the various phases
at high pressures was determined by calculating the enthalpy
differences between the cubic, monoclinic, and hexagonal
phases. These calculations show that the cubic to monoclinic
phase transition occurs at 2 GPa and 7 GPa using LDA and
GGA, respectively, while the transition from the monoclinic to
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FIG. 4. Phonon dispersions for the cubic phase of Y2O3 as obtained using both the ab-initio and potential model.

the hexagonal phase is estimated at 9.5 GPa (LDA) and 20 GPa
(GGA), respectively. The monoclinic to hexagonal transition
is found to be displacive in nature, which is also consistent
with our calculations.

We observe from our calculations that the difference
between the free energies of the monoclinic and of the
hexagonal phases in the pressure range of 26–62 GPa (Fig. 6)
is very small. As shown in Fig. 6 the difference becomes
zero above 62 GPa, suggesting the presence of a second-order
transition between the two phases. The small difference in free
energy can be tuned by the incorporation of a small amount
of impurity ion in the Y2O3 lattice. This might be the origin
of the coexistence of the monoclinic and hexagonal phases at
high pressure12 or for the two different sequences of phase
transition13 for pure Y2O3 (cubic- hexagonal) and Eu-doped
Y2O3 (cubic-monoclinic-hexagonal) with temperature. As
already discussed in the introduction, the cubic phase of yttria
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FIG. 5. The calculated phase diagram obtained from free-energy
calculations. The closed and open circles are the experimental data
for the cubic to monoclinic11 and monoclinic to hexagonal12 phase
transitions, respectively.

transforms to the hexagonal phase30 at about 2512 K, before
melting (at 2705 K). However, our calculations carried out at
0 K show that the hexagonal phase has stable phonon modes
only above 26 GPa. Due to the extreme anharmonicity of the
phonons close to the melting temperature, the hexagonal phase
might be stabilized30 before melting of Y2O3 at 2705 K.

C. Thermodynamic properties

We have used the PDOS calculated in the different phases
to further derive thermodynamic properties like the specific
heat, thermal expansion, and the equation of state. The specific
heat calculated in the cubic phase is compared with the
experimental data obtained from various sources32–35 and is
shown in Fig. 8. Our calculations are close to the data given in
the JANAF table.36 The calculation of the thermal expansion is
carried out in the quasiharmonic approximation for which each

FIG. 6. The difference in the free energies of hexagonal and
monoclinic phases of Y2O3 as a function of pressure at 300 K.
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FIG. 7. The relationship between the monoclinic and hexagonal
structures. The larger cell and the labeling of the axes correspond to
the monoclinic structure. In this monoclinic cell we are able to draw a
distorted hexagonal cell (solid line) at 48 GPa. We have also depicted
the hexagonal unit cell (dashed line) corresponding to the transformed
structure at 48 GPa. The solid and open symbols correspond to the
atomic positions in the monoclinic and hexagonal cells respectively
at 48 GPa. The labeling of atoms is as per the monoclinic unit cell
shown in Fig. 1.

phonon mode contributes to the volume thermal expansion
coefficient27 given by

αV = 1

BV

∑
i

�iCV i(T ),

where �i( = −∂lnEi /∂lnV) and Cvi are the mode Grüneisen
parameter and specific heat of the ith vibrational state of
the crystal. The calculation of thermal expansion requires
contribution from all the phonons in the Brillouin zone.
As already mentioned in Sec. IV, we have used a mesh
of 10 × 10 × 10 k-points for the calculation of the phonon
spectra in the cubic phase. The calculated volume dependence

FIG. 8. The calculated and experimental32–36 specific heat for
cubic yttria at P = 0.
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FIG. 9. The calculated Grüneisen parameter as a function of
energy in the cubic phase of yttria.

of phonon frequencies has been used for the calculation of
Grüneisen parameter �(E) (Fig. 9), which is averaged for all
phonons of energy E in the Brillouin zone. �(E) values lie
between −0.5 to 1.8 and show considerable variation with
energy. The comparison between the calculated and experi-
mental thermal expansion in the cubic phase of yttria is shown
in Fig. 10. Our procedure for the calculation of this important
quantity is applicable only when explicit contributions to the
total anharmonicity attributable to large thermal amplitude of
atom displacements is not very significant. In our calculations
the contribution to the thermal expansion is essentially from the
implicit anharmonicity, i.e., accounted from the dependence
of the phonon frequencies with the volume. The melting
temperature37 of Y2O3 is 2705 K, and the experimental thermal
expansion data16 are available up to about 2540 K. We find
that our calculations are in very good agreement with the
experimental thermal expansion up to 2200 K, a temperature
above which a deviation from linear dependence with the
volume is observed.

The calculated equation of state for the cubic, monoclinic,
and hexagonal phases of yttria is shown in Fig. 11. The crystal
structures at high pressures are obtained by minimization of
the Gibb’s free energy with respect to the structural variables
keeping the space group unchanged. Our calculations show
that a drop of about 5.7% in volume accompanies the cubic
to monoclinic phase transition at 15 GPa, while during the
transition to the hexagonal phase at 48 GPa there is a reduction
of unit cell volume of about 1%. We have calculated structures
in both the monoclinic and hexagonal space groups up to
80 GPa. We find that above 62 GPa, all the Y atoms have 7-fold

FIG. 10. The calculated and experimental16 thermal expansion
behavior of cubic yttria.
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coordination, as found in the hexagonal phase (Fig. 1). Above
62 GPa, the variation of volume with increasing pressure (see
Fig. 11) is calculated to be the same in both space groups.

D. Mean-squared amplitudes of atoms in various
phases of yttria

In order to understand the nature of the phonon modes
in the various phases, we have plotted the contribution of
each phonon mode to the mean-squared amplitudes 〈u2〉
(Fig. 12) of atoms in the various phases of Y2O3. In the
cubic phase at 15 GPa, modes up to 8 meV involve the
same displacements of all atoms, indicating that these modes
are largely acoustic. From 8–17 meV the phonon modes
correspond to simultaneous translations and rotations of YO6

octahedral units. The modes from 17 to 35 meV involve

FIG. 11. The calculated and experimental11 equation of state for
in-various phases of Y2O3 at T = 0. V0 and VP refer to the values at
ambient pressure and pressure P, respectively. In order to indicate that
the monoclinic structure smoothly approaches the hexagonal structure
at 62 GPa, the calculations in the monoclinic phase are shown up to
80 GPa.

FIG. 12. (Color online) The calculated contribution to the mean-squared amplitude of various atoms arising from phonons of energy E
(integrated over the Brillouin zone) at T = 300 K in various phases of Y2O3. The cubic phase has six coordinated polyhedral units around Y1
(Y1, 6O) and Y2 (Y2, 6O) atoms. The asymmetric unit cell of monoclinic phase consists of three Y (Y1, Y2, Y3) atoms and five O (O1, O2,
O3, O4, O5) atoms. So in order to get a better picture of the motion of various polyhedral units (described below), the 〈u2〉 of polyhedral units
around Y atoms are plotted separately. At 15 GPa, the structure of monoclinic phase consists of YO7 polyhedra around Y1 (2O1, 3O3, 2O4)
and Y2 (2O1, 3O2, O3, O5), while YO6 polyhedra is formed around Y3 (O1, O2, 2O4, 2O5). At 48 GPa, Y3 atoms also form YO7 (Y3, O1,
O2, O3, 2O4, 2O5). The hexagonal phase also has seven coordinated polyhedral units around Y atoms (Y, 3O1, 4O2).
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translational motions of all the atoms. At higher energies
(above 35 meV), the O atoms have large amplitude vibrations
compared to the Y atoms, thus involving Y-O stretching and
rotational motion of the YO6 units.

At 15 GPa, the structure of the monoclinic phase consists of
YO7 and YO6 polyhedra. The atoms connected to the various
polyhedral units are labeled, as shown in Fig. 1. We find that
for modes up to 5 meV, all the atoms have nearly the same
amplitude, indicating a translational motion of the polyhedral
units. Above 35 meV there is very low contribution from the Y
atoms as compared to O atoms. However, there is substantial
difference in the amplitude of various O atoms connected to
Y, implying rotational motions along with the distortion of the
polyhedral units.

Our free-energy calculations show that the monoclinic to
hexagonal-phase transition occurs at 48 GPa. The calculated
structure (Fig. 1) at 48 GPa shows that the coordination of the
polyhedra formed around the Y3 atoms has changed. We find
that the bond length of 3.05 Å at 15 GPa between the Y3 and
O3 atoms has reduced to 2.68 Å at 48 GPa, which becomes
comparable to other Y3-O (O1, O2, O4, and O5) bonds and
thus results in an increase in the coordination number of Y3
from 6 to 7. Thus, we find that at 48 GPa all the Y (Y1, Y2, and
Y3) atoms form YO7 polyhedral. With increase in pressure
the phonon modes have also shifted to higher energies. As
explained previously, the shortening of the Y3-O3 distance is
due to the movement of the O3 atom. This is also reflected in
the 〈u2〉 plot, where we find that the contribution to 〈u2〉 from
the phonon modes of the O3 atoms in the 30 to 40 meV range
has large amplitude at this pressure as compared to that at
15 GPa. As expected for increasing pressure, the contribution

to 〈u2〉 arises from modes at higher energies compared to those
at 15 GPa.

In the hexagonal phase at 48 GPa, we find that the structure
consists of YO7 (consisting of 3O1 and 4O2), O2Y4, and
O1Y6 polyhedral units. The calculated 〈u2〉 of the various
atoms in the hexagonal phase at 48 GPa is shown in Fig. 12.
We find that for modes up to about 40 meV the amplitudes
of all the atoms are comparable, indicating the translational
motion of O1Y6 and O2Y5. At energies above 50 meV, the
oxygen atoms have significantly larger amplitude compared
to that of the Y atoms. However, various O1 and O2 consti-
tuting the YO7 have different 〈u2〉. This indicates rotational
motion of YO7 along with the distortion of the polyhedral
units.

VI. CONCLUSIONS

We have reported inelastic neutron scattering measure-
ments on polycrystalline samples of Y2O3 in the cubic
phase. The measurements are in agreement with ab initio
as well as shell-model calculations. The calculated ther-
modynamic properties in the cubic phase also agree very
well with the available experimental data. The free-energy
calculations in various phases of Y2O3 help us to study
the high-pressure phase transition behaviour of Y2O3. We
have shown that the large compression of one of the Y-O
bonds with increasing pressure in the monoclinic phase is
responsible for the change of coordination around the Y
atoms in the monoclinic phase. The transition from mono-
clinic to the hexagonal phase is found to be displacive in
nature.
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