
PHYSICAL REVIEW B 84, 094206 (2011)

Collective modes in a saturated lithium-ammonia solution as a probe of the response of the
low-density homogeneous electron gas
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The ion dynamics of a saturated lithium ammonia solution was investigated by inelastic neutron
scattering with optimized resolution. The experimental dispersion curve and mode damping, here carefully
probed in a wave-vector range extending well below and above 1 Å−1, display visible anomalies around
0.8 Å−1. We relate the dispersion relation anomaly to the shape of the electron gas dielectric function, which
screens the ion-ion potential in a way peculiar of the low electron density of the system. The increase of the
damping around 0.8 Å−1 also supports the presence of a new decay channel for the collective excitations. An
interpretation of these effects, based on the low electron-density properties of the lithium-ammonia solution, is
proposed.
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I. INTRODUCTION

The behavior of the homogeneous electron gas is still one
of the most challenging problems relevant to all condensed-
matter systems. This problem has been addressed in the past
using various theoretical approximations.1,2 In more recent
times, modern quantum Monte Carlo (QMC) simulations have
provided useful estimates of the electron-gas energy, pair
correlation function, and other ground-state properties,3 which
serve as a reference for formal theoretical approaches.

Experimental ways to access the properties of the electron
fluid are few. However, both structural4 and dynamic5,6 proper-
ties related to density fluctuations of the ions of a liquid metal
can be taken as probes of the electronic response function. An
important point in this investigation method is that, in the limit
of point-like ions embedded in a homogeneous electron gas,
the linear response assumption corresponds to the existence of
harmonic collective and high-frequency modes which propa-
gate with a velocity c such that6 c2 = �2

p/k2
s , where �p is the

ion plasma frequency and ks is the screening wave vector of the
electron gas. The linear response regime for a real liquid is gen-
erally considered to be appropriate.7 Nonetheless, the actual
shape of the ion-ion potential introduces anharmonic effects
and also phonon interactions, related to structural relaxations
and disorder always present in liquids, may play a role. Inter-
estingly, the simple formula for c is able to qualitatively de-
scribe the collective mode velocity of different liquid metals.5

It is worth recalling that the low-density electron gas is char-
acterized by a well-known anomaly related to the occurrence
of a negative compressibility at densities n = 3/[4π (rsa0)3]
smaller than the critical density nc,1 corresponding to r (c)

s =
5.45.8 Beyond the critical region, the compressibility sum rule1

implies the (static) dielectric function to be negative and a
perturbation charge overscreening occurs. This point has been
the subject of various investigations to confirm its physical
consistency.9,10 Differently, the random phase approximation
(RPA) predicts a positive dielectric function at any density1 and
only more accurate descriptions11,12 can provide the correct

behavior. Therefore there is a clear drawback in the simple
formula for c since k2

s becomes negative when the density
is smaller than nc, while undercritical-density systems exist
in nature which exhibit clear signatures of collective modes
propagation, e.g., liquid Cs.13

Here we inquire into the case of the electron gas at low
density, with neutron scattering measurements of the ion
dynamics of the saturated lithium-ammonia solution, a natural
metallic liquid having an electron density quite smaller than the
usual metallic ones, i.e., characterized by rs = 7.4, markedly
exceeding r (c)

s .
Recent x-ray and neutron inelastic scattering

experiments6,14,15 on this system have shown that long-living
ion density fluctuation modes exist, with a dispersion
curve which seems to be dramatically affected by the
electron-electron interactions governing the electron-gas
behavior at low density. A Kohn-like anomaly6,14 was invoked
to explain the pronounced kink visible in the experimental
dispersion curve at Q � Qa = 0.8 Å−1.

Given the limited information available on the response
of the low-density electron gas, and the few experimental
investigations performed in real systems4 which mimic such
a subtle system, we carried out more accurate neutron
experiments on the saturated lithium-ammonia solution. The
neutron technique is particularly suited to determinations of
the dynamics of the whole Li(ND3)4 complex thanks to the
preferential coupling of the probe with the deuterium atoms.
Our main goal was to properly scan, with better energy
resolution, the important Q range where the anomaly develops,
with measurements extending also well above 0.8 Å−1, that is
a Q value very close to twice the Fermi wave vector where the
anomaly was previously observed.

II. EXPERIMENT AND DATA MODELING

The present experiment was performed by using the
IN8 three-axis spectrometer of the Institut Laue Langevin
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(Grenoble, France) with a constant analyzer final energy of
∼35 meV and a high-resolution setup. The elastic energy
resolution was calculated16 to have a full width at half
maximum (FWHM) of 1.05 meV, in agreement with that
experimentally derived from the incoherent elastic scattering
of a vanadium plate. The dynamics of the saturated (20 mole
% metal) sample solution at T = 220 K was investigated at
eleven Q values between 0.2 and 2.0 Å−1. The experimental
procedure and the data treatment were the same as those
described in Ref. 6 and consisted of the subtraction of the
background, by accurately taking into account the sample
attenuation, and of the multiple scattering signal, simulated as
for the previous experiment performed in similar conditions.6

The correct dynamic structure factor S(Q,h̄ω) is shown
in Fig. 1 at five selected Q values. It is quite evident from
the experimental data that at low Q well-defined collective
modes propagate in the system, as it was found in the
previous investigations by x-ray14,15 and neutron6 scattering.
Upon increasing Q, S(Q,h̄ω) becomes less structured even
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FIG. 1. Experimental S(Q,h̄ω) of the saturated lithium ammonia
solution, at selected Q values (full circles). Error bars compare with
the symbol size. Solid lines are the best-fit curves according to the
model of Eq. (1). The thin solid lines represent the DHO contribution.
In each frame, the upper curves are a zoom (×5) of the spectrum tail.

if rather intense inelastic wings continue to exist. Therefore,
to get more physical information an empirical fitting model
was employed. The empirical and quite effective data-fitting
procedure already applied in Refs. 6 and 15 was adopted
also in the present case. In particular, the fit model contains
one central Lorentzian function, globally accounting for the
quasielastic contributions, and a damped harmonic oscillator
(DHO) modeling of the inelastic component. In formulas:

S(Q,h̄ω) = Sqe(Q,ω) + Sin(Q,ω) = [n(ω) + 1]

×
[

h̄ω

kBT

a0(Q) �0(Q)

π
[
ω2 + �2

0(Q)
]

+ ac(Q) �c(Q)ω[
ω2 − ω2

c (Q)
]2 + [�c(Q)ω]2

]
, (1)

where n(ω) is the Bose factor, and �0(Q), �c(Q), ωc(Q),
a0(Q), and ac(Q) were left as free parameters. The con-
volution of S(Q,h̄ω) of Eq. (1) with the four-dimensional
(Q,ω)-dependent resolution function was actually fitted to
the experimental data. The curves displayed in Fig. 1 witness
the very good quality of the fits which provide a reduced χ2

always very close to unity. The quasielastic contribution is
modeled here using a very simple function because the energy
resolution does not allow for a more detailed description of
the central line, made up of both coherent and incoherent
contributions. Actually, the width �0(Q) derived from the fit
is in fair agreement with the NMR diffusion constant17 and
incoherent neutron scattering data.18

Further physical information can be obtained from the
parameters h̄ωc(Q) and h̄�c(Q) which provide the unrelaxed
dispersion curve of the collective excitation and its damping
parameter which is equal to the FWHM in the limit of small
damping, i.e., when �c(Q) � ωc(Q). Considering that the
determination of these two parameters is a delicate task, we
made all possible tests to be sure that we were determining
h̄ωc(Q) and h̄�c(Q) with enough accuracy, and that no artifact
was induced by our fitting procedure. The fit at low Q is
accurate as we used different algorithms to perform the fit of
the model and, at low momentum, the stability of the fit is
undisputable. Indeed, we checked the relative coupling of the
two parameters �c(Q) and ωc(Q) by looking at the correlation
matrix deduced from the fit when Q � 0.7 Å−1. This matrix
is almost diagonal, indicating that the two parameters are
independent of each other and that the χ2 minimum is well
defined, thus providing a good estimate of the parameters
and their errors. Upon increasing Q, the dynamic structure
factor collapses into a rather broad distribution, as was already
observed in previous investigations,6,14,15 but it is evident from
the data that the energy range we explored is adequate for
comparing the model and the experimental data.

The final results of the fit, that is the dispersion curve
h̄ωc(Q) and the damping parameter h̄�c(Q), are plotted in
Fig. 2. We see that h̄ωc(Q) shows the anomaly already
observed6,14,15 at Q = 0.8 Å−1, while in the same momentum
range h̄�c(Q) shows a rather sharp increase when compared
to a linear extrapolation from the low Q data. In this higher
Q range, there is a correlation between the two parameters
h̄ωc(Q) and h̄�c(Q), but there is no reason for an abrupt
change of one of them since this correlation appears smoothly
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FIG. 2. Left panel, experimental dispersion curve (full circles)
deduced from the fits of Eq. (1). The best-fit curve (solid line)
according to the model described in the text is compared with the RPA
result (dashed line). The thin straight line through the origin is the
Q → 0 behavior ω = csQ, with a fitted cs value of 1780 m/s. Right
panel, experimental damping (full circles), fit of the model described
in the text (full line), linear contribution from the fit (long dashed
line), difference between experimental data and linear contribution
(circles) and corresponding quantity from the fit results (dashed line).

as the spectrum broadens upon increasing Q. Moreover, this
anomalous behavior is actually present in the S(Q,h̄ω) data
themselves. Indeed, when the experimental second frequency
moment of the dynamic structure factor, namely 〈ω2〉 =∫ +∞
−∞ S(Q,ω) ω2 dω, is determined, a clear dip in the range

0.8–0.9 Å−1 is observed. This behavior is shown in Fig. 3,
where 〈ω2〉 is reported as a function of Q. In Fig. 3, the static
structure factor19 is also reported to show that the dip of 〈ω2〉 is
not a mere structural effect, since the small pre-peak observed
in S(Q) in the same Q region is actually located at Q �
1.05 Å−1. Therefore, the abrupt change of 〈ω2〉 at Q � 0.8 Å−1

has a dynamical origin. Further information can also be gained
by looking at the Q dependence of the ratio �c(Q)/ωc(Q),
which is reported in Fig. 4. A clear break is observed at
Q � 0.8 Å−1, which enhances, in a different way, the trend of
�c(Q).

An additional remark can be made about the model
we adopted. The relevant statistical procedures have been
employed to define the model function. There are two obvious
choices: the present one based on the DHO, or an approach
based on a sum of Lorentzian functions, which is appropriate
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FIG. 3. Second moment of the dynamic structure factor from the
present experiment as a function of Q (full circles), compared with
the experimental S(Q) deduced from neutron diffraction experiments
(Ref. 19) (empty triangles).
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FIG. 4. Ratio of the damping parameter �c(Q) to the parameter
ωc(Q) which describes the dispersion curve (dots). The dashed line
indicates the value of the ratio which corresponds to an overdamping
of the collective modes.

in the quasielastic region. There is no doubt that at low Q

the first one must be employed for the inelastic contribution.
Upon increasing Q, there is no reason to change the model
abruptly, however, for completeness, one can also check the
validity of a model based on a sum of Lorentzian functions. For
this check, we first applied the Bayesian analysis outlined by
Sivia and used in different papers20 to define the best number
of Lorentzian functions. From the Bayesian method it results
that two Lorentzians are the best choice. However, even if
a slightly safer fit might be obtained using three Lorentzian
components (the Bayesian analysis does not discriminate the
two choices at best), it is found that this better fit occurs at
the expense of losing the physical meaning of the parameters,
because the intensity of the components turns out to be not
positively defined.

Nonetheless, the validity of the DHO against the sum of
Lorentzians is directly manifested by the high-Q experimental
data themselves. Indeed, by plotting the experimental intensity
above 4 meV, it is seen that the decreasing trend of the data is
well accounted for by S(Q,ω) ∝ ω−3, the behavior expected
for the DHO, rather than by S(Q,ω) ∝ ω−1, as expected for
a Lorentzian modeling. These limit values are valid even
taking into account the effect of the experimental resolution
function and are obtained considering the product between the
high energy limit of the model function and the appropriate
detailed-balance factor β ω/[1 − exp(−β ω)]. As an example,
the tail of the experimental data at Q = 2 Å−1 and the fit
curves corresponding to S(Q,ω) ∝ ω−3 and S(Q,ω) ∝ ω−1

are reported in Fig. 5 as a function of ω−3 and ω−1, respectively.
The latter fit provides a reduced χ2 of 9.8 against the value
of χ2 = 1.4 obtained with the ω−3 trend. A better agreement
between ω−1 and the experimental data can be achieved only
at the expense of subtracting from the data a quite unlike
background, even if also in this case the fit favors the ω−3

trend.
For further consideration of the meaning of the fitting

model, the energy integrals Zqe(Q) and Zin(Q) of, respectively,
the two contributions Sqe(Q,ω) and Sin(Q,ω) in Eq. (1),
are shown in Fig. 6, where the static structure factor Sn(Q)
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FIG. 5. Upper-energy tail (above 4 meV) of the experimental
dynamic structure factor at Q = 2 Å−1 compared with a ω−3 (panel
a) and a ω−1 (panel b) asymptotic behavior. The former corresponds
to a DHO modeling, the latter to a Lorentzian description of the
asymptotic inelastic (asymmetric) signal (see text). Data and fits are
reported as a function of ω−3 in panel (a), and of ω−1 in panel (b).

determined by neutron diffraction19 is also reported. It can be
observed that Zin(Q) displays a relative maximum before the
Q value at which a pre-peak is present in Sn(Q). As already
noted, the dispersion relation anomaly at Qa and the small peak
in Zin(Q) occur at the same Q value. Conversely, the pre-peak
in Sn(Q) is predominantly due to Zqe(Q), and is not related
to Zin(Q). The decrease toward zero of Zqe(Q) at high Q is
likely due to the merging of Sqe(Q,ω) and Sin(Q,ω), which
the fit is unable to separate properly. No special meaning can
be attributed to this detail: probably, the present data are such
that, at high Q, it is not possible to distinguish between the
quasielastic component and an overdamped DHO contribution.
It is worth recalling that a modeling of the high-Q data by
means of two Lorentzian functions provides in any case a
worse fit than the DHO-based one, having the former a much
lower probability according to Bayesian analysis.20 Actually,
the model we selected is able to provide a good description of
the data with a minimum set of a priori assumptions.
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FIG. 6. Q dependence of the energy integral of the best-fit
quasielastic (full circles) and inelastic (empty circles) components of
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Sinc(Q) has been added to the experimental static structure factor
obtained by neutron diffraction (Ref. 19), which is also shown (empty
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III. RESULTS AND DISCUSSION

Starting from the results obtained from the present exper-
imental data and model fitting procedures, we see that the
low-momentum region, where the propagation is dominated
by the long-range (screened) ion-ion interactions, the present
data confirm the results of the previous neutron and x-ray
studies.6,15 The shortcomings of the interpretation proposed
in Ref. 15 for the collective-mode velocity, based on an
empirically adjusted screening wave vector in the equation
for c, have been discussed in Ref. 6. Indeed, k2

s is known to be
not positively defined so that it cannot be used as an adjustable
parameter in the data analysis. Also, the finite ion-size effect
must be considered since it plays quite some role.

At higher momentum transfers, a more complex trend in the
dispersion curve is brought about by the dip clearly observed
here around Qa . Indeed, in our previous neutron investigation6

the limited Q range did not allow for a detailed determination
of the Q dependence of the collective mode energy. On the
other hand, the x-ray measurements14,15 were limited by the
energy resolution, which was about twice the present one
and not Gaussian-shaped. Here, the better energy resolution
provides most reliable data for the interpretation of the high-Q
collective behavior and enhances the unexpected trend seen in
Fig. 2.

According to our previous work, the dispersion relation can
be modeled as ω2(Q) = �2

ion(Q) + Q2

4πe2 |v(Q)|2[1/ε(Q) −
1], where �2

ion(Q) is the dispersion of the ion plasma, v(Q)
is the electron-ion interaction, and ε(Q) is the electron
gas dielectric function which screens the ion-ion interac-
tion. The phenomenological form Q2

4πe2 |v(Q)|2 = �2
p[1 −

ze(Q)], with ze(Q) = αQ2 exp[−βQ2], can be adopted to
rewrite the dispersion relation assuming that �2

ion ≈ �2
p. This

leads to ω2(Q) ≈ �2
p{ze(Q) + [1 − ze(Q)]/ε(Q)}. The above

schematization can then be used to model the dispersion curve,
with α and β left as adjustable parameters, and the (static)
dielectric function estimated from QMC simulation results12

using the procedure described in Ref. 6. As is seen in Fig. 2, a
good fit of the experimental data is obtained with α = 4.30 Å2

and β = 2.45 Å2, while keeping �p fixed at the value deduced
from the density and mass of the Li(ND3)4 complex with unit
charge.

The crucial role of the dielectric function is elucidated by
the curves reported in Fig. 7. Clearly, the anomaly at Q � Qa

is dominated by the behavior of ε(Q), which is negative up to
Qa . It is also evident how an RPA approach in the calculation
of 1/ε(Q) is unable to account for the experimental data, since
it is always positive. Finally, we observe that the present β

value corresponds to an ion diameter of about 3.8 Å, which
compares with the size of Li(ND3)4 complex.19

Concerning the damping of the collective modes, a rather
abrupt increase of the mode width is seen above Qa . This
particular behavior actually suggests that at Qa a decay
channel for the collective mode opens. It is difficult to
ascribe this decay channel to either the ion-ion anharmonic
interactions or to structural relaxations, since �c(Q) changes
rather abruptly.

To get an empiric description of the decay channel, we
assume the presence of an interaction between collective
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FIG. 7. Comparison among the Q dependencies of the inverse
dielectric function 1/ε(Q) (full line), its RPA estimate (dashed line),
and ze(Q) (long dashed line).

modes and an additional electron gas mode, which models
the increase of damping through the transition rate wf =
2π
h̄

ρF 〈|Vint|2〉T , with ρF the density of final states, Vint the
interaction matrix element, and 〈· · ·〉T the thermal average.
Of course wf measures the contribution to the collective
mode inverse lifetime coming from the interaction with
the decay channel. To lowest order, Vint can be taken to
be linear in the ion displacement, i.e., linear in the collective
mode annihilation and creation operators. The transition rate
becomes wf ∝ [Qvs(Q)]2 {2n[ωc(Q)] + 1}/ωc(Q){1/[(Q −
�q0)2 + (�q0)2] + 1/[(Q + �q0)2 + (�q0)2]}2, with vs(Q)
the screened Coulomb interaction energy and q0 the complex
wave vector characterizing the additional electron-gas mode.
At low Q values, wf is expected to be small compared to
frequency, since the above expression peaks at about q0. We
thus modeled the experimental �c(Q) as the superposition
of a linear term in Q plus wf . To enable comparison with
the experimental data, we left the linear coefficient and q0 as
free parameters, while vs(Q) was calculated from the QMC
prescription for ε(Q).12

The panel (b) of Fig. 2 shows how the proposed model
accounts well for the experimental �c(Q). The present data
are thus compatible with an electron density fluctuation having
a complex wave vector q0 = [1.1 ± 0.2 + i(0.8 ± 0.2)] · kF ,
with kF the Fermi wave vector.

The origin of density fluctuations of the electron gas
is difficult to retrace. Recently, it was suggested that in
the low density region the electron gas can become un-
stable against the so-called damped charge density wave
(DCDW).21 It is therefore rather tempting to identify the
decay channel emerging from our analysis as due to the
interaction of the collective modes with a DCDW. This
possibility is further suggested by the comparison with the
theoretical result q0 = [1.43 + i0.96] · kF of Ref. 21, which
is compatible with the present findings. One could also
speculate about possible relationships between the present
observation and the crystallization of the electron gas foreseen
at the much lower electron densities attainable by computer
simulations.

IV. CONCLUSIONS

We showed the importance of investigations of low
electron-density systems, here found to open new perspectives
for both theoretical and experimental research. This work
evidences a precise role of the low-density electron gas on the
ion dynamics of saturated lithium-ammonia, and highlights
the crucial effects that the dielectric function has on the ion
collective modes and their dispersion law. We believe that most
of the effectiveness of the present analysis descends from a
realistic treatment of the electron-gas properties, only made
possible by the modern and quite refined QMC description of
the (static) dielectric function. The proposed interpretation
framework gives a very good account of the experimental
results in the wider Q range here accessed, thus supporting
the existence of interactions between ion- and electron-density
fluctuations.
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