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Effect of long-range order on elastic properties of Pd0.5Ag0.5 alloy from first principles
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The effect of long-range order on single-crystal elastic constants of Pd0.5Ag0.5 alloy has been investigated
using first-principles electronic structure calculations. The lowest energy among the considered ordered, partially
ordered, and disordered structures is found to be the L11 layered structure, which is formed by alternate (111)
Pd and Ag layers. The ordering effect is found to follow a clear trend: in contrast to the disordered phase, for
which the Ka and Kc compressibilities are equal, the L11 structure becomes less compressible along the c axis
than along the a axis.
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I. INTRODUCTION

According to the experimental phase diagram,1 Pd and Ag
form a continuous solid solution within the face-centered-
cubic (fcc) crystallographic phase. The random alloys show
many interesting features as a function of concentration; sev-
eral physical quantities have nonmonotonic or discontinuous
character. The electronic topological transitions (ETT) have
been predicted to affect the physical properties.2–4 At low
temperatures, three ordered structures have been suggested:
the L12 (Cu3Au-type) structure for Pd3Ag, the L11 (CuPt-type)
structure for equiatomic Pd-Ag, and the L1+

1 structure for
PdAg3.5

Our previous work deals with a systematic study of the
concentration dependence of the single- and polycrystalline
elastic constants of random Pd1−xAgx alloys.4 Using an ab
initio method based on density functional theory,6 we have
shown that the elastic constants of random fcc solid solutions
do not follow the simple linear-mixing law as a function of
composition. The employed chemically random structure is
definitely an appropriate description of the Pd1−xAgx alloys at
high temperatures, but the physical state at low temperatures
might be different, as suggested by recent investigations.5,7

The ordering in turn may have a marked impact on the bulk
properties of Pd-Ag system.

In the present work, we focus on the ordering effect
on the elastic properties of Pd0.5Ag0.5 alloy. Considering
different degrees of long-range order, we study how the elastic
parameters change from the completely disordered phase to
the ordered lattice predicted by theory.5 The L11 structure
is a layered structure formed below 320 K, in which the Pd
and Ag monolayers alternate along the [111] direction of the
fcc lattice [(Pd)1/(Ag)1]. The structure can be represented
with a hexagonal lattice, having the c axis along the cubic
[111] direction and with 6 atoms per hexagonal unit cell.
The single-crystal elastic constants of Pd0.5Ag0.5 alloy are
calculated within the hexagonal representation as a function
of the degree of ordering. The results obtained are com-
pared with the previously calculated elastic constants of the

substitutionally disordered fcc-type structure of Pd0.5Ag0.5.4

The degree of long-range order in the L11 structure is
controlled by modifying the layer composition; namely,
considering a layered structure along the [111] direction in
the cubic lattice with composition (Pd1−xAgx)/(PdxAg1−x)
and changing x from 0.5 (corresponding to the completely
disordered system) to 1 (corresponding to the completely
ordered system). We demonstrate that, in this particular case,
the long-range order does not significantly affect the single-
crystal elastic constants, sustaining that the random fcc solid
solution model is accurate enough even at low temperatures.

The rest of the paper is divided in two main sections and
conclusions. Sec. II presents the theoretical tools. This includes
a brief overview of the ab initio electronic structure method
and the theory of the elastic constants, and the most important
details of the numerical calculations. The results are presented
and discussed in Sec. III. In the Appendix the Euler rotation
matrix connecting the hexagonal and cubic representations of
the disordered system is presented.

II. THEORETICAL TOOLS

A. Total energy method

The electronic structure and total energy calculations
have been carried out using the exact muffin-tin orbitals
(EMTO) method.8–12 The EMTO method is an efficient and
accurate tool for solving the Kohn-Sham equations.13 It can be
considered as an improved Korringa-Kohn-Rostoker (KKR)
method, where the exact Kohn-Sham potential is represented
by large overlapping potential spheres. Inside these spheres
the potential is spherically symmetric and constant between
the spheres. Within the EMTO method the one-electron
states are determined exactly (within the common numerical
errors) for an optimized overlapping muffin-tin potential. This
potential is chosen as the best possible spherical approximation
to the exact potential:9,12,14 the radii of the potential spheres,
the spherical potential waves, and the constant value from
the interstitial, are calculated by minimizing (a) the deviation
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between the exact and overlapping potentials and (b) the errors
coming from the overlap between the spheres.

The compositional disorder in alloys is treated using the
coherent potential approximation15,16 and the total energy is
computed via the full charge-density technique.17 It was shown
in a number of previous investigations that the EMTO method
is suitable and sufficiently accurate to compute the anisotropic
lattice distortions and thus the elastic constants in random
alloys.11,12,18–24 A full description of the EMTO method may
be found in Refs. [ 8–12].

B. Elastic properties

The elastic properties of single crystals are described by
the elements cij of the elasticity tensor. For a hexagonal lattice
there are five independent elastic constants, c11, c12, c13, c33

and c44, according to Voigt’s notation. The energy change upon
a general strain is given by

1

V
�E = 1

2c11
(
e2

1 + e2
2

) + c33e
2
3 + c12e1e2 + c13(e2e3 + e1e3)

+ 1

2
c44

(
e2

4 + e2
5

) + 1

2
c66e

2
6 + O(e3), (1)

where c66 = (c11 − c12)/2, V is the volume of the system, and
ei are the elements of the strain matrix.

The relations between c11, c12, c13, and c33 are given by the
bulk modulus B and the dimensionless quantity R as follows:

B = c33(c11 + c12) − 2c2
13

cs

(2)

and

R = c33 − c11 − c12 + c13

cs

, (3)

where cs is given by

cs ≡ c11 + c12 + 2c33 − 4c13. (4)

Due to the lower symmetry of the investigated layered
structures, their hexagonal axial ratio c/a may change with
volume. The volume dependence of the equilibrium hexagonal
axial ratio [(c/a)0(V )] is related to the difference in the linear
compressibilities along the a (Ka) and c (Kc) axes, given by
the dimensionless quantity R:

R = B(Ka − Kc) = −d ln(c/a)0(V )

d ln V
. (5)

The ratio of the direction-dependent compressibilities is given
by22

Ka

Kc

= c11 + c12 − 2c13

c33 − c13
. (6)

cs is obtained from the second-order derivative of E(V,c/a):

cs = 9(c/a)2
g

2Vg

∂2E(Vg,c/a)

∂(c/a)2

∣∣∣∣∣
c/a=(c/a)g

, (7)

where (c/a)g is the global equilibrium c/a ratio (c/a)0(Vg),
where Vg stands for the equilibrium volume. Finally, c44 (c66)
is determined from a monoclinic (orthorhombic) strain as
described in Eq. (11).

For the disordered phase, the cubic and hexagonal structures
are equivalent. In order to be able to compare the present
elastic parameters to the previously calculated parameters,4

we need to make a transformation from the cubic to hexagonal
coordinate system. The relation between the fcc (cF

ij ) and
hexagonal (cH

ij ) elastic constants are given by the tensor
transformation rules, according to which

cH
ijkl =

3∑
m,n,o,p=1

TimTjnTkoTlpcF
mnop, (8)

where Tαβ (α = ijkl and β = mnop) are the elements of the
tensor transformation matrix T (see Appendix). For the present
case, we have

T =
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After some algebra we arrive at

cH
11 = (

cF
11 + cF

12 + 2cF
44

)/
2,

cH
12 = (

cF
11 + 5cF

12 − 2cF
44

)/
6,

cH
13 = (

cF
11 + 2cF

12 − 2cF
44

)/
3, (10)

cH
33 = (

cF
11 + 2cF

12 + 4cF
44

)/
3,

cH
44 = (

cF
11 − cF

12 + cF
44

)/
3.

We emphasize that these relations are valid only for the
disordered phase.

C. Details of numerical calculations

The one-electron equations are solved within the soft-core
and scalar-relativistic approximations. The Green’s function is
calculated for 16 complex energy points distributed exponen-
tially on a semicircular contour including states within 1 Ry
below the Fermi level. In the basis set we include s, p, d, and
f orbitals and, in the one-center expansion of the full charge
density, we used cutoff lhmax = 8. The electrostatic correction to
the single-site coherent-potential approximation is described
using the screened impurity model25 with a screening pa-
rameter of 0.9. The self-consistent EMTO calculations are
performed within the local-density approximation (LDA)26

for the exchange-correlation functional. Our previous work4

shows that the best agreement between the theoretical and
experimental bulk properties are given by the revised version
of the Perdew-Burke-Ernzerhof exchange correlation approxi-
mation for solids and surfaces (PBEsol).27 Therefore, the total
energies are calculated with PBEsol via the full charge-density
technique. A detailed discussion about the accuracy of the
method used and the chosen exchange-correlation functional
can be found in Sec. III A of Ref. 4.

To derive the elastic parameters, the total energy is
calculated for six different volumes and, for each volume,
seven different c/a ratios are used. This procedure yields to a
two-dimensional total energy surface E = E(V,c/a).

The derivatives appearing in the formulas of elastic quan-
tities [Eqs. (5) and (7)] are obtained by fitting the calculated
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E(V,c/a) data. For R, the volume-dependent c/a minimum
[(c/a)0(V )] is obtained using a second-order polynomial fit.
This also defines an energy minimum for each volume at
(c/a)0(V ), which is denoted by E(V,(c/a)0). Fitting a Morse-
type equation of state to E(V,(c/a)0) versus V we obtain
the global energy minimum (E), the bulk modulus, and the
equilibrium volume (Vg), expressed here by the Wigner-Seitz
radius rWS. (c/a)0(Vg) gives the global equilibrium c/a value
[(c/a)g]. cs in turn is obtained from the second-order derivative
of E(V,c/a) calculated according to Eq. (7) at (c/a)g and Vg .

In order to calculate c66 and c44 we use the following
volume-conserving orthorhombic and monoclinic deforma-
tions:⎛
⎜⎝

1 + εo 0 0

0 1 − εo 0

0 0 1
1−ε2

o

⎞
⎟⎠ and

⎛
⎜⎝

1 0 εm

0 1
1−ε2

m
0

εm 0 1

⎞
⎟⎠ , (11)

respectively, applied on the hexagonal unit cell. The corre-
sponding distorted structures are described as base-centered
orthorhombic and simple-monoclinic lattices, respectively.
The total energies, E(εo) = E(0) + 2V c66ε

2
o + O(ε4

o) and
E(εm) = E(0) + 2V c44ε

2
m + O(ε4

m), are computed for six
distortions ε = 0.00, 0.01, . . . , 0.05.

To obtain the accuracy needed for the calculation of
E(V,c/a) (c44 and c66) 1000 (5000) uniformly distributed k

points are used in the irreducible wedge of the Brillouin zone.
Previous ab initio calculations show that the effect of

the local lattice relaxation (LLR) on the elastic parameters
remains small even if a large size mismatch exists between
the alloy components. In particular, it was shown that the LLR
effect is almost negligible for the bulk modulus of Fe-based
binary alloys28 and also for the tetragonal shear modulus c′ of
Al0.95Li0.05 alloy.18 Therefore, in the present study the effect
of the local lattice relaxation is neglected.

III. RESULTS

The bulk properties and single-crystal elastic constants of
Pd0.5Ag0.5 are calculated for three different phases: (i) the
completely disordered phase (labelled Hd), where the Pd and
Ag atoms are distributed with equal probabilities within the
layers of the L11 structure, (ii) the partially ordered phase
(Hpo), where the Pd and Ag atoms are mixed with certain
probabilities (20% of Ag in a Pd layer and vice versa) within
the layers, and (iii) the ordered phase (Ho), which stands for
the layered structure where the different types of atoms occupy
alternating layers. In the following tables, Fd stands for the
results from Ref. 4 obtained for the completely disordered
phase represented by an fcc lattice. For completeness, we also
transformed the cubic results to the hexagonal lattice (denoted
by FH

d ).

A. Accuracy

In the ideal case, the results for Hd should coincide with
those for Fd. As Table I shows, the differences between the
Hd and Fd data are 0.01% for the Wigner-Seitz radius (rWS)
and global equilibrium c/a, 0.17% for the bulk modulus, and
0.077 mRy for the total energy per site (E). These differences
are expected to be mainly due to the different numerical

TABLE I. Effect of different structural representations on cal-
culated results. Theoretical (EMTO-PBEsol) results are presented
for (c/a)g , rWS, B, E, R, cs , and single-crystal elastic constants of
Pd0.5Ag0.5. Labels are explained at the beginning of Sec. III.

Fd FH
d Hd

(c/a)g (two layers) 1.632 993 1.633 155
rWS (Bohr) 2.934 354 2.934059
B (GPa) 155.11 154.85
E (mRy) 0 0.077
R 0 0.003
cs (GPa) 563 547
c11 (GPa) 182 256 245
c12 (GPa) 137 116 124
c13 (GPa) 92 94
c33 (GPa) 280 277
c44 (GPa) 94 46 47
c66 = (c11 − c12)/2 (GPa) 70 61

implementations (e.g., Brillouin zone sampling) correspond-
ing to different crystal symmetries.

For the elastic parameters the difference between the results
obtained using the two representations is somewhat more
pronounced. The difference in the linear compressibilities
R involves a first-order derivative of (c/a)0 with respect to
the volume. Within both representations, R should be zero.
However, R in Hd has a small finite value (0.003). The
average deviation obtained between the FH

d and Hd sets of
cij is 4.5%. The numerical determination of the other elastic
parameters, being the second-order derivative of the total
energy with respect to the distortions, is computationally
demanding. This leads to numerical instabilities discussed in
more detail in Sec. III A in Ref. 4. However, within the same
representation, the numerical errors are expected to cancel each
other. Therefore, in Secs. III B and V, we will refer to the effect
of ordering and composition within the same representation
(hexagonal), avoiding a direct comparison between the elastic
properties of different representations.

B. Effect of long-range order on elastic parameters

Figure 1 shows the two-dimensional total energy surface,
E(V,c/a), for the three different hexagonal phases. The total
energies per site are plotted using the same reference energy,
therefore the figures also indicate the relative stability of the
different phases. One can notice that the ordered phase Ho

is the stable one. In Table II one can find the total energies
per site relative to the fcc (Fd) phase. It is clearly seen that
Pd0.5Ag0.5 in L11 layered structure (Ho) has the lowest energy
in agreement with the previous theoretical prediction.5

Regarding the other bulk parameters (Table II) we can
notice that the effect of long-range order is small, but there
is a clear trend. The closest values compared to the random fcc
phase (Fd) are found in the disordered hexagonal case (Hd), as
expected. Increasing the ordering leads to gradually increasing
deviations compared to the Fd values. Similar trends can be
found for R and cs as well (Table III).

The data shown in Fig. 1 is analyzed in more detail in Figs. 2
and 3. Figure 2 shows how the equilibrium axial ratio (c/a)0
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FIG. 1. (Color online) Total energies per site as a function of c/a and rWS. Due to the same reference level, the energy plots indicate the
relative stability of the different hexagonal phases. Labels are explained at the beginning of Sec. III.

changes as a function of volume and ordering. For Hd this is
close to the ideal c/a ratio leading to a negligible difference
between the linear compressibilities along the a and c axis.
This is reflected by the small R value in Table III. As we go
from the disordered phase to the ordered phase the variations
in (c/a)0 become larger. The magnitude of the slope of the
(c/a)0 vs rWS curves calculated for the global equilibrium
c/ag increases from Hd to Ho, leading to an increasing R.

We obtained the values of cs using the second-order
derivative of the E(V,c/a) vs rWS curves shown in Fig. 3. The
energy scale is the same as in Fig. 1, indicating the relative
stability of Ho against the other hexagonal phases.

The effect of ordering on single-crystal elastic constants is
shown numerically in Table III. We find the largest ordering
effect in the case of cs (10 GPa, 1%) and the smallest for c44

(2 GPa, 1%).

IV. DISCUSSION

Results for the difference in the linear compressibilities
(R in Table III) show that our R for Hd is very close to zero,
as it should be for the cubic (random) structure. For Ho, R is
relatively large and positive. This indicates that the ordered
system is anisotropic: it is more compressible along the a axis
than along the c axis.

The calculated linear compressibilities along different axes
(Ka along the a axis and Kc along the c axis) are shown in
Table III. Ka and Kc have negligible differences for Hd, but
significant differences for Ho. One should notice that ordering
has a small effect on the compressibility along the a axis,

TABLE II. Theoretical (EMTO-PBEsol) bulk parameters [(c/a)g ,
rWS, B, and E] of Pd0.5Ag0.5 alloy for the three hexagonal phases.
The energies are shown with respect to the energy of the Fd structure.
Labels are explained at the beginning of Sec. III.

Hd Hpo Ho

(c/a)g (two layers) 1.633 155 1.633 289 1.635 288
rWS (Bohr) 2.934 059 2.933 526 2.932 235
B (GPa) 154.85 155.59 156.93
E (mRy) 0.077 −0.201 −0.620

but a large effect along the c direction. This effect becomes
understandable if we analyze the type of the nearest-neighbor
(NN) interactions in the two extreme systems, Hd and Ho.
For the disordered phase, there are Pd-Pd, Ag-Ag, and Pd-Ag
interactions along the 12 NN with equal probabilities. Since
the NN interactions in Hd involve all tree types of bonds,
the compressibilities in different directions are expected to be
equal. For the ordered case, on the other hand, there are only
either Pd or Ag atoms within an atomic layer perpendicular
to the c axis. Therefore, the average compressibility in the
x-y plane involves the 6 (3 + 3) Pd-Pd and Ag-Ag bonds and,
to a lesser extent, also the 6 out-of-plane Pd-Ag bonds. This
situation is not so different from that found in the case of
Hd, which explains why Ka is not sensitive to the ordering
(layering) effect. However, along the c axis the situation is
very different: there are only Pd-Ag type of interactions along
the c axis for Ho. Therefore, the compressibility is much
more affected by the ordering along the c axis. The difference
between Kc in different phases [Kc(Ho) − Kc(Hd)] is negative.
This suggests that, at fixed volume (equal to the volume of the
alloy), the Pd-Ag bonds are somewhat stiffer than the average
of the Pd-Pd and Ag-Ag bonds.

Similar anisotropy in the atomic-scale bonding of
Pd0.5Ag0.5 has been obtained previously also for the L10

TABLE III. Theoretical (EMTO-PBEsol) R, cs , single-crystal
elastic constants and linear compressibilities along a (Ka) and c

(Kc) axes of Pd0.5Ag0.5 alloy for the hexagonal phases. Labels are
explained at the beginning of Sec. III.

Hd Hpo Ho

R 0.003 0.006 0.017
cs (GPa) 547 547 537
c11 (GPa) 245 247 249
c12 (GPa) 124 124 121
c13 (GPa) 94 95 98
c33 (GPa) 277 279 280
c44 (GPa) 47 47 45
c66 (GPa) 61 62 64
Ka (1/GPa) 0.002 160 0.002 161
Kc (1/GPa) 0.002 137 0.002 051
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FIG. 2. Equilibrium hexagonal axial ratio (c/a)0 as a function of
rWS. Dashed line indicates the ideal c/a value. Labels are explained
at the beginning of Sec. III.

(CuAuI-type) structure. For this structure the electron lo-
calization function at the Pd site shows stronger bonding
in the direction perpendicular to the (100) layers, occupied
alternately by Pd and Ag, than along the layers.29 The structure
with Pd and Ag layers is frustrated. The Pd layer is in expanded
state and the Ag layer is in compressed state. This is due to the
mismatch of the Pd and Ag lattice parameters. Therefore, Pd
atoms along the Pd plane are too far from each other to form
good bonds. On the other hand, Ag atoms in the Ag plane are
too close to each other, leading to increased electronic density
between Ag atoms. Pd atoms feel this increased electron
density in the Ag plane and try to form bonds toward that. The
result is that the Pd bonding along the Pd layer is decreased
and, perpendicular to that, it is increased.

1.55 1.57 1.59 1.61 1.63 1.65 1.67

c/a

-31.0

-30.5

-30.0

-29.5

-29.0

-28.5
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(V

g )
 (

m
R

y)

H
d

H
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H
o

FIG. 3. Energies per site [E(Vg)] at the equilibrium volume as
a function of c/a. Energy scale is the same as in Fig. 1. Labels are
explained at the beginning of Sec. III.

Since there are no available experimental data on Pd-Ag
systems to compare with our results, we recall some similar
systems. In the case of Cu3Au, the experimental results show
a negligible ordering effect:30 the largest change being ∼3%
for c11 upon ordering. Furthermore, the Debye temperature
of Cu3Au calculated from the measured single-crystal elastic
constants increases by 1% upon ordering. The ordering effect
is somewhat larger for the ferromagnetic FePd. Depending on
the ordered structure, the relative change in the single-crystal
elastic constants of FePd ranges between 1% and 16% and the
Debye temperature shows an 8% to 10% increase when going
from the disordered to the ordered phases.31 These findings
are in line with the present theoretical predictions.

V. CONCLUSION

Applying the transformation rules [Eq. (11)] to the single-
crystal elastic constants from Ref. 4, we found that the
composition dependence of B, c11, c12, c13, and c33 is
weakest in the middle of the concentration range (x = 40 to
60 at.% Ag). Comparing the effects of composition change
and ordering it turned out that the effect of ±5% change in
composition around Pd0.5Ag0.5 is 4.2, 4.9, 2, 5.6, 1.2, and 1.3
times larger for B, c11, c12, c33, c44, and c66, respectively,
than the ordering effect. Based on the above analysis, we
conclude that ordering does not significantly affect the bulk
and elastic properties of Pd0.5Ag0.5. We believe that, taking
into account the long-range order, the previously discussed
peculiar composition dependence of the properties of Pd-Ag
alloys discovered in Ref. 4 will not change, and it is justified
to use the random fcc model in this particular case.
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APPENDIX

In our previous work4 we calculated the elastic constants
of random Pd0.5Ag0.5 for the fcc phase using the conventional
coordinate system of cubic lattices. In cubic systems there are
three independent elastic constants. Random fcc Pd0.5Ag0.5

can be described in a hexagonal phase, too, when the c axis
is oriented along the fcc [111] direction. For the hexagonal
phase there are five elastic constants defined with respect
to the hexagonal coordinate axes. The five hexagonal elastic
constants can be expressed in terms of the cubic ones applying
the tensor transformation rules to the components of the
fourth-rank elastic tensor.

A. Euler’s rotation theorem

We applied Euler’s rotation theorem32 to obtain the ele-
ments of the tensor transformation matrix. The rotation of
the coordinate system can be described using the three Euler
angles. Using Euler angles the elements of the rotation matrix
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FIG. 4. (Color online) Euler’s rotation applied to the fcc phase.
Green (lighter) arrows indicate the cubic (xC, yC, zC) coordinate axes
and blue (darker) arrows show the hexagonal (xH, yH, zH) axes.

(T ) can be obtained by applying different conventions. The
most common definition is the so-called “x-convention,” which
has the following steps (see Fig. 4 for notations):

(1) first, we rotate the system by an angle � around the zC

axis;

(2) the next rotation is by an angle � around the xH axis;
(3) the final rotation is by an angle 	 about the new zH axis.

The involved rotations are counterclockwise rotations. The
elements of the rotation matrix according to the “x-convention”
can be defined as follows:

T =

⎛
⎜⎝

T11 T12 T13

T21 T22 T23

T31 T32 T33

⎞
⎟⎠ , (A1)

where

T11 = cos 	 cos � − cos � sin � sin 	,

T12 = cos 	 sin � + cos � cos � sin 	,

T13 = sin 	 sin �,

T21 = − sin 	 cos � − cos � sin � cos 	, (A2)

T22 = − sin 	 sin � + cos � cos � cos 	,

T23 = cos 	 sin �, T31 = sin � sin �,

T32 = − sin � cos �, T33 = cos �.

In the present case, � = 135◦, � = arctan
√

2 and 	 = 0◦
yield the matrix given in Eq. (9).
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