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Phase states of dynamically compressed cerium
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This paper presents a multiphase equation of state for cerium, which includes the γ , α, ε, and liquid phases.
The α and γ phases are described with the Aptekar-Ponyatovsky model for pseudobinary solutions, while the ε

and liquid phases are treated as pure phases. The Hugoniot and release isentropes are calculated for the solid γ , α,
liquid, and mixed phases. Based on the model developed, the Hugoniot does not cross the line of the α-ε transition
and melting occurs directly from the α phase. The equation of state developed shows reasonable agreement with
the static measurements, the experimentally determined phase diagram, and the shock experimental data. Cerium
compresses isentropically through the γ -α transition as a result of cerium’s abnormal compressibility in the
region of the γ -α transition. The inclusion of the Aptekar-Ponyatovsky model assists in providing a way to
handle both the abnormal compressibility and the anomalous melt boundary simultaneously. Experimentally
under dynamic loading conditions, a three-wave structure is observed at stresses above the phase transition: an
elastic wave, a phase transition wave (which appears as an isentropic compression wave), followed by a shock
wave. For our model development we consider only the hydrostatic response and thus a two-wave structure
would be anticipated. No phase precursor would be observed for melting. Sound velocity behind the shock front
dramatically decreases in the region of the γ -α transition and smoothly varies through the region of melting.
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I. INTRODUCTION

Accurate simulation of the propagation of compression
waves hinges upon the underlying equation of state for the ma-
terial of interest. As one simulates phase-transforming materi-
als one can gain insights into the underlying processes that may
be taking place. The development of multiphase semiempirical
equations of state has been with us for the last 30 years. Early
works on iron1 and bismuth2,3 laid the foundation for later
works on other phase-transforming materials.4–8 This work fol-
lows these works by developing an equation of state for cerium.

There are many allotropic phase regions present in the phase
diagram in cerium; here we present a multiphase equation of
state covering four of cerium’s phases, namely, α, γ , ε, and
liquid. Cerium has a number of unusual properties, the most
important of which are the solid-solid critical point on the line
of the isomorphic γ -α transition and the abnormal behavior of
its elastic and thermal properties in the neighborhood of the
γ -α transition. The reason for this unusual behavior is likely
due to 4f electrons whose role in chemical bonding changes in
response to ambient conditions. In this context, there is a great
amount of interest in studying this material’s dynamic response
when undergoing shock compression. In prior papers,9,10 we
presented equation of state parameters for the α and γ phases
of cerium based on the Aptekar-Ponyatovsky (AP) model for
pseudobinary solid solutions.11,12 The AP model treats cerium
as a solid substitution solution consisting of cerium atoms in
different electronic states. Unlike the typical two-component
systems, the proportion of atoms at different electronic states
is not fixed, yet is defined by a minimum in the thermodynamic
potential which is dependent upon temperature and pressure.
The AP model adequately describes cerium anomalies in the
region of the isomorphic γ -α transition, including the solid-
solid critical point. On account of its abnormal compressibility

[(∂2V/∂P 2)S < 0], cerium compresses isentropically through
the γ -α transition. Increasing the magnitude of dynamic
compression beyond the phase transition stress leads to an
observed two-wave configuration: a phase precursor (the
isentropic compression wave) followed by a shock wave. As
shock strength increases, the apparent transition stress from
the phase precursor decreases continuously and the two-wave
configuration disappears, at which point the phase precursor
is totally overdriven. These features have been experimentally
verified by Borisenok et al.13

For this work we include additional phases for cerium into
the equation of state, namely, the liquid (L) phase and the ε

phase. The phase stability region for each of the phases is
presented as well as the shock compression behavior well into
the melt. As in prior papers,9,10 the equation of state for the α

and γ phases is based on the AP model. A slight modification
of the α and γ was made to improve the fits. The liquid and ε

phases are considered as individual (pure) phases. The phases
we do not consider are the β phase (DHCP—a small region in
the phase diagram obtained by multiple thermocycling around
room temperature), the high-temperature δ phase (which is
bounded by the γ phase and the melt boundary for pressures
less than ∼2.6 GPa), and the α′ and α′′ phases having the
orthorhombic (α-U ) and monoclinic structures.

In Sec. II we give the essentials of the AP model and EOS
models for individual phases. Section III compares calculated
and experimental static thermodynamic properties. Finally,
Sec. IV discusses the dynamic experimental data, as well as
discussing potential implications arising from the equation of
state.

II. BASIC EQUATION-OF-STATE RELATIONS

For each of the individual phases (α, γ , ε, and liquid)
a Helmholtz free-energy function is developed. The basic
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formalism for the Helmholtz energy is given as a sum of four
components:

F (V,T ) = FC(V ) + FH (V,T ) + FAE(V,T ) − StrT , (1)

where FC is the cold energy, FH is the quasiharmonic
free energy, FAE is the anharmonic-electronic free energy
associated with phonon-phonon interactions and thermally
excited electron energies, and StrT is an entropy of transition
term. The entropy contribution term is used to account for
the disordering entropy in melting and contributions from the
crystal field, spin fluctuations, etc., as well as the entropy
associated with the isomorphic (α-γ ) transition. As shown
by Jeong et al.,14 the change in vibrational entropy which
is accounted for in the quasiharmonic free energy term only
contributes to about half the total entropy change that occurs
during the α-γ transition. We acknowledge that treating the
liquid phase as a quasiharmonic solid is a simplification, yet it
has been shown by Chisolm15 and Wallace16 to be appropriate,
assuming some degree of short-range ordering exists in the
liquid. Therefore we include a constant value of Str in the γ

and the liquid phases which only influences the melt boundary
and the α-γ phase boundary. At low temperatures the α phase
is the energetically preferred phase and thus the constant Str

does not play a role in the entropy of cerium. In Eq. (1) the
quasiharmonic and the anharmonic-electronic free energies
contribute to the thermal dependence of the total entropy of
the phase.

The cold energy, FC ≡ EC(V ), describes the atomic inter-
action energy in a static lattice at T = 0 K. It is determined
by integrating an expression for pressure (a modified universal
EOS by Vinet et al.17) by volume. The expression for the
pressure as a function of volume is given by

PC(y) = 3B0K

1 − y

y2
exp[η(1 − y) + β(1 − y)2], (2)

where y = (V/V0K )1/3. V0K and B0K are the specific volume
and bulk modulus, respectively, at P = 0 and T = 0 K. The
parameters η and β relate to the first (B ′

0K ) and second (B ′′
0K )

pressure derivatives of the bulk modulus (at y = 1): B ′
0K =

(2η + 3)/3, B ′′
0K = −[η2 + η − 6β + 2]/(9B0K ).

The second term in the sum, the quasiharmonic free energy
FH , is described by the Debye approximation:

FH = RT
[

9
8τ + 3 ln(1 − e−τ ) − D(τ )

]
, (3)

where τ ≡ θD(V )/T . θD(V ) = θD0 exp(− ∫ V

V0K

�H (t)
t

dt) is the

Debye temperature, and D(y) = 3
y3

∫ y

0
t3

et−1dt is the Debye
function. The Gruneisen function �H (V ) is assumed to be
equal to an adjustable constant �0, which is determined from
the fitting procedure.

The contribution to the Helmoltz free energy attributed to
anharmonic lattice oscillations and thermally excited electrons
is given by the following function: FAE = − 1

2Dx�AE T 2, where
D and �AE are free (adjustable) parameters.

For the γ -α phase region the AP model is applied
in a similar fashion as in Refs. 9 and 10. The AP model
constructs a thermodynamic Gibbs potential which describes
the region as a thermodynamic coexistence of atoms in the

different electronic states corresponding to either the α or the
γ phases. The Gibbs potential is written as

G = (1 − c)Gα0 + cGγ0 + c(1 − c)Gmix

+ T R[c ln c + (1 − c) ln(1 − c)], (4)

where T is temperature, Gα0 and Gγ0 are the thermodynamic
Gibbs potentials of the individual (pure) phases α0 and γ0,
respectively, c is the concentration of atoms whose electron
configuration corresponds to the γ0 phase, Gmix is a mixing
potential, and R is the universal gas constant. The Gibbs
potentials, G(V,T ), are determined from the relations G =
F + PV , where volume V is determined from the solution to

P =
(

∂F

∂V

)
T

. (5)

At specified P and T , the equilibrium concentration c is de-
termined from obtaining the minimum of the thermodynamic
potential: (

∂G

∂c

)
P,T

= 0,

(6)(
∂2G

∂c2

)
P,T

> 0.

When c > 0.5 the solid solution is said to be in the γ phase,
and similarly when c < 0.5 the phase state is said to be in the α

phase. At the limiting values of c, the pure (individual) phases
are obtained γ0 (c = 1) and α0 (c = 0). The minimum of the
potential given by Eq. (6) has one or two solutions (depending
on particular values of the variables contained therein). Please
see the Appendix for more details. The thermodynamic
potential’s minima correspond to concentrations c1 and c2,
which may have identical or different depths depending on
the magnitudes of Gγ0 and Gα0 . Physically, the existence of
different depth minima provides for metastability for the phase
with greater Gibbs free energy. When the Gibbs energies are
identical [i.e., G(P,T ,c1) = G(P,T ,c2)], phase equilibrium is
reached. It can be shown11 that in this case c1 = 1 − c2 and
Gα0 − Gγ0 = 0. Thus, the phase equilibrium line for the α and
γ phases of the pseudobinary solution coincides with the phase
equilibrium line for the pure α0 and γ0 phases. Near the phase
equilibrium line, one phase is metastable (i.e., higher Gibbs
free energy phase) and one phase is stable (i.e., lower Gibbs
free energy phase). Still further departure from the equilibrium
line causes the metastable phase to lose its stability altogether;
in other words, one solution to Eq. (6) exists.

At the conditions ( ∂G
∂c

)P,T = 0 and ( ∂2G
∂c2 )P,T = 0 one of

the minima vanishes on the (P,T ) plane and the number of
solutions for Eq. (6) changes to one possible solution. The
critical point occurs where the two minima become one at c1 =
c2 = 1/2 and the equality ( ∂2G

∂c2 )P,T = 0 is satisfied. The critical
temperature can be determined from the equality 2RTcr =
Gmix(P,Tcr ). Using the same empirical form as was presented
in Refs. 9 and 10, Gmix is defined as

Gmix(T ) = G0
mix

[
1 + θ1

T
+

(
θ2

T

)2
]

, (7)

where G0
mix, θ1, and θ2 are adjustable parameters. The

parameters G0
mix, θ1, and θ2 were determined from the equality
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Gmix(Tcr ) = 2RTcr in the critical point, which was assumed to
be Tcr = 482.5 K.18,19 This functional representation for the
mixing potential is a simplified version which was presented
by Dzhavadov.20 In the limit, as temperature approaches zero,
it is clear that this functional representation fails because
the function Gmix(T ) will tend toward infinity. However, at
T > 300 K, this empirical form describes experimental data
quite well. Unfortunately, there are still no physics-based
models for the mixing potential. Ab initio simulations designed
to consider the mixed states of cerium may assist in defining
the physical processes around the α-γ phase boundary leading
to a more appropriate semiempirical function for the Gmix term
in Eq. (4).

Once again for clarity, we emphasize that the α and γ

phases are understood to be different states of the solid solution
(mixture) of the pure (individual) α0 and γ0 phases. The γ

phase occurs in the region above the γ -α equilibrium curve
with an extension beyond the critical point in temperature
up to the melt boundary minimum, and for pressures below
γ -α equilibrium curve with the extension beyond the critical
point. The α phase occurs at temperatures below and pressures
above the γ -α equilibrium curve and the extrapolation of the
line beyond the critical point.

The challenge selecting parameters for multiphase equa-
tions of state arises because each phase must be coupled
to the other phases. In other words, the parameters selected
must be related to the phase diagram and the variations of
various thermodynamic variables around the phase boundaries.
A genetic algorithm (GA) method21,22 simulates the natural
evolutionary processes which was applied23 to the optimiza-
tion EOS parameters. The GA demonstrated high efficiency in
obtaining parameters. An effectiveness function composed of
a sum of weighted (based on confidence level in the data)
dimensionless and normalized root-mean-square deviations
between calculated and experimental data was developed.
Tables I and II provide the parameters obtained for equations
of state for the pure (individual) phases of cerium and for the
α-γ mixing potential [Eq. (7)].

When selecting the EOS parameters for the α and γ

phases only static data and phase boundary data were used.
Shock experimental data are strongly scattered in this region
and, thus, were not included in the EOS parameter fit. The

TABLE I. Parameters for the equations of state for the individual
phases of cerium.

Phase

Parameter α0 γ0 ε Liquid

ρ0K (g/cm3) 8.352 6.789 8.526 7.757
B0K (GPa) 24.841 22.609 26.862 24.688
B ′

0K 3.70 3.40 6.636 4.625
β 60.3 0 0 11.3
θD0 (K) 138.0 104.0 127.6 104
�0 1.652 0.470 1.673 1.569
�AE 0.93 1.79 1.70 1.18
D/R (10−3 1/K) 2.12 0.73 0.21 0.64
E0K/R (K) 0 273.2 161.3 3288.0
Str/R 0 1.30 0 4.19

TABLE II. Mixing potential parameters.

G0
mix/R (K) θ1 (K) θ2 (K)

1288.9 −130.0 65.0

Debye temperature of the γ0 phase was chosen based on
its experimental value of 104 K.14 For the liquid phase, the
same Debye temperature was chosen, partly because at high
temperatures this parameter only influences the entropy of
melting. The parameter Str for the liquid phase was optimized
to obtain the desired entropy of melting. The liquid phase
EOS parameters were fitted to shock compression, liquid melt
boundary, density, and thermal expansion data in the liquid
phase of cerium. The calculated density, 6.88 g/cm3, near the
melting point and the calculated thermal expansion coefficient,
1.58 × 10−4 K−1, for temperatures of 1100–1700 K agree
well with the experimental values 6.87 ± 0.012 g/cm3 and
(1.3 ± 0.2) × 10−4 K−1 obtained for the same conditions.24

Parameters for the ε phases were selected from isothermal
compression data25 and the α-ε phase transformation curve.26

An additional discussion on the selection of parameters for the
ε phase will be discussed in the following section.

III. STATIC DATA COMPARED WITH EOS PREDICTIONS

Figures 1–8 compare calculated with experimental results
for the following thermodynamic functions of the γ , α and
ε phases: the pressure dependencies of bulk sound velocity27

CB = (BS/ρ)1/2 (BS is the isentropic bulk modulus and ρ is
density) and relative heat capacity CP (P )/CP (0)28 (Fig. 1);
isothermal compressibility χ versus pressure at different
temperatures29 (Fig. 2); the temperature dependencies of heat
capacity CP

30 and the coefficient of thermal expansion αP
31

(Fig. 3); the thermal expansion coefficient versus temperature
in the vicinity of the γ -α phase transformation at different
pressures29 (Fig. 4); the isentropic temperature variation with
respect to pressure of cerium (∂T /∂P )S versus pressure at
different temperatures32 (Fig. 5) and versus temperature at
different pressures (Fig. 6); the phase equilibrium line between

FIG. 1. Bulk sound velocity and relative heat capacity versus
pressure at room temperature (experimental data from Refs. 27
and 28).
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FIG. 2. Isothermal compressibility versus pressure at different
temperatures (experimental data from Ref. 33).

the γ -α phases and the corresponding change in volume with
respect to temperature on the phase equilibrium line, �V/V

(Fig. 7);33 and the molar volume V variation in isothermal
compression25,34,35 (Fig. 8). The resulting parameter set using
the AP model shows that the calculated and experimental ther-
modynamic parameters of the γ and α phases are adequately
capturing the abnormal response of cerium as a function of
temperature and pressure.

In searching the literature for the thermophysical properties
(thermal expansion and heat capacity) of the ε phase of cerium,
it was determined that no data exist. This makes it difficult to
determine appropriate parameters for the thermal components
of the EOS. The parameters could be determined from the
phase equilibrium lines between ε phase and other phases;
however, information on the limits of ε phase stability is
currently unreliable. Fig. 9 shows a phase diagram compiled
from data presented by different authors.26,33,36–39 Note that
for this work the region indicated by the dashed line labeled
Tbell (experimental data from26,37,39), the region of the α′ and
α′′ phase stability, is not considered. The calculated line of γ -α

FIG. 3. Thermal expansion coefficient and heat capacity versus
temperature at one atmosphere (experimental data from Refs. 30
and 31).

FIG. 4. Thermal expansion coefficient versus temperature at
different pressures (experimental data from Ref. 29).

FIG. 5. ln(∂T /∂P )S versus pressure (experimental data from
Ref. 32).

FIG. 6. ln(∂T /∂P )S versus temperature (experimental data from
Ref. 32).
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FIG. 7. Temperature and volume jump versus temperature for the
γ -α phase transition on the phase equilibrium line (experimental data
from Ref. 33).

equilibrium, T γα , ends at the critical point with coordinates
P = 1.43 GPa, T = 482.5 K. The dashed continuation of the
γ -α boundary corresponds to the locus of equal concentrations
of γ and α phases (c = 0.5). The calculated melting curve
Tmelt agrees well with the experimental melting curve,36,38

reproducing a minimum at Pmin = 3.45 GPa, Tmin = 940 K
close to the experimental minimum Pmin = 3.3 GPa, Tmin =
935 K.29 The AP-model treatment for the α and γ phases
assists in replicating the melt curve reasonably well. It is noted
that for pressures below ∼2.6 GPa cerium melts from its δ

phase (BCC)36 which is also not considered.
Two possible regions for the existence of the ε phase were

considered. The first option comes from the α-ε transition
curve proposed by Zhao and Holzapfel39 (the curve TZhao in
Fig. 9). For pressures above 12 GPa cerium melts from the ε

phase and the melting curve could be used to constrain the EOS
parameters of the ε phase. This variant of the phase diagram
would suggest that the Hugoniot in the (P,T ) plane would
cross the α-ε transition line. Shock experiments could possibly
observe this transition. The EOS parameters for cerium using

FIG. 8. Isothermal compression to 208 GPa (experimental data
from Ref. 25,34, and 35).

FIG. 9. Cerium phase diagram (experimental data from Refs. 26,
36–39).

this assumption included the isothermal compression of ε

cerium to 208 GPa,25,34 a liquid cerium Hugoniot,40–42 liquid
cerium density and thermal expansion,24 and the melting curve
to 30 GPa.38 The α-ε phase equilibrium line resulting from
the equality of thermodynamic potentials between the α and
ε phases is represented by the curve Tvar1 in Fig. 9. The
curve is bell shaped and at pressures ∼4–9 GPa is really
shaped as stated in Zhao et al.39 The comparison between
the thermodynamic potentials of the α and ε phases showed
the ε phase stability to be inside the bell. This result was
unexpected because the EOS parameters for the ε phase were
selected from experimental data at pressures beyond the bell,
P > 12 GPa. Altering the EOS parameters in such a way to
keep a reasonable agreement with experimental results only
deformed the bell. Therefore, the assumption that the ε phase
is adjacent to the liquid phase is contradictory; hence the α-ε
transition curve proposed by Zhao39 could be in error.

Another set of EOS parameters for the ε phase was
produced using the electrical resistance experimental data.26

In this study, samples were subjected to isobaric heating to
∼600–700 K and pressures of 10–15 GPa, where they showed
anomalies in the electrical resistance. The authors related this
phenomena to the ε → α phase transition.26 In cooling the
samples down to room temperature the reverse transformation
was not observed which suggested a considerable temperature
hysteresis for the transition. These experiments did not exam-
ine the crystalline structure that resulted from the transition,
which is unfortunate. In this context, there remains some doubt
whether the phase transition observed was actually the ε → α

transition.
Alternatively, we could propose that the transition observed

by Tsiok26 was some unknown phase X which is adjacent to
both the liquid phase and the α phase. An EOS was constructed
for this X phase and the X-α transition line, using the same
experimental data as in the previous case, except it did not
include the isothermal compression data for ε cerium. Also
included was the additional condition that the X-α transition
curve passes through the region of α′ and α′′ phases (i.e.,
crosses the dashed line Tbell). The results from this EOS
parameter set showed that the X-α transition curve is bell
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shaped too, similar to the aforementioned ε-α transition curve
Tvar1. A closer examination indicated that, again, the region
inside the bell corresponded to the X phase and the melting
curve is contiguous with the α phase. The initial assumption
has led to a contradiction with calculation, thus suggesting
that perhaps Tsiok et al.26 were correct in assuming that the
observed phase transition was the ε → α transition.

Due to the above discussion, the EOS parameters presented
in Table I are based on the data presented by Tsiok26 and
the isothermal compression data.25,34,35 Figure 8 presents the
compression curve for the ε phase for the higher pressure
region plotted; the EOS parameters found in Table I predict
this behavior with some certainty. Ideally, to better constrain
the ε phase parameters, compression curves at temperatures
above room temperature, as well as a more accurate location
for the α-ε phase boundary than the existing literature would
suggest, are needed.

It was assumed that the temperatures could be described
by the equation Gα − Gε + �Ehyst = 0. Here �Ehyst is the
energy needed to overcome the potential barrier at the
beginning of the ε → α transition and energy associated with
its temperature hysteresis. Taking �Ehyst to be constant, the
parameter E0K for the ε phase is virtually redefined: E0K →
E0K − Ehyst. After determining the EOS parameters which fit
the experimental isothermal compression data up to 208 GPa
(Fig. 8) and the ε → α transition line (the curve T εα in Fig. 9),
(E0K − Ehyst)/R = 44.5 K is obtained. The estimated value
of �Ehyst can be inferred by taking (based on some plausible
grounds) the coordinates of a point on the ε-α equilibrium
line. The midpoint of the region where the mixed α′ and α′′
phases exist at T = 300 K is the proposed point, which (at
pressures from ∼5 to ∼12 GPa) separates the α and ε phases.
The corresponding point of the ε-α equilibrium is thus taken to
be at T = 300 K and P = 8 GPa. The required value of E0K

in the EOS for the ε phase is then E0K/R = 161.3 K. Only
this value is presented in Table I. The ε-α equilibrium line
corresponding to this assumption is shown in Fig. 9 and is
labeled as T εα

eq . �Ehyst/R is estimated to be ≈161.3 − 44.5 =
116.8 K. This value is close to E0K/R = 161.3 K which seems
to cause the high-temperature hysteresis of the transformation.
Note also that E0K/R for the ε phase is lower than that for the
γ0 phase, and thus the ε phase should be represented with the
AP model. However, the lack of experimental data precludes
this.

IV. DYNAMIC EXPERIMENTAL DATA COMPARISON
AND DISCUSSION

In considering the dynamic compression behavior of
cerium, it has been shown9,10 that the abnormal compressibility
[(∂2V/∂P 2)S < 0] near the γ -α phase transition promotes the
isentropic compression in cerium until the phase transition
is complete. The model captures this behavior. Therefore the
dynamic compression of cerium in the γ phase and the mixed
γ and α phases is described by the equation S(P,V ) = S00,
where S00 is entropy before the wave front. The shock
compression behavior for the α and the liquid phases was
calculated using the Rankine-Hugoniot equation E − E0 =
1
2 (P + P0)(V0 − V ). The variables E, E0, P , P0, V , and V0

represent energies, pressures, and specific volumes (V = 1/ρ)

FIG. 10. The amplitude of the first (isentropic) wave versus
pressure on the front of the second (shock) wave.

behind and ahead of the shock front. Energy, entropy, and
specific volume for the mixed phase regions were calculated
additively, specifically: E = ξEi + (1 − ξ )Ej , S = ξSi +
(1 − ξ )Sj , V = ξV i + (1 − ξ )V j , where ξ is concentration
of particular phase i (i,j = γ,α,L). The density of cerium at
T = 300 K and P = 0 was ρ00 = 6.74 g/cm3. The state ahead
of the shock front at the end of the γ -α phase transition was
determined by finding the point (V,P ) where the tangency
of the Rayleigh-Michelson line on the Hugoniot and the
isentropic compression curve coincide:

P − P0

V − V0
=

[
∂P

∂V
(V0)

]
S=S00

. (8)

Figure 10 shows the phase precursor amplitudes P0 ahead
of the shock front as a function of the peak pressure observed
behind the shock front. The inset in Fig. 10 graphically
illustrates the solution for Eq. (8); the solid line represents
the Hugoniot, and the dashed lines correspond to Rayleigh-
Michelson lines. In this representation the effects of elasticity
are ignored. For the amplitude of the phase transition wave, in
the state before the shock front, the model predicts a constant
phase transition stress up to 3.4 GPa, which then decreases
until the shock overdrives the phase transition altogether at
7.4 GPa. This feature was discussed by Elkin et al.9,10 and
later experimentally confirmed by Borisenok et al.13 The
P0 state shown in Fig. 10 is the pressure at which the γ -α
phase transition begins. The prior work9,10 showed the phase
transition precursor disappearing at ∼8.7 GPa. The principle
difference comes from the modified EOS parameters for the
γ0 and α0 phases.

In Fig. 11 the Hugoniot up to pressures of 30 GPa in the
(V/V00,P ) plane is compared with the experimental data.40–44

The sections marked with Sγ and Sγα represent regions where
isentropic compression occurs in the γ phase region and
in the mixed γ + α phase regions. Hα , HαL, and HL are
the Hugoniots for the α phase, the mixed α + L phases,
and the L phase (liquid), respectively. The vertical lines are
included to show where the boundaries are along the principle
Hugoniot. The agreement between calculated (equilibrium
Hugoniot) and experimental results at low pressures after
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FIG. 11. Calculated Hugoniot up to 30 GPa in comparison with
experimental data (Refs. 40–43).

the completion of the γ -α phase transition suggests that the
transition is kinetically fast. This most probably is a direct
result of the electronic nature of the isomorphic γ -α phase
transition. Considering that the low-pressure experimental
Hugoniot data were not included in the fitting procedure, the
agreement with the dynamic data suggests that the parameters
chosen for the pure α and γ phase will provide a relatively
accurate representation for using this equation of state in
hydrodynamics calculations. Calculations suggest that a two-
wave configuration will not occur at the cerium melt boundary.

We compare in Fig. 12 the calculated with the experimental
Hugoniot up to 600 GPa. Up to ∼160 GPa, the calculated
Hugoniot agrees well with experiment. For pressures greater
than 160 GPa (see inset in Fig. 12), the calculated pressures
become much higher than the experimental data.43,44 It is well
understood that for these high compression ratios, the Vinet17

cold curve begins to break down although our representation
includes a higher order term. Up to 160 GPa, the simplified
liquid model captures the compression behavior of liquid
cerium. Perhaps a more realistic approach for the liquid
state would be to allow the anharmonic-electronic Gruneisen
parameter �AE to vary with volume and temperature instead
of letting it be a constant.

In Table III each of the pressure, volume, and temperature
points along the room temperature dynamic compression curve
of cerium is presented. The incipient melting values are
in good agreement with the experimental numbers recently

FIG. 12. Calculated Hugoniot over the entire range of experimen-
tally studied pressures (Refs. 40–44).

reported.45,46 The γ → α transition pressures are in good
agreement with experimental data43 as well. The completion
of the melt transition at 22.3 GPa is greater than the 18 GPa
reported by Jensen et al.45 The completion of melt numbers
are about 4 GPa greater than the experiment which could
indicate that the liquid parameters or the liquid model may
need some modification. The predicted Hugoniot shown in
Figs. 11 and 12 for pressures greater than 22.3 GPa show a
considerable amount of agreement. Although the liquid EOS
was constructed from a combination of the Hugoniot data,
the atmospheric pressure thermal expansion data, and the
solid-liquid phase boundary, it is anticipated that the liquid
EOS would predict accurately the isentropic release behavior
or secondary shocks in the liquid region.

In Fig. 13 the experimental42,46 and calculated sound
velocities are shown for dynamic loading conditions. There
is good agreement between the experimental and calculated
sound velocities for pressures up to 160 GPa. The α-L
mixed-phase region shows a smooth variation in sound speed
with no significant jumps.

Calculated dynamic compression results and the calculated
phase diagram in the (P,T ) plane are shown in Fig. 14.
The compression isentropes in the γ -phase region and the
mixed γ + α phase region are indicated by Sγ and Sγα .
The Hugoniots for the α, L, and α + L are given by Hα ,
HL, and HαL, respectively. The marking scheme for the
remaining marked curves is identical to those found in Fig. 9.
From the Hugoniot calculations presented, it appears that

TABLE III. Characteristic pressure, volume, and temperature points on the room-temperature dynamic compression curve of cerium
(isentrope and Hugoniot).

Pressure Compression Temperature
P (GPa) V/V00 T (K)

Start of the γ -α transition on the compression isentrope 0.73 0.9546 308
End of the γ -α transition and beginning of shock compression in α phase 1.11 0.8429 401
Dissolution of the two-wave configuration (no phase precursor) 7.37 0.7169 849
Start of melting on the shock wave 10.74 0.6886 1091
End of melting on the shock wave 22.29 0.6329 1300
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FIG. 13. Sound velocity on the shock front (experimental data
from Refs. 42 and 46).

cerium melts from the α phase. The dashed lines represent
the release isentropes from different shocked states, PH . The
lowest release isentrope (PH = 4 GPa) begins in the α phase,
then passes the region of the mixed α + γ phases near the
critical point, and ends in the γ phase. The release isentropes
PH = 8 GPa and PH = 10 GPa are above the critical point
and indicate a smoother inflection through the extension of the
α-γ boundary the farther they are away from the solid-solid
critical point. The isentrope which begins on the mixed α + L

phase line (PH = 16 GPa) follows the α-L and departs from
the boundary in the γ phase region. The highest calculated
isentrope (PH = 30 GPa) remains entirely in the liquid phase.
It is clear from this diagram that the α-ε phase boundary should
not be crossed dynamically from the principle Hugoniot. It
may however be possible to cross the boundary via isentropic
compression or double-shock experiments.

To better analyze experimental data or aid in the selection of
loading parameters to study phase transitions under dynamic
loading conditions, a useful piece of information to have
would be the isentropic release paths with respect to the phase

FIG. 14. Calculated Hugoniot, rarefaction isentropes, and phase
diagram of cerium. The dashed lines show the rarefaction isentropes
of cerium shocked to pressures PH = 4, 8, 10, 16, 30 GPa.

FIG. 15. (S,P ) diagram for cerium. SH is entropy on the
Hugoniot; S

i-j
i is entropy of phase i along i-j transformation line;

S4, S8, S10, S16, S30 are release isentropes from PH = 5, 8, 10, 16,
30 GPa behind the shock front. The insert shows the region for small
pressures.

diagram. To obtain this information, it is suggested that the
rarefaction wave be determined with an (S,P ) diagram, rather
than a detailed isentrope projected on another plane. In Fig. 15,
an (S,P ) diagram of cerium is shown. The diagram presents
entropy versus pressure on the Hugoniot, SH , and the entropies
of adjacent phases i and j on the i-j phase equilibrium curves,
Si

ij . For illustrative purposes the γ -α and α-L transitions are
considered. The entropy at a specified pressure on the Hugoniot
is determined from the curve SH (P ). A line parallel to the
abscissa is the isentrope. In the event that the isentrope crosses
the curves Si

ij (P ), the point formed by the intersection is the
point where a phase transition occurs during the rarefaction
process. As an illustration, Fig. 15 presents the isentropes
which were shown in Fig. 14 in the (P,T ) plane.

V. CONCLUSIONS

The proposed multiphase equation of state for cerium
reproduces much of the available experimental data. Although
the lower pressure dynamic experiments were not included
in the fitting, the equation of state adequately predicts
much of the Hugoniot data in the literature. The equation
of state predicts the incipient melting pressures to within
the experimental error. The concept of Aptekar-Ponyatovsky
allowing for a binary mixture of electronic states, although
yet to be verified, provides a thermodynamic framework to
adequately capture the salient features of the α → γ phase
transition. The general lack of experimental data describing the
thermophysical properties of the ε phase means that there is not
much information on which to constrain the EOS parameters.
Therefore experiments or ab initio calculations probing the
thermophysical behavior of ε cerium are needed to provide a
higher degree of credibility to the EOS for the ε phase. Thus
the α-ε equilibrium curve should at this time be considered
tentative.

We have outlined a multiphase thermodynamic framework
which captures many of the properties of cerium. A high
degree of certainty exists in this framework and thus should

094120-8



PHASE STATES OF DYNAMICALLY COMPRESSED CERIUM PHYSICAL REVIEW B 84, 094120 (2011)

be valid for high-fidelity numerical simulations requiring such
a thermodynamically consistent model for the range where it
has been shown to be valid.
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APPENDIX A: SOLUTION TO GIBBS ENERGY FUNCTION

In order to find the extremum of the thermodynamic
potential Eq. (4), it can be rewritten in dimensionless form
by dividing everything through by RT. It is as follows:

g(c) = (1 − c)gα0 + cgγ0 + c(1 − c)gmix

+ c ln c + (1 − c) ln(1 − c), (A1)

where g are the dimensionless Gibbs free energy of the respec-
tive phases or the mixing energy. Rearranging the equation and
letting �gαγ = gγ0 − gα0 , the following is obtained:

g(c) = gα0 + c�gαγ + c(1 − c)gmix

+ c ln c + (1 − c) ln(1 − c). (A2)

Solving for the condition that defines the local extremum
from Eq. (6) in terms of the unitless function above, the
following is obtained:

g′(c) = ∂g

∂c
= �gαγ + (1 − 2c)gmix − ln

1 − c

c
= 0 (A3)

and

g′′(c) = −2gmix + 1

c(1 − c)
> 0. (A4)

Solving the quadratic equation for c gives values at which
g′(c) exhibits an extremum. The two values for c are given by

c∗
1 = 1

2

[
1 −

√
1 − 2

gmix

]
,

(A5)

c∗
2 = 1

2

[
1 +

√
1 + 2

gmix

]
.

Since g′(0) = −∞, the c∗
1 is a maxium and c∗

2 is a minimum of
g′(c). Solutions of Eq. (A4) exist if 1 − 2

gmix
> 0 or gmix > 2.

For the conditions where gmix < 2, the function does not have
extremes; it is monotonic and hence, Eq. (A3) has only one
solution. Figure 16 shows the behavior of g′(c) at different
gmix. The condition gmix > 2 is necessary but not sufficient for
(A3) to have more than one solution. For Eq. (A3) to have three
roots the following conditions must be met simultaneously:

g′(c∗
1) > 0 and g′(c∗

2) < 0. (A6)

FIG. 16. Function g′ = g′(c) at different gmix.

Combining Eqs. (A2), (A3), and (A4) with the requirement
of Eq. (A6), for the states where gmix > 2, it can be written as

�g−
αγ = −gmix

√
1 − 2

gmix
+ ln

⎛
⎝1 +

√
1 − 2

gmix

1 −
√

1 − 2
gmix

⎞
⎠ ,

�g+
αγ = gmix

√
1 − 2

gmix
− ln

⎛
⎝1 +

√
1 − 2

gmix

1 −
√

1 − 2
gmix

⎞
⎠ , (A7)

�g−
αγ < �gαγ < �g+

αγ .

This equation defines the range of �gαγ where given the
condition that gmix > 2 there exist two local minima for the
function g(c). Let c1 and c2 (c1 < c2) be the concentrations
corresponding to these minima in g(c), and c3 correspond to
the concentration where the function g(c) reaches a maximum.
Based on this one could numerically find the roots of Eq. (A3)
and the range for each root would be given by the following:

0 < c1 < c∗
1,

c∗
2 < c2 < 1, (A8)

c∗
1 < c3 < c∗

2 .

In Fig. 17 the form of g(c) is shown for different values of
�gαγ as it crosses the boundaries defined by Eq. (A7).

FIG. 17. Function g = g(c) at different values of �gαγ .
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Considering the above equations, there are several possible
regions as a function of the value that �gαγ takes. They are as
follows:

(a) In the region where �gαγ is greater than the upper
boundary of Eq. (A7), the function g(c) has one minimum at
c < 1/2. This region represents the region for α phase stability.

(b) In the region where �gαγ is positive yet below the upper
boundary of Eq. (A7), the function g(c) exhibits a second
local minimum at c > 1/2. This implies that the γ phase is
metastable and the α phase remains the equilibrium phase, due
to the minimum being deeper.

(c) At �gαγ = 0, both minima are identical in depth and
symmetric about c = 1/2. Here both the γ and the α phases
are in equilibrium.

(d) In the region where �gαγ is negative yet above the
lower boundary of Eq. (A7), the second local minimum gets
deeper than the first one. The γ phase is thermodynamically
stable while the α phase is considered to be a metastable
phase.

(e) When �gαγ is less than the lower boundary found
in Eq. (A7), only one minimum of g(c) is found
at c > 1/2. The γ phase is the only stable phase
present.

From the above, it can be inferred that when gmix = 2,
Eq. (A3) has only one solution and thus, defines the solid-solid
critical point on the phase equilibrium curve. Reintroduc-
ing the dimensional parameters, namely, RT , Gmix equals
2RTcr .
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