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Diffuse x-ray scattering from various types of stacking faults in basal (0001) planes in a-oriented wurtzite
GaN epitaxial layers is described theoretically and the calculated intensity distributions are compared with
experimental data. From the comparison, the densities of stacking faults in a series of a-GaN samples were
determined. The method makes it possible to discriminate the diffuse scattering from stacking faults from the
influence of nonplanar defects like dislocations.
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I. INTRODUCTION

Technological applications of optoelectronic devices based
on (0001), i.e., c-oriented GaN are complicated by the piezo-
electric effect along the [0001] direction. This phenomenon
gives rise to a band bending, known as the quantum confined
Stark effect.1 Nonpolar or semipolar GaN thin films overcome
this problem. However, this type of material possesses a large
number of defects, especially stacking faults (SFs) so that a
reliable method for the determination of the defect densities
is of high importance. Several works have been published
on the application of x-ray diffraction for the determination
of the density of defects in a-plane oriented GaN epitaxial
layers [a-GaN, surface (112̄0)] (see the review in Ref. 2),
most of them are based on the well-known Warren theory
of diffuse scattering from stacking faults in hcp crystals.3

This description was originally developed for polycrystals and
the density of SFs is determined from the full widths at half
maximum (FWHM) of several diffraction peaks.4 In Ref. 5,
the components of the microstrain tensor in an a-GaN have
been determined from the analysis of the reciprocal-space
distribution of the diffracted intensity (RSM). RSM of a-GaN
layers and transmission electron microscopy (TEM) have been
used in Ref. 6 for the determination of the SF density, the
authors find a linear calibration curve connecting the density
of the SFs in (0001) planes with the FWHM of the diffraction
maximum.

The defect structure of m-oriented GaN layers [surface
(11̄00)] is similar to a-GaN. The density of (0001)-oriented
SFs in these layers was determined from x-ray diffraction
data using a modified Williamson-Hall method;7 this approach
determines the mean size of coherent crystal blocks between
adjacent fault planes from the FWHM of the diffraction peaks
in the [0001] direction perpendicular to the fault planes.

The FWHM of diffraction maxima are affected not only
by SFs but also by other defects, especially dislocations and
mosaic blocks. In contrast to the previous works mentioned
above, in this paper we investigate not only the widths of
the diffraction peaks but also full shapes of the maxima in

reciprocal space. This method makes it possible to distinguish
the peak broadening due to SFs from the contribution of other
defects. The full shape of the diffraction maximum makes it
possible to determine not only the density but also the prevalent
type of the SFs. However, as we show later, this task requires
to measure the diffracted intensity very far from the diffraction
maximum, which was not the task of the present study.

We develop a theoretical description of diffuse scattering
from SFs and perform a series of numerical simulations. The
description is based on a Monte Carlo approach, in which
we calculate the reciprocal-space distribution of the x-ray
intensity diffusely scattered from a random set of stacking
faults; a similar approach has been used in a row of papers
for the investigation of hcp to fcc martensitic transition.8,9 The
applicability of our method is tested on a set of a-GaN epitaxial
layers with various SF densities.

The paper is organized as follows. First, we give the
sample description and the experimental setup and x-ray
measurements (Sec. I). Then, we develop our theoretical
approach for the calculation of the intensity distribution
(Sec. II). In Sec. III, we compare results obtained from the
experimental and the theoretical part of this investigation and
determine the densities of SFs in our samples.

II. EXPERIMENTAL

We investigated a series of four samples, denoted S1 to S4,
grown heteroepitaxially on r-oriented sapphire substrates by
metalorganic vapor-phase epitaxy (MOVPE) in an AIXTRON
200/RF-S horizontal flow reactor. Trimethyl gallium (TMGa),
trimethyl aluminum, and ammonia (NH3) have been used
as Ga, Al, and N precursors as described in more detail
elsewhere.10 We have chosen a series of samples with different
growth conditions and different densities of defects. Before
starting the growth, the substrate was heated up to 1200 ◦C for
a desorption of surface impurities. Then, the growth of all sam-
ples was initiated with an about 20-nm-thick high-temperature
AlN nucleation layer. For sample S1, this was followed by a
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GaN film deposited at the same temperature of 1120 ◦C and a
NH3 to TMGa molar flow ratio (V/III ratio) of about 1100 to a
total thickness of approximately 2.2 μm. In order to optimize
the GaN layer quality, we have applied a two-step procedure to
sample S3 where we increased the V/III ratio in the first step to
a value of about 2200 for the growth of the first 1 μm, owing
to achieve best bulk crystal quality. Then, we reduced this
parameter to about 540 for the growth of the top layer (2.3 μm)
in order to minimize the surface roughness. For sample S2, we
grew a first 1-μm-thick GaN layer applying an increased V/III
ratio of about 2200, where a defect-reducing in situ deposited
SiN layer was integrated after 300 nm, similar as described in
Ref. 11. Then, a second SiN layer was deposited before about
2.3 μm GaN were grown with reduced V/III ratio of about 540.
For sample S4, a template according to S3 was additionally
overgrown by hydride vapor phase epitaxy to a total thickness
of approximately 9 μm (see Ref. 10 for more details).

The x-ray diffraction (XRD) experiments were performed
using a custom-built rotating-anode setup with a small focus
(Cu anode, 2 kW output). A double-bent parabolic multilayer
mirror and a Ge(220) channel cut monochromator were used
to produce a well collimated beam of CuKα1 radiation with
the divergences of about 12 arcsec and less than 0.1 deg in the
scattering plane and across it, respectively. The primary beam
was shaped by slits down to the cross section of 1 × 1 mm2, the
source-sample distance was about 1.6 m. For data collection, a
linear multichannel detector with the pixel size of about 50 μm
at a distance of 0.8 m to the sample was used.

As we show later, the SFs in the (0001) basal planes (so
called basal SFs) give rise to a narrow streak in reciprocal
space along [0001]. For the determination of the SF density,
it is necessary to measure the intensity distribution along this
streak, therefore the [0001] direction must be parallel to the
scattering plane (common plane of the wave vectors K i,f of
the primary and scattered waves, respectively). In a coplanar
scattering geometry, the scattering plane is perpendicular to
the sample surface, i.e., to (112̄0) plane in case of a-GaN. All
coplanar diffractions in this scattering plane are of the type
112̄L, however, as we show in the theory section, all basal
SFs do not produce any diffuse scattering in these diffractions.
Therefore we used an inclined geometry (see Fig. 1) in which
the scattering plane makes an angle of 30 deg with the surface
normal n = 1

3 [112̄0] and symmetric diffractions H0H̄0. The
inclined geometry was the reason for the collimation of the
primary beam in two orthogonal directions described above.

In the inclined geometry, we measured RSMs in diffractions
with H = 1,2,3. The resolution in reciprocal plane is deter-
mined by the divergence of the primary x-ray beam both in the
scattering plane and perpendicular to it, by the pixel size of the
detector and its distance from the sample. For the experimental
conditions listed above, we achieved a resolution better than
0.05 nm−1 for all measured diffractions in both directions in
the scattering plane.

III. STRUCTURE MODEL OF STACKING FAULTS

It is well established nowadays that wurtzite a-GaN epitax-
ial layers contain a large amount of planar defects (stacking
faults SFs) in addition to dislocations of various types.2,6,12

Three types of intrinsic (I1, I2, and I3) as well as one type
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FIG. 1. (Color online) The sketch of the elementary unit cell of
wurtzite GaN with the orientation of the a plane (grey) and scattering
plane (red). The scattering plane makes an angle of 30 deg with the
surface normal n.

of extrinsic (E) basal SFs occur in (0001) planes and also
prismatic SFs in planes 1

2 {101̄1} are reported in the literature.
In this section, we restrict ourselves to the most common basal
SFs I1–I3 and E.13 The stacking of the (0001) basal planes in
these defect types is displayed in Fig. 2.

Developing the formula for the intensity scattered from
a random sequence of SFs, we assume that the GaN layer
diffracts kinematically, i.e., effects of dynamical x-ray diffrac-
tion (including absorption and refraction) are fully neglected.
This simplification is fully justified if (i) the GaN layer is
much thinner than the x-ray extinction length in GaN (about

FIG. 2. (Color online) Sketch of the positions of Ga (blue) and
N atoms (yellow) in various types of basal stacking faults. The fault
plane is denoted by the dotted line. The black rectangles denote the
segments with fcc-like stacking. Grey spheres denote the Ga positions
in an ideal lattice.
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3 μm in diffraction 202̄0 and CuKα1 radiation) or the angular
deviation from the diffraction maximum is larger than the
width of the intrinsic Darwin curve, and (ii) the incidence
and/or exit angles of the x-ray beams are much larger than the
critical angle of total external reflection (0.33 deg for CuKα1).
Further, we assume the validity of the far-field limit, i.e., the
size of the coherently irradiated sample area (below 1 μm in
a usual experimental arrangement) is much smaller than the
diameter of the first Fresnel zone. The positions of individual
SFs are assumed random and the irradiated sample volume
contains a large number of defects so that the measured x-ray
signal can be assumed averaged over a statistical ensemble of
all configurations of the SFs.

First, let us consider a perfect layer without any structural
defects. Using the kinematical approximation and the far-field
limit introduced above, the amplitude of the wave diffracted
from the layer is a function of the scattering vector Q = K f −
K i (the difference of the wave vectors of the diffracted and
primary beams):

E( Q) = A[fGa(Q) + fN(Q)e−i Q·d]
∑

n

e−i Q·Rn . (1)

Here, we denoted fGa,N the form-factors of atoms Ga and N,
d = 3a4/8 is the position vector of the N atom with respect to
Ga in a GaN molecule, and n ≡ (n1,n2,n3) are the indexes of
a GaN molecule with the position vector Rn. The hexagonal
basis vectors are a1,2,4, the vectors a1,2 and a3 = −a1 − a2

lie in the basal plane (0001), and a4 is orthogonal to it (see
Fig. 2). A is a constant containing the amplitude of the primary
beam, the classical electron radius, and the polarization factor,
among others.

Since two GaN molecules constitute one GaN elementary
unit cell, the molecule position vectors can be written as

Rn = n1a1 + n2a2 + n3a4/2 + σn3 p, (2)

where p = 2
3 a1 + 1

3 a2 is the lateral shift of the second Ga-N
bilayer in the elementary unit cell with respect to the first
one; we denote these bilayers by Bb and Aa, respectively.
The ideal hcp stacking of bilayers is therefore denoted as
...AaBbAaBb..., the fcc stacking of the bilayers would be
...AaBbCcAaBbCc.... Further, n3 ≡ σn3 mod(2), i.e., σn3 equals
0 (1) for even (odd) values of n3, i.e., σn3 = σn3−2 holds. For
a general stacking sequence of bilayers Aa, Bb, and Cc, σn3

values create a general sequence of 0, 1, and 2. The case
σn3 = 3 is equivalent to σn3 = 0, since 3 p is an integer linear
combination of basis vectors a1,2. Therefore all the σ values
are considered modulo 3.

Now, let us assume that the layer contains a single
SF of type I1 in position n3 = ndef . The actual stacking
sequence is then (we omit the symbols abc for the N
atoms) ...ABABCBCB...for ndef even or ...ABACACA...for
ndef odd. The corresponding sequences of the σn3 values are
...01012121...or ...0102020.... In both cases,

σndef ≡ (
2σndef−1 − σndef−2

)
mod(3). (3)

Using the same procedure, we find that the SF I2 in position
ndef is described by the formulas

σndef ≡ (
2σndef−1 − σndef−2

)
mod(3),

(4)
σndef+1 ≡ (

2σndef − σndef−1
)
mod(3).

The formulas for the type I3 are

σndef ≡ (
2σndef−1 − σndef−2

)
mod(3),

σndef+1 ≡ σndef−1mod(3), (5)

σndef+2 ≡ (
2σndef+1 − σndef

)
mod(3).

The SF of the extrinsic type (E) is described by

σndef ≡ (
2σndef−1 − σndef−2

)
mod(3),

σndef+1 ≡ (
2σndef − σndef−1

)
mod(3), (6)

σndef+2 ≡ (
2σndef+1 − σndef

)
mod(3).

The stacking sequences of various SF types are represented
graphically in Fig. 2, from which Eqs. (3)–(6) follow as well.
From the figure, it follows that the SFs are represented by short
fcc-like segments; in the case I1, for instance, the fcc segment
contains one (0001) bilayer, in I2, the fcc segment consists of
two bilayers.

A given microscopic distribution of stacking faults is
described by a certain sequence of the values of σn3 , from
which the diffracted amplitude can be calculated:

E( Q) = �( Q)
N∑

n3=0

ξn3κσn3 , (7)

where

�( Q) = A[fGa(Q) + fN(Q)e−i Q·d]
∑
n1,n2

e−i Q·(n1 a1+n2 a2),

ξ = e−i Q·a4/2, κ = e−i Q· p,

and N is the number of coherently irradiated (0001) basal
planes. The range of the double sum

∑
n1,n2

corresponds to the
lateral size S of the stacking faults and we assume that this
size is comparable to the layer thickness. Then, the function
�( Q) gives rise to a narrow streak in reciprocal space along
[0001], i.e., perpendicular to the SF planes (0001). The width
of the cross section of this streak can be estimated to 2π/S

and it is usually comparable to the resolution limit of the
experimental setup. Therefore, in the following, we deal only
with the reciprocal-space distribution of diffracted intensity
I (Q[0001]) along the SF streak.

The reciprocal-space distribution of the intensity stemming
from one coherently irradiated volume is given by a convolu-
tion of the function |E(Q[0001])|2 with the resolution function
�(Q) of the experimental device:

I (Q) =
∫

dQ′|E(Q − Q′)|2�(Q′),
(8)

�(Q) =
∫ ∞

−∞
dx�(x)e−iQx.

The resolution function is the Fourier transformation of the
mutual coherence function of the primary radiation �(x) in two
points in the distance x along the [0001] direction. However,
the numerical calculation of the integral in Eq. (8) is time
consuming and we used the following approximate approach
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instead. We define the function 	(x) = √
�(x) and instead of

calculating the convolution in Eq. (8) we use the formulas:

E( Q) = �( Q)
N∑

n3=0

ξn3κσn3 	(n3|a4|/2),

(9)
I (Q[0001]) = |E(Q[0001])|2.

The function 	(x) describes a broadening of the diffraction
curve not only due to a limited coherence of the primary beam
but also due to other effects such as limited angular resolution
of the detector and diffuse scattering from other defect types,
like dislocations. As we show later, the form of this function
can be determined from the diffraction curve measured around
the reciprocal lattice point h, where the SFs do not produce
any diffuse scattering.

In a standard x-ray diffraction experiment, the irradiated
sample volume is much larger than the coherence volume of
the primary beam, so that the measured diffracted intensity
is an incoherent superposition of intensities originating in
various coherently irradiated volumes. From this fact, the
calculation strategy follows: (i) in a coherently irradiated
volume consisting of N (0001), Ga-N bilayers we define
the positions and types of the SFs using a suitable random
generator (see below). (ii) From the positions and types of the
SFs defined in the previous step we construct the sequence
of σ ’s using Eqs. (3)–(6). (iii) We calculate the amplitude of
the diffracted wave using Eq. (9) and the diffracted intensity
Ij = |Ej |2. (iv) We repeat the items (1)–(3) M times and obtain
the intensities Ij , j = 1, . . . ,M . Each intensity distribution Ij

corresponds to the intensity scattered for a single coherently
irradiated volume, M is the number of these volumes in
the irradiated sample volume. (v) We calculate the average
intensity profile

I (Q[0001]) = 1

M

M∑
j−1

Ij (Q[0001]) (10)

and the root-mean-square (rms) deviation σI of the average
intensity14

σ 2
I = 1

M

[
1

M

M∑
j−1

I 2
j −

(
1

M

M∑
j−1

Ij

)2]
. (11)

Increasing the number M of coherently irradiated volumes,
the rms deviation σI decreases. The simulation procedure is
rather time consuming so that we were not able to use the actual
number M given by the experimental conditions. Instead, we
chose M so that the maximum of σI (Q[0001]) did not exceed
5%; the resulting computation time was few minutes for a scan
of about 103 values of Q[0001].

For the definition of random positions of the SFs, we
assume that the sequence of the SFs of the same type
creates a homogeneous Markov chain.15 The distances Dn

between the (n − 1)th and nth SFs are expressed in integer
multiples of |a4|/2 ≡ c/2 (c = 5.186 Å is the vertical lattice
parameter of wurtzite GaN), and they are assumed random
and uncorrelated. In the simulations, we used the geometric
distribution of the distances with the mean value 〈D0〉 = D0

and rms deviation σD =
√

〈(D − D0)2〉 = √
D0(D0 + 1); for

this distribution, we obtain the best correspondence of the

measured and simulated intensity profiles. We tried also the
Poisson distribution, however, in this case we obtain broad but
well visible satellite maxima on the SF streak with the mean
distance of about 
Q[0001] = 2π/D0, which are not observed
in the experimental data.

The geometric distribution is a discrete analog of the
exponential distribution. The probability of finding the (di-
mensionless) distance D is w(D) = p(1 − p)D , where the
parameter p is the probability of finding the SF in a given
position, connected with the mean value D0 of D by D0 =
(1 − p)/p. The geometric distribution is the only discrete
“memoryless” distribution in which the probability of finding
the SF in the given position does not depend on actual positions
of other SFs.16 Further, we assumed that the mutual positions
of the SFs of different types are statistically uncorrelated so
that the total diffracted intensity is a sum of contributions of
the Markov chains of various defect types.

We have performed an extensive series of simulations for
various defect types and densities and for various diffractions
h = H0H̄0, H = 1,2,3 in symmetrical inclined scattering
geometry (Fig. 1). In diffraction H0H̄0 the factor κ occurring
in Eqs. (7) and (9) for diffracted intensity is κ = e−4π iH/3,
which equals (−1 ± i

√
3)/2 for H = 1,2, respectively, and

κ = 1 for H = 3. Therefore, in diffraction h = 303̄0, the SFs
of all types assumed here do not produce diffuse scattering
and the broadening of the diffraction maximum along the SF
streak is caused either by experimental resolution or by diffuse
scattering from other defect types. Thus the 303̄0 diffraction
can be used for the determination of the function 	(x) defined
above. It is worthy to note that in asymmetric coplanar
diffractions 112̄Lκ = 1 holds as well, so that these diffractions
are not suitable for the measurement. The condition of the
“visibility” of a basal SF, κ 	= 1, is equivalent to the condition
h · R 	= integer, where R is the stacking fault displacement
vector.2,17

In the sum
∑

n3
for the diffraction amplitude, the segments

with κσn3 = (−1 + i
√

3)/2 and (−1 − i
√

3)/2 appear in average
with the same occurrence for H = 1 and 2, therefore the
intensity distributions in diffractions 101̄0 and 202̄0 differ
only due to different values of atomic form-factors fGa,N(Q).
Figure 3 presents the intensity distributions along the SF streak
calculated for different SF types depicted in Fig. 2. In the
simulations, we used the same mean distance between the fault
planes D0 = 50 (expressed in mutliples of c/2) and we put
	(x) = 1, i.e., we assumed a perfectly plane incident wave and
no diffuse scattering from other defect types. Figure 3 displays
the intensity distributions calculated along the [101̄L] rod
crossing also the diffraction maxima [101̄2̄], [101̄1̄], [101̄1],
and [101̄2].

From Fig. 3(b), it follows that the shapes of the diffuse
scattering maxima from the defects of types I1 and I2 are
almost identical in the vicinity of the reciprocal lattice points
and these defect types can be distinguished only from the
intensity distributions around the anti-Bragg points L = n+ 1

2 .
Close to a reciprocal lattice point, the intensities from both
defect types are proportional to Q−2

[0001]; this behavior follows
from the geometric distribution of the SF distances. From
Fig. 2, it is obvious that the sequence ...ABAB...is inverted to
...CBCB...in the case of I1, and the sequence ...ABAB...is
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FIG. 3. (Color online) (a) Intensity distributions along the SF
streak calculated in diffraction 101̄0 for various types of the SFs and
the same mean distance D0 = 50 between the SFs; the curves are
shifted vertically for clarity and an ideally coherent primary beam
was assumed (W → ∞). Diffraction maxima along the [101̄L] rod
are indicated by vertical dotted lines. (b) Detail of the diffraction
maximum of defects I1 and I2 in loglog scale, the dotted line
represents the slope −2.

shifted to ...CACA...for I2. This inversion or shift of the
lattice gives rise to a shift in phase of the scattered wave
and the diffuse scattering along the SF streak is produced
by the interference of the phase-shifted waves originating
from various hcp segments divided by the SFs. On the other
hand, in the case of the I3 defect, the hcp segments on both
sides of the defect are in phase. Therefore diffuse scattering
from I3 is caused only by pairs of very narrow fcc segments
connected to each fault plane. This is the reason, why the
intensity distribution along the [101̄L] rod does not exhibit any
maximum around the reciprocal lattice point [see Fig. 3(a)]. In
the case of defects E, the diffuse scattering along the [101̄L]
rod is concentrated around every second reciprocal lattice
point, i.e., [101̄3̄],[101̄1̄],[101̄1],[101̄3], etc.

The width of the intensity maximum along the SF streak
is inversely proportional to the mean distance D0 between
the SFs I1 or I2. This is demonstrated in Fig. 4, where we
present the intensity curves calculated in diffraction 101̄0 for
various D0. Nevertheless, the FWHM of the diffraction curve
cannot be used for the determination of D0, since the shape of
the diffraction maximum and its FWHM in particular are
affected by the function 	(x); this is shown in Fig. 5, where
the diffraction curves calculated for various widths of 	(x)
are plotted. In the simulations, we assumed that the function
can be described by the well-known PearsonVII distribution
function:18

	(x) =
[

1 + 4(21/α − 1)

(
2x

W

)2]−α

,

where W is the FWHM of the function and α is the shape
parameter. For α → ∞, this function approaches the Gauss
function, in the case of α = 1, 	(x) corresponds to the
Lorentz function. The case W → ∞ represents an ideally
coherent and plane primary wave and no diffuse scattering
from other defects (dislocations in particular). Decreasing
W , the resulting diffraction curve changes its form and its
FWHM increases. In order to discriminate the influence of
this effect from the true intensity profile, it is necessary to
measure the intensity curves in various diffractions H0H̄0.
As we showed above, the diffraction curve in 303̄0 is not
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FIG. 4. Intensity distributions along the SF streak calculated
in diffraction 101̄0 for various mean distances D0 expressed in
integer multiples of c/2. Ideally coherent primary beam was assumed
(W → ∞).

affected by the SFs at all so that from its form the parameters
W and α of function 	(x) can be determined; these values
can be used for the analysis of diffraction curves in other
diffractions. However, both the effect of transversal coherence
and diffuse scattering from dislocations scale with the length
of the diffraction vector h. Therefore the FWHM WH of the
function 	(x) in diffraction H0H̄0 is

WH = 3/H × W3, (12)

where W3 is the FWHM determined from diffraction 303̄0.
The shape parameter α does not depend on the diffraction
order H .
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FIG. 5. Intensity distributions along the SF streak calculated in
diffraction 101̄0 for various widths W of the function 	(x) expressed
in integer multiples of c/2 and constant D0 = 50. The dotted line
represents the slope −2.
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FIG. 6. Examples of the reciprocal space maps of x-ray diffuse
scattering measured in the symmetric noncoplanar diffractions 101̄0,
202̄0, and 303̄0 (from the top to the bottom, respectively) of the
sample S3. The data are plotted in a logarithmic scale, the step of the
isointensity levels is 100.5. The SF streaks in diffractions 101̄0 and
202̄0 are clearly visible.

IV. RESULTS AND DISCUSSION

Figure 6 displays the RSMs of sample S3 measured in
diffractions 101̄0, 202̄0, and 303̄0; the RSMs of other samples
are similar. The [0001]-oriented streak is visible in 101̄0 and
202̄0 diffractions, while the diffraction maximum in 303̄0
is rather round. According to the theory above, this feature
indicates the presence of basal SFs. To determine the density
of SFS, from the RSMs we extracted intensity scans along
the [0001]; these scans for sample S3 are plotted in Fig. 7.
We tested several procedures for extraction, the best way
was to integrate the measured RSM in a narrow stripe of
the width 
Q[101̄0] = 0.1 nm−1 around the maximum; this
integration effectively suppresses the experimental noise. The
inset in Fig. 7 shows the intensity maxima in detail; from
the inset, it follows that the FWHM of the 202̄0 and 303̄0
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FIG. 7. Linear scans in [0001] direction (i.e., along the SF streak)
extracted from the RSMs in Fig. 6. The inset shows the details of the
scan around the maximum, normalized to maximum intensity. The
numbers denote the orders H of the diffractions H0H̄0.
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FIG. 8. Linear scans in [101̄0] direction (i.e, across the SF streak)
extracted from the RSMs of all samples in diffraction 101̄0 for
Q[0001] = 2 nm−1 (points) as well as their fits by Gaussian functions
(lines). The scans are shifted vertically for clarity.

are almost identical, i.e., the FWHM is affected mainly by
the function 	 and not by the diffuse scattering from the
SFs.

Figure 7 demonstrates that the extracted intensity scans are
slightly asymmetric, this asymmetry is stronger for smaller
H . This effect is of purely geometrical nature; for Q[0001] < 0,
the irradiated sample volume (and consequently the number of
irradiated SFs) is larger than for Q[0001] > 0. We included this
effect in the intensity simulations by multiplying the intensity
by the factor 1/sin(αi), where αi is the variable incidence angle
of the primary x-ray beam.

We have also extracted scans across the SF streaks at
Q[0001] = 2 nm−1; Fig. 8 displays these scans for all samples in
diffraction 101̄0 and their fits by Gaussian functions. From the
FWHM of these scans, we determined the effective sizes Seff

of the SFs, their values are in Table I. These values represent
the lower limits of the true sizes S, since the linear scans are
considerably broadened by the experimental resolution.

We fitted the measured [0001] scans to the theory described
in the previous section. First, we determined the FWHM W

of function 	 defined in Eq. (9) from the scans in diffraction
303̄0, in which the SFs do not cause diffuse scattering; the
values of W are in Table I. Then, using these values of W

and taking into account the scaling property in Eq. (12), we
fitted the intensity scans measured in diffractions 101̄0 and
202̄0. The measured and fitted scans are plotted in Fig. 9; the
measured and calculated intensity scans agree very well. From
the fits, we determined the dimensionless mean distances D0

of the SFs and the SF density

� = 2

cD0
, (13)

the density values are in Table I as well.
From the theory, it follows that the FWHM of the [0001]

scans in diffractions 101̄0 and 202̄0 are equal and therefore
the SF densities � should not depend on the diffraction order
H . However, the density values in Table I sometimes slightly
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TABLE I. Densities of the SFs determined from diffractions 101̄0 and 202̄0 for samples S1 to S4, the mean densities 〈�〉 from both
diffractions, the effective widths Seff of the SFs, and the widths W of the functions 	(x) determined from diffraction 303̄0. The density values
are determined with an accuracy of approximately ±10%, the errors of Seff and W are approximately 10 and 0.1 nm, respectively.

Sample �101̄0 (105 cm−1) �202̄0 (105 cm−1) 〈�〉 (105 cm−1) Seff (nm) W (nm)

S1 4.1 4.1 4.1 140 8.6
S2 4.0 2.6 3.3 130 13.0
S3 3.2 3.8 3.5 180 11.7
S4 2.6 2.7 2.65 190 15.8

differ; the reason of this difference is not completely clear
yet. It could be caused by the difference in the information
depths, from which the diffuse scattering is collected. The
incidence and exit angles in 202̄0 are larger than in 101̄0,
therefore the SF density determined from 202̄0 is averaged
over a layer thickness of about 14 μm, while 101̄0 probes only
an approximately 5-μm thick layer. The largest difference in
the defect densities was observed in sample S2, where �202̄0 <

�101̄0. This sample however contains a defect-reducing SiN
layer buried in the GaN volume, so that the defect density
in the surface layer is expected smaller than below the SiN
layer. Therefore the effect of the information depth cannot
explain this difference. Another possible explanation of the
difference in the �101̄0,202̄0 values could be an inhomogeneous
distribution of the defects in the layer volume (bunching of
the defects), which has not been included in the theory. The
irradiated sample surface in diffraction 101̄0 is larger than in
202̄0, so that the latter diffraction could be more sensitive
to a possible bunching effect. Other structural imperfections
like surface roughness or macroscopic sample bending cannot
explain this difference.

Sample S4 exhibits the smallest SF density. This finding
corresponds nicely to our expectations that any defects are
reduced by overgrowing our samples with a thick high-quality
GaN layer. The FWHM W of the function 	(x) include both
the experimental resolution and diffuse x-ray scattering from
other defects. The density of these defects can be hardly
determined, qualitatively it increases with decreasing W .

In contrast to other works published so far, our method
determines the SF density from the whole intensity profiles
of the SF streak. If the SF streak is visible in the measured
reciprocal-space intensity distribution, the influence of the
stacking faults can be distinguished from other defects.
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FIG. 9. Experimental (circles) and theoretical (solid lines) inten-
sity scans along the [0001] direction in the 101̄0 diffractions 101̄0
(left), 202̄0 (middle), and 303̄0 (the right panel). The numbers of the
samples are indicated, the curves are shifted vertically for clarity.

Roughly speaking, the SF density is proportional to the FWHM
of the SF streak, however the whole intensity profile has to
be taken into account. The minimum SF density (i.e., the
maximum mean distance between adjacent fault planes) can
be estimated from the minimum measurable broadening of the
diffraction maximum in [0001] direction, which in our case is
determined mainly by the angular resolution of the detector.
For our geometry, the minimum detectable SF density is about
104 cm−1.

We have restricted our experiments to a small vicinity of the
reciprocal lattice points H0H̄0, this restriction did not allow
us to distinguish between the types I1 and I2 of the SFs; the SF
types I3 and E can be excluded. The resolution of the defect
type from the [0001] scans could be possible if we measure
the scans around the anti-Bragg points L = n + 1/2, this will
be the subject of our next paper. Nevertheless, the SF densities
in Table I most likely apply to the I1 defects, since about 90%
of all defects are of type I12 because of their lower formation
energy than the other defect types.12,19

V. SUMMARY

We have developed a theoretical description of diffuse
scattering from a random set of basal stacking faults in a-plane
GaN epitaxial layers. We have simulated the distributions of
the diffusely scattered x-ray intensity in direction perpen-
dicular to the fault planes, i.e., along the [0001] lines in
reciprocal space crossing the reciprocal lattice points H0H̄0
(H = 1,2,3). From the comparison of the simulations with
experimental data on a series of GaN samples, we determined
the density of basal stacking faults. The method makes it
possible to distinguish between the diffuse scattering from
stacking faults and the effects of other structural defects.
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