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Distribution of unresolvable anisotropic microstructures revealed in visibility-contrast images using
x-ray Talbot interferometry
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X-ray Talbot interferometry has been widely used as a technique for x-ray phase imaging and tomography.
We propose a method using this interferometry for mapping distribution of parameters characterizing anisotropic
microstructures, which are typically of the order of μm in size and cannot be resolved by the imaging system, in a
sample. The method uses reduction in fringe visibility, which is caused by such unresolvable microstructures, in
moiré images obtained using an interferometer. We applied the method to a chloroprene rubber sponge sample,
which exhibited uniaxial anisotropy of reduced visibility. We measured the dependencies of reduced visibility
on both the Talbot order and the orientation of the sample and obtained maps of three parameters and their
anisotropies that characterize the unresolvable anisotropic microstructures in the sample. The maps indicated
that the anisotropy of the sample’s visibility contrast mainly originated from the anisotropy of the microstructure
elements’ average size. Our method directly provides structural information on unresolvable microstructures in
real space, which is only accessible through the ultra-small-angle x-ray scattering measurements in reciprocal
space, and is expected to be broadly applied to material, biological, and medical sciences.
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I. INTRODUCTION

For more than one hundred years, x-rays have been used for
nondestructively visualizing internal structures in a wide range
of fields including physics, chemistry, biology, and medicine.
Conventionally, absorption of x-rays has been used for imaging
applications, but in the early 1990s several imaging techniques
using x-ray phase shift were proposed. These so-called x-ray
phase imaging techniques have been highlighted because they
are sensitive to light elements three orders of magnitude
higher than that of absorption-contrast imaging (for example,
Refs. 1–3). However, most of these techniques essentially
require a highly brilliant synchrotron x-ray source. Recently,
x-ray phase imaging using transmission grating (e.g., x-ray
Talbot and Talbot-Lau interferometry) has been attracting
attention because it can work with polychromatic and cone
beams and has wide applications.4–35 In x-ray Talbot (-Lau)
interferometry, we can retrieve two quantitative images by
using a fringe-scanning (phase-stepping) technique,36–38 i.e.,
absorption and differential-phase images, from a series of
experimentally obtained moiré images. Pfeiffer et al. have
proposed another approach for generating image contrast, in
which they quantified the relative decrease in fringe visibility
in a moiré image by defining normalized visibility.12 They
reported that visibility contrast is generated through small-
angle x-ray scattering from a microstructure with a scale much
smaller than the spatial resolution of the imaging system.
Their approach is fascinating because it can provide structural
information inaccessible from absorption and differential
phase images, and it is promising for a broad range of
applications.39–50 However, no general formulation of this
phenomenon, which is essential for quantitative structure
analysis, had been provided.

In one of our previous papers.51 we showed that the
reduction in fringe visibility can be formulated using an
autocorrelation function that describes the spatial fluctuations

of the wavefront caused by the unresolvable microstructures.
Experimentally obtained reduced visibilities for several sam-
ples with isotropic microstructures successfully fit with our
formula. The spatial fluctuations were characterized using
three parameters: correlation length, the Hurst exponent,
and variance. The correlation length can be interpreted as
the average size of the microstructure elements, the Hurst
exponent is related to their average shape, and the variance is
proportional to their scattering power in the forward direction.
Our results showed that the reduced visibility can be used for
quantitatively analyzing unresolvable microstructures in the
order of μm size.

We applied this concept to a cylindrical chloroprene rubber
(CR) sponge sample in the current research. It exhibited
uniaxial anisotropy of visibility contrast, that is, we observed
change in the sample’s visibility contrast when rotating it
around the optical axis of the interferometer with its cylinder
axis not parallel to the optical axis. We obtained maps for
the parameters characterizing the unresolvable anisotropic
microstructures in the sample that caused visibility contrast.
Similar to our previous paper,51 optimal values for the three
parameters that characterize the phase fluctuations due to the
unresolved microstructures were obtained for each pixel of a
projection image at an orientation of the sample. By rotating
the cylinder axis of the sample around the optical axis, we
also obtained the dependencies of the three parameters on
the sample orientation. Sine functions were fitted to these
orientation dependencies, and maps that represent distributions
of the three parameters and their anisotropies were finally
obtained. We found that the correlation length and the
Hurst exponent exhibited anisotropies and the former was
more anisotropic than the latter, but the variance did not.
These results indicated that the anisotropy of the sample’s
visibility contrast mainly originated from the anisotropy of the
microstructure elements’ average size.
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FIG. 1. (Color online) Schematic illustration of experimental
setup of x-ray Talbot interferometry

II. THEORETICAL BACKGROUND

First, we briefly review the general formula for the reduced
visibility provided in our previous paper.51 For simplicity, we
considered the x-ray Talbot interferometer system for plane-
wave illumination (wavelength: λ) as schematically illustrated
in Fig. 1. We define d and z by the pitch of the gratings and
the distance between them. The distance z can be expressed
by pd2/λ for the plane-wave illumination, where p is called
the Talbot order. We assumed that a sample is placed just in
front of the first grating and a detector is located just behind
the second grating. For convenience, we define xy-coordinate
systems on planes perpendicular to the optical axis (the z axis),
the x axis of which is in the direction perpendicular to the lines
of the first grating.

Our basic idea was to formulate reduced visibility by
unresolvable spatial fluctuations of the wavefront due to
microstructures in a sample. To discuss the effect of the wave-
front’s spatial fluctuations (phase fluctuations), we express the
phase shift φ(x,y) caused by the sample (i.e., the wavefront
just behind the sample) as the sum of smooth (resolvable) and
fine (unresolvable) features, φs(x,y) + φf (x,y).52 Normalized
visibility, which is defined by the ratio of visibility with
the sample (V ) to that without the sample (V0), is then
approximately given by

V

V0
≈ ei�φf (x,y;pd), (1)

where �φf (x,y; pd) ≡ φf (x,y) − φf (x + pd,y)and the bar
means averaging around (x,y) within the spatial resolution of
the detector. If we assume that φf can be modeled as a random
Gaussian variable,52,53 the width of which is given by σ , then

V

V0
≈ e−σ 2(x,y){1−γ (x,y;pd)}, (2)

where γ (x,y; X) is the normalized autocorrelation function at
two points separated by X in the x direction, which is given
by

γ (x,y; X) ≡ φf (x,y)φf (x + X,y)

σ 2
. (3)

Thus, the reduced visibility can be generally formulated in
terms of the autocorrelation function of the wavefront’s spatial
fluctuations. These results are also valid for spherical-wave

illumination54 if (x,y) is regarded as the coordinate just behind
the sample and pd in Eqs. (1) and (2) is replaced by

{
pd1

Rs0
R10

(for a sample placed in front of the first grating)

pd1
Rs2
R12

(for a sample placed behind the first grating),

(4)

where d1 is the pitch of the first grating, Rs0 (Rs2) is the
distance of the sample from the x-ray source (from the second
grating), and R10 (R12) is the distance of the first grating from
the x-ray source (from the second grating). Note that from
Eq. (2), V/V0 approaches zero when σ increases. In addition,
for a given sample, V/V0 is a function of pd. Furthermore, it is
trivial that γ (X) ≈ γ (−X), that is, γ has inversion symmetry.
This means that when a sample is rotated around the optical
axis and V/V0 is experimentally obtained as a function of the
rotation angle �, V/V0 has a period of π ; therefore, it can be
generally expressed by a Fourier series.

It should also be noted that, as shown in our previous
paper,51 the Fourier transform of V/V0 with respect to pd

corresponds to the angular distribution of ultra-small-angle
x-ray scattering (USAXS) integrated in the direction parallel
to the grating lines. That is, Eq. (1) is related to the angular
distribution of USAXS by

∫
IUSAXS(x,y; kx,ky)dky ∝

∫
ei�φf (x,y;X) exp [ikxX] dX,

(5)

where kx and ky are the momentum transfers parallel and
perpendicular to the x direction, and IUSAXS(x,y; kx,ky) is the
intensity of the ultra-small-angle scattering for (kx,ky) from
a small volume at (x,y), the size of which is comparable
to the spatial resolution of the detector. The parameter X

corresponds to pd in Eq. (1). Next, we introduce a rotation
� of the sample around the optical axis. In this case, it is
convenient to define a coordinate system (xs,ys) attached to
the sample in the plane perpendicular to the optical axis, as
shown in Fig. 1. Because Eq. (1) depends on the rotation
angle �, we explicitly write the right hand side of Eq. (1) by
ei�φf (xs ,ys ;X,�). We can now consider that the direction of X

(or the direction perpendicular to the grating lines) is rotated
with respect to the xsys coordinate. The intensity of USAXS
is then given by

IUSAXS(xs,ys ; kx,ky)

∝
∫ ∫

ei�φf (xs ,ys ;X,�) exp[ikxX]|X|dXd�. (6)

We used the projection-slice theorem. Thus, we can obtain
structural information on unresolvable microstructures that is
equivalent to that obtained from the measurement of USAXS.

Because the normalized autocorrelation function γ is
obtained from projections of unresolvable microstructures
[φf (x,y) in Eq. (3)] in the projection approximation, we
can obtain structural information on the microstructures by
measuring reduced visibility. In fact, γ takes a maximum value
(= 1) when X = 0 and approaches 0 when X → ∞; therefore,
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γ has a finite width around X = 0. This width corresponds to
the correlation length of the wavefront’s spatial fluctuations
in the x direction, within which the projection φf (x,y) is
correlated with itself. If a microstructure can be regarded as an
ensemble of unresolvable microstructure elements, the size of
which are comparable to pd, the correlation length can then be
related to the average size of the projections of the unresolved
microstructure elements in the x direction. In fact, if the
microstructure elements are approximately represented by
particles, the positions and directions of which are independent
of each other, the correlation length characterizes the average
size of the particle projections in the x direction. A simple
model suitable for describing the behavior of γ was proposed
by Sinha et al.55:

γ (x,y; X) ≈ exp[−{|X|/ξ (x,y)}2H ], (7)

where ξ corresponds to the correlation length of the phase
fluctuations, defining the width of γ , and H is called the Hurst
exponent (0 < H < 1), defining the shape of γ near X = 0. In
our previous paper,51 ξ and H were quantitatively related to the
average sizes and shapes of the unresolvable microstructure
elements for several samples. Note that σ 2 in Eq. (2) is
proportional to the scattering power of the microstructures
in the forward direction.

If microstructures in a sample have anisotropy, then σ 2 and
γ in Eq. (2) can change with a rotation of the sample around
the optical axis. In this case, we can explicitly express them
by σ 2(xs,ys ; �) and γ (xs,ys ; X,�):

V

V0
≈ exp[−σ 2(xs,ys ; �){1 − γ (xs,ys ; X,�)}]|X=pd . (8)

Although the directions of the microstructure elements in the
sample should not be perfectly random, Sinha’s model should
also be applied if the anisotropy is weak and the positions of the
elements can be regarded as random.56 In fact, for the sample
discussed in the next section, the experimentally obtained pd

dependencies of the normalized visibility for each pixel fitted
well with Eq. (7). Thus, we can obtain maps of ξ (xs,ys ; �),
H (xs,ys ; �), and σ 2(xs,ys ; �) for an orientation � of the
sample. By changing the orientation of the sample, we can
also obtain maps of their anisotropies.

III. EXPERIMENT

In our previous papers,51,57 we showed that experimental
results for several unresolvable isotropic microstructures can
be successfully explained using Sinha’s model [Eq. (7)]
in our formulation, and the three parameters required to
characterize the spatial wavefront fluctuations were related
to the physical properties of the microstructures. We ap-
plied this concept to a sample with unresolvable anisotropic
microstructures.

The experiment was performed with synchrotron x-rays
at beamline 14C at the Photon Factory, KEK, Japan (the
experimental setup of x-ray Talbot interferometer is shown
in Fig. 1). The incident x-rays were monochromatized with a
double-crystal monochromator to 17 keV. A set of 5.3-μm-
pitch gold gratings with a Ronchi ruling (a π/2-phase grating
for the first grating and a 30-μm-thick absorption grating for

the second grating) were used, and they were aligned parallel
to each other. Moiré images generated by the two gratings
were recorded using a charge coupled device (CCD)-based
x-ray image detector (Spectral Instruments), where the CCD
(4096 × 4096 pixels) was connected to a 40-μm-thick GOS
(Gd2O2S : Pr) screen with a 2:1 fiber coupling. The effective
pixel size of the detector was 18 μm, and the width of the
line spread function (LSF) of the detector was experimentally
determined to be 70 μm. We used a five-step fringe scan36

with an exposure time of 1 s each.
A cylindrical CR sponge with a diameter of 5 mm

was used as the sample. The sample was cut into halves,
and both halves were fixed on an acrylic plate and ro-
tated around the optical axis. As shown in Fig. 2(a),
one half was fixed with its cylinder axis parallel to the
optical axis (upper figures), and the other with its cylin-
der axis perpendicular to the optical axis (lower figures).
Figures 2(b), 2(c), and 2(d) are absorption, differential-phase,
and visibility-contrast (normalized visibility) images for the
two halves, respectively, obtained using the fringe-scanning
technique.

Figure 3 shows dependencies of the visibility-contrast
image on the orientations of the two halves [(a) � = 0◦, (b)
� = 45◦, and (c) � = 90◦]. It can be seen that the visibilities
of the upper images were almost constant, while those of the
lower images changed due to the rotation of the sample. We
also rotated the sample with its cylinder axis in other directions,
and, as a result, this CR sponge had uniaxial anisotropy of the
visibility contrast, the axis of which is parallel to the cylinder
axis (we observed change in visibility when rotating the sample
around the optical axis with its cylinder axis not parallel to the
optical axis, and it changed the most when the cylinder axis
was rotated in the plane perpendicular to the optical axis, like
the lower images).

The anisotropy of the lower sample in Fig. 3 can be
represented with a color map.46,50 In Fig. 4(b), the experi-
mentally obtained dependence of − ln (V/V0) on � for a pixel
in the square area in Fig. 4(a) is plotted. As mentioned in
Sec. II, normalized visibility V/V0 is a periodic function of
the sample orientation �, the period of which is π ; therefore,
− ln (V/V0) is expressed by a Fourier series. A sine function
plus a constant (solid curve), that is, a Fourier series up to
the first order, fitted the experimental data well. From such
a least-squares fitting, we determined a sample orientation
�min, where − ln (V/V0) takes the minimum value, and the
amplitude of the sine function as well as the constant. Note
that �min, the amplitude, and the constant can also be obtained
using the fringe-scanning technique, which was shown to be
derived from the principle of least-squares estimation.58 In
Fig. 4(c), the anisotropy in the square area of the image in
Fig. 4(a) [− ln (V/V0) at � = 0◦] is displayed as a color
map, where the color and brightness represent �min and
the amplitude of the sine function, respectively. The green
tint of the entire area shows that the microstructures in the
sample have anisotropy. Figure 4(d) is a map of the constant
(corresponding to normalized visibility averaged over �). The
brightness distribution of Fig. 4(d) seems to correlate with that
of Fig. 4(c) but little with the color distribution of Fig. 4(c)
(correlation coefficients were 0.58 for the former and 0.06 for
the latter).
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FIG. 2. (Color online) Schematic views of samples (a) and images obtained using x-ray Talbot interferometry at � = 0◦ [(b) absorption,
(c) differential-phase, and (d) visibility-contrast images]. In upper figures, cylinder axis of sample is parallel to optical axis, while in lower
figures, it is perpendicular to optical axis. Talbot order p was fixed at 0.5.

It should be noted that the error bar �(V/V0) of V/V0 for
each pixel was given by

�

(
V

V0

)

= V

V0

√
1

Msq0,0

[
1

N0

(
1 + 1

T

)
+ 2

V0

(
1 + 1

T (V/V0)

)]
,

(9)

where N0 is the number of measurements without the sample,
Ms is the number of steps of the fringe scan, q0,0 is the average
number of photons detected during the fringe scan without the

(a) (b) (c)

1.1

0

FIG. 3. Dependencies of visibility-contrast image on orientations
of two samples in Fig. 2. (a) � = 0◦, (b) � = 45◦, and (c) � =
90◦.

sample, and T is the transmittance of the sample. This equation
can be easily obtained for monochromatic x-rays from the
analytical calculations in Ref. 15. To derive this equation, we
assumed that the error is mainly due to photon statistics and
that Ms is equal to or larger than 4. Practically, the variance of
the stochastic distribution of the digital output of the detector
was measured, and q0,0 in Eq. (9) was multiplied by a factor
specific for the detector.59

To investigate the origin of the anisotropy, we measured
the pd dependence of the − ln (V/V0) image [see Eq. (8)] by
changing the distance between the two gratings. Figure 5(a)
shows the experimental results for a pixel in the square of the
image in Fig. 4(a) (crosses: � = 15◦; filled circles: � = 60◦;
triangles: � = 105◦). Solid, dashed, and dotted curves in
the figure are the best-fit curves obtained using least-squares
fittings with the model of Eq. (7). Good agreement with
the experimental data indicates that the model is suitable
even for describing a sample with anisotropic microstructures.
From such a fitting, we obtained the correlation length ξ , the
Hurst exponent H , and variance σ 2 of the phase fluctuations.
Figures 5(b), 5(c), and 5(d) show the dependencies of ξ , H ,
and σ 2 on � for the pixel. The parameters ξ and H exhibited
anisotropies and the former was more anisotropic than the
latter, but σ 2 did not exhibit any anisotropy.

Similar to Fig. 4(b), sine functions plus constants fitted the
dependencies of ξ , H , and σ 2 on �, and the angles �max,
where the parameters take the maximum values, as well as
the amplitudes and the constants of the best-fit curves were
obtained for each pixel in the square in Fig. 4(a). Figures 6(a),
6(b), and 6(c) are color representations of the anisotropies of
ξ , H , and σ 2 in the square area (the color and brightness of
the maps represent �max and the amplitudes of the best-fit sine
curves). The ξ and H maps are green tinged and a bit red
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− ln (V/V0) in square area in (a) (color: �min; brightness: amplitude of best-fit sine function). (d) Map of normalized visibility averaged over
� in same area.

tinged, while the σ 2 map exhibits many different colors. In
Figs. 6(d), 6(e), and 6(f), the amplitudes of the best-fit curves

for 100 arbitrarily-chosen pixels in the square area are plotted
against �max for ξ , H , and σ 2 with their error bars. These
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FIG. 6. (Color) Color representation of anisotropies of (a) ξ , (b) H , and (c) σ 2 in square area in Fig. 4(a) [brightness scales: 0 ∼ 3 (a);
0 ∼0.25 (b); 0 ∼ 1.5 (c)]. Amplitudes of best-fit sine curves for 100 arbitrarily chosen pixels are plotted against �max for (d) ξ , (e) H , and (f)
σ 2.

results show that ξ and H exhibit anisotropies, although the
anisotropy of H was weaker than that of ξ , but σ 2 does not
exhibit anisotropy, and that the anisotropy of the sample’s
visibility contrast mainly originated from that of ξ . This was
also supported by the fact that the color distribution of the ξ

map was similar to that of Fig. 4(c). In fact, the correlation
coefficients of the color distributions of the ξ , H , and σ 2 maps
with that of Fig. 4(c) were 0.53, 0.40, and 0.04, indicating that
the anisotropy of normalized visibility mainly originated from
that of ξ .

Figure 7(a) shows a map of the constant of the best-fit
curve of σ 2 (corresponding to σ 2 averaged over �). As
discussed in our previous paper,51 σ 2 averaged over � should
be proportional to the scattering power of the unresolvable
microstructures in the forward direction, which is proportional
to the sample thickness t if the sample is homogeneous, and
the unresolvable microstructures are approximately regarded
as particles, the positions and directions of which are in-
dependent of each other. Hence, Fig. 7(a) should correlate
with the absorption image of the sample (− ln T , where T

4 [rad2]

0

0.85

-0.05

)b()a(

FIG. 7. (a) Map of σ 2 averaged over � and (b) absorption image
(− ln T image, where T is transmittance of sample) in square area of
image in Fig. 4(a).

is the transmittance of the sample) because − ln T is also
proportional to t . Figure 7(b) shows a − ln T image of the
sample. As we expected, there was a weak correlation between
the images in Figs. 7(a) and 7(b) (their correlation coefficient
for them was 0.35). The discrepancy between these images
can be attributed to their contrast formation mechanisms; that
is, the contrast of the image in Fig. 7(a) should be formed by
the scattering power, which is proportional to not only t , but
also the number density N of the unresolvable particles and
the squared difference (�ρ)2 of the average number density
of electrons in a particle from that of the matrix, while the
contrast of the image in Fig. 7(b) is due to the absorption by
the resolvable features.

IV. DISCUSSION

As we have shown using samples with isotropic
microstructures,51 the correlation length ξ of the autocorre-
lation function of the wavefront’s spatial fluctuations due to
unresolvable microstructures is related to the average size of
the microstructure elements in the direction perpendicular to
the grating lines. This should also be the case with a sample
with anisotropic microstructures, as discussed in Sec. II. Our
experimental results suggest that the average size of the
microstructure elements along the cylinder axis is larger than
that along the direction perpendicular to the cylinder axis. In
fact, from the fittings as shown in Sec. III, we obtained a
normalized autocorrelation function γ defined by Eq. (3) for
each pixel in the square area in Fig. 4(a), and found that the
shape of γ is typically elongated in the direction of the cylinder
axis (see Fig. 8).

We also performed conventional absorption tomography
and found that the resolvable structure of the material also
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FIG. 8. (Color) Normalized autocorrelation function γ defined
by Eq. (3) for a pixel.

has uniaxial anisotropy, the axis of which is parallel to the
cylinder axis. Figure 9 shows example tomograms of the same
material as those used for our experiment. From the section
images of planes A and B, the sample seems to elongate in
the direction parallel to the cylinder axis even when no force
is applied. Although the structure resolved using absorption
tomography cannot reduce visibility, the anisotropy of ξ is
consistent with the results of the absorption tomograms if it
is assumed that the unresolvable microstructure elements are
elongated along the cylinder axis as well as the resolvable
structure.

Finally, we discuss the possibility of visibility tomography.
As we have discussed,51 if a sample consists of homogeneous
domains, each of which is larger than the size that can be

A

B

(a)

(b)

(c)

FIG. 9. Absorption tomograms of CR sponge used in our exper-
iment. (a) Schematic view of sample; (b) and (c) are section images
along planes A and B.

resolved with the detector and has no structural correlation
with the others, normalized visibility can be expressed by

V

V0
≈ exp

⎡
⎣−

∑
j

σ 2
j {1 − γj }

⎤
⎦ , (10)

where j represents the contribution from the j th domain on
the path to a pixel along the z axis [see Eq. (2)]. Because
σ 2

j should be proportional to the thickness of the j th domain,
Eq. (10) has a similar form to the Beer-Lambert law.60 As a
result, − ln (V/V0) can be given by

− ln

(
V

V0

)
≈

∫
∂(σ (z)2)

∂z
{1 − γ (z)}dz , (11)

where σ and γ are expressed as a function of z. Thus, we can
also carry out visibility tomography and determine the three-
dimensional distribution of (1 − γ )∂(σ 2)/∂z for a sample with
isotropic microstructures.

It should be noted that for a sample with anisotropic
microstructures, the rotation axis for visibility tomography
has to be perpendicular to the grating lines because, for
it to be correctly performed, (1 − γ )∂(σ 2)/∂z in Eq. (11)
has to be unchanged by the rotation (otherwise the pro-
jection φf of the microstructures at a voxel can change
during the rotation). For the same reason, laminography,
where the rotation axis is inclined,61,62 cannot be performed
easily.

For a sample with isotropic microstructures, tomographies
for ∂(σ 2)/∂z, ξ , and H can be easily achieved because
they are not functions of the sample orientation. To perform
∂(σ 2)/∂z, ξ , and H tomographies for a sample with anisotropic
microstructures, we also have to rotate the rotation axis of
the sample around the optical axis. Finally, we can obtain a
tomogram, each voxel of which accompanies a characteristic
three-dimensional shape of the microstructure inside the
voxel.

V. CONCLUSION

We proposed a method for mapping distributions of param-
eters characterizing unresolvable anisotropic microstructures
in a sample from visibility-contrast images obtained using
x-ray Talbot interferometry. In Sec. II we briefly reviewed the
theoretical background, where general formulas for the visi-
bility contrast based on the spatial fluctuations of a wavefront
were provided [Eqs. (1) and (8)]. In Sec. III we applied our
method to a CR sponge, which exhibited uniaxial anisotropy
of visibility contrast (Fig. 3). Dependence of visibility contrast
on the Talbot order was measured for each orientation of the
sample, and the result for each pixel was fitted using the
simple model of Eq. (7) [for example, Fig. 5(a)]. From such
a least-squares fitting, we obtained optimal values of three
parameters, the correlation length, the Hurst exponent, and
variance, which characterize the phase fluctuations due to the
unresolvable microstructures in the sample, and we obtained
their dependencies on the sample orientation [for example,
Figs. 5(b), 5(c), and 5(d)]. By fitting sine functions to these
dependencies, we obtained maps that represent anisotropies
of the three parameters [Figs. 6(a), 6(b), and 6(c)]. We found
that the correlation length [Figs. 6(a) and 6(d)] and the Hurst
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exponent [Figs. 6(b) and 6(e)] exhibited anisotropies and the
former was more anisotropic than the latter, but the variance
[Figs. 6(c) and 6(f)] did not exhibit any anisotropies. These
results indicated that the anisotropy of visibility contrast
mainly originated from the anisotropy of the correlation length,
that is, the anisotropy of the microstructure elements’ average
size. This was also supported by the fact that the color
representation of the anisotropy of the correlation length was
similar to that obtained for the anisotropy of visibility contrast
[Figs. 6(a) and 4(c)]. In Sec. IV we showed an example
of normalized autocorrelation function γ obtained from the
experiment (Fig. 8), and discussed the origin of the anisotropy
of the microstructure elements’ average size by comparing it
with a result from conventional absorption tomography. Future
prospects, for example, visibility tomography for a sample

with anisotropic microstructures, were also raised. Our method
should become a useful tool for investigating, for example,
fiber (tubular) and particle (porous) structures in material,
biological, and medical samples and have broad applications
in various fields.
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