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Predicting dislocation climb: Classical modeling versus atomistic simulations
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The classical modeling of dislocation climb based on a continuous description of vacancy diffusion is compared
to recent atomistic simulations of dislocation climb in body-centered cubic iron under vacancy supersaturation
[Phys. Rev. Lett. 105, 095501 (2010)]. A quantitative agreement is obtained, showing the ability of the classical
approach to describe dislocation climb. The analytical model is then used to extrapolate dislocation climb
velocities to lower dislocation densities, in the range corresponding to experiments. This allows testing of the
validity of the pure climb creep model proposed by Kabir et al. [Phys. Rev. Lett. 105, 095501 (2010)].
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Dislocations can move out of their glide planes through the
emission or absorption of point defects. Such a mechanism,
known as dislocation climb, has been modeled for more than
half a century now using a continuum description of matter and
diffusion theory.1,2 One can thus find in most of the textbooks
on dislocations3–7 analytical expressions which give the
dislocation climbing velocity as a function of the applied stress,
the temperature, the point defect supersaturation, etc. Although
this classical description has been shown to reasonably explain
experimental observations,8–13 a quantitative validation by
direct comparison to experiments is out of reach. Dislocation
climb is indeed rarely the single mechanism producing plastic
strain, and usually one has to deal with a complex dislocation
microstructure.

On the other hand, atomistic simulations can be used to
study the pure climb either of an isolated dislocation or of a
well-controlled dislocation microstructure. Such simulations
thus offer a natural way for a quantitative validation of
the classical approach. In this Brief Report, we compare
predictions of the classical dislocation climb model3–7 to the
results of atomistic simulations published by Kabir et al. in
Ref. 14.

Kabir et al.14 performed atomistic simulations to study
the climb of a mixed dislocation in body-centered cubic
iron. Their simulations are based on a kinetic Monte Carlo
algorithm which reproduces the diffusion of vacancies and
their annihilation on a dislocation jog. The influence of
the dislocation on the vacancy migration barriers is fully
taken into account thanks to an empirical potential which
allows them to search for the minimum energy path joining
all neighboring vacancy stable positions (nudged elastic
band method). In these simulations, the dislocations can be
considered as being saturated with jogs because of the small
dislocation length, and the climb is driven by a high vacancy
supersaturation.

When pipe diffusion is fast enough and a high concentration
of jogs is present on the dislocation, one can assume that
vacancies are at equilibrium all along the dislocation line.3–5

Diffusion theory then predicts3–5,15,16 that an infinite straight
dislocation of Burgers vector b and character θ climbs at a
velocity

vcl = η
DV

b| sin (θ )| ln (R∞/rc)

∣
∣C

eq
V − C∞

V

∣
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The geometric factor η = 2π for an isolated dislocation. DV is
the vacancy diffusion coefficient in a dislocation-free crystal,
C

eq
V the concentration of vacancies in equilibrium with the

dislocation at a distance rc ∼ b from the line, and C∞
V the

average vacancy concentration imposed at a distance R∞.
This should correspond to half the average distance between
dislocations, i.e., R∞ = 1/(2

√
ρD), if ρD is the dislocation

density. For a high vacancy supersaturation, like in the
atomistic simulations of Kabir et al.,14 C

eq
V � C∞

V and then

vcl = −η
DV

b| sin (θ )| ln (2rc
√

ρD)
C∞

V . (1)

Equation (1) predicts that the climb velocity, once normal-
ized by DVC∞

V , should only depend on ρD. This agrees with the
atomistic simulations of Ref. 14: Results for all temperatures
and vacancy supersaturations are well reproduced by Eq. (1)
(Figs. 1 and 2). The two parameters η and rc appearing
in this equation were used as fitting parameters, and the
best quantitative agreement with atomistic simulations was
obtained for the values η = 12.8 and rc = 4.3b.

The geometric factor obtained from this fit (η ∼ 4π ) is
close to its 2π theoretical value. The slight difference may
come from the fact that a periodic array of dislocation dipoles
has been modeled in the atomistic simulations of Kabir et al.,14

whereas an isolated dislocation is assumed in Eq. (1). Burke
and Nix17 also showed that the elastic interaction between
the vacancy and the dislocations, which is neglected in our
modeling approach, leads to a value for η slightly higher than
2π , thus in agreement with what we obtained.

The conventions are usually to take the capture radius rc

equal to the norm of the Burgers vector. Our fit of Eq. (1)
leads to rc = 4.3b, which actually agrees with the definition of
the core region (r < 4b) that has been deduced from previous
atomistic calculations18 on the same model system.

One therefore sees that the two parameters η and rc

are physical parameters whose precise values are close to
theoretical ones. It is also important to notice that both
parameters do not theoretically depend on the dislocation
density, the vacancy supersaturation, the applied stress, nor the
temperature. This was checked, and all atomistic simulations
of Ref. 14 could be reproduced with a single set of parameters.

This comparison with atomistic simulations shows that the
classical modeling of dislocation climb leads to quantitative
predictions. Such a model, based on a continuous description
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FIG. 1. (Color online) Variation with the dislocation density
ρD of the climb velocity vcl normalized by DVC∞

V for different
temperatures and vacancy supersaturations. Symbols correspond to
atomistic simulations (Ref. 14), and lines to Eq. (1).

of vacancy diffusion, does not explicitly take into account all
atomic details of the vacancy diffusion close to the dislocation.
It nevertheless manages to perfectly reproduce results of
atomistic simulations. Finally, all atomistic details on the
vacancy migration are not so relevant to model dislocation
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FIG. 2. (Color online) Variation with the dislocation density ρD

of the climb velocity vcl for different temperatures and for a vacancy
concentration of (a) C∞

V = 5 10−5, (b) C∞
V = 10−4, and (c) C∞

V =
10−3. Symbols correspond to atomistic simulations (Ref. 14), and
lines to Eq. (1).

climb, and one can use classical mesoscopic approaches3–7,15,16

leading to simple analytical expressions like Eq. (1).
One can now use this expression of dislocation climb

mobility to compare predictions of different creep models with
experimental data, in particular the creep model developed
by Kabir et al.14 The dislocation densities in the atomistic
simulations14 (ρD � 1016 m−2) are much higher than the
ones usually observed in creep experiments in iron19,20

(ρD � 1012 m−2). As a consequence, one cannot directly
use the dislocation climb velocities measured in atomistic
simulations, but one needs to extrapolate them to lower
dislocation densities. Kabir et al.14 used power laws to perform
such an extrapolation and concluded to the agreement of
their model with creep experiments. As such power laws
do not rely on any physical ground, it is worth checking if
the same nice agreement can be obtained when the classical
modeling of dislocation climb leading to Eq. (1) is used for
this extrapolation.

In the creep model, one usually uses a power law vcl ∝ ρD
m

to reproduce the variations of the climbing velocity with the
dislocation density. Equation (1) leads then to an exponent m

which depends on the density ρD,

m = ∂ ln (vcl)

∂ ln (ρD)
= −1

2 ln (2rc
√

ρD)
. (2)

This exponent can now be used in the creep model proposed
by Kabir et al.14 This model assumes that all the plastic
strain in creep is produced by climbing dislocations. Orowan
law gives then the creep rate ε̇ = ρDbvcl. The dislocation
density is fixed by the Taylor relation (ρD = (σ/αGb)2 where
α ∼ 0.4 is an empirical constant14 and G is the shear modulus).
The vacancy supersaturation, which varies linearly both with
the applied stress σ and the dislocation velocity, is given
by Eq. (1) in Ref. 14. Equation (2) combined with these
assumptions leads then to a steady-state creep rate whose stress
and temperature dependences can be reproduced by the power
law ε̇ = Aσn exp(−Q/kT ) with a stress-dependent exponent
n = 3 + 4m:

n(σ ) = 3 − 2

ln(2rcσ/αGb)
. (3)

Equation (3) allows applying the creep model of Kabir et al.
to a stress range much lower than in atomistic simulations.
Stress in creep experiments in iron usually does not exceed
100 MPa.19–24 Equation (3) then predicts an exponent n

smaller than 3.5, thus far from the values higher than 6 found
experimentally.23,24 One therefore sees that the creep model
proposed by Kabir et al. cannot explain experimental stress
exponents measured in iron. It naturally leads at low stress to
an exponent close to 3, like any other creep model based on
pure climb.25 The high value for n obtained by Kabir et al.14

corresponds to the much higher dislocation density of their
atomistic simulations and cannot be directly compared to these
experimental values.

One probably needs to consider both dislocation glide and
climb to obtain a stress exponent close to the experimental one.
A creep model based on dislocation pure climb is only valid
when dislocations cannot glide because of some constraints,
crystallographic constraints, for instance, as in hcp metals26,27

or quasicrystals.13,28 Creep in alpha iron is far from this ideal
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case as there is nothing preventing the dislocations from
gliding. As pointed out by Weertman in his review paper,29

“almost all of the creep strain is produced by glide motion of
dislocations.” Although dislocation climb is the rate limiting
process, dislocation glide strongly affects creep and cannot
be ignored. Weertman25,29,30 showed for instance that the
consideration of glide in a creep model makes the stress
exponent increase from n = 3 to n = 4.5.

Another discrepancy between the creep model of Kabir
et al.14 and experiments21–23 in iron, comes from the tem-
perature dependence of the stress exponent n and the stress
dependence of the creep activation energy Q. According to
Eq. (3), n does not depend directly on the temperature. A
temperature dependence may only arise through a variation of
the capture radius rc with the temperature.31 As shown above, a
single value of rc could be used to reproduce all the dislocation
climbing velocities obtained by atomistic simulations in the
temperature range 800–1100 K. As a consequence, this creep
model does not lead to any temperature dependence of the
stress exponent n. The creep rate is obtained from Orowan
law ε̇ = ρDbvcl, where the dislocation density is deduced
from Taylor relation and the climbing velocity is given by
Eq. (1). The activation energy Q for creep is then the activation
energy for vacancy diffusion whatever the applied stress.
The dependences found by Kabir et al. (Fig. 4 in Ref. 14)

are artifacts caused by a fit of the climbing velocity at
high densities using a simple power law which neglects the
logarithm appearing in Eq. (1). To explain the dependence
observed experimentally,21–23 one has therefore to rely on
mechanisms which are not considered in the creep model of
Kabir et al.

Finally, it is worth pointing that the stress enters in the
creep model of Kabir et al.14 only through the control of
the dislocation density and of the vacancy supersaturation.
As the climbing velocity does not depend then on the
dislocation orientation, all dislocations, whatever their ori-
entations, are climbing at the same velocity. If there is no
specific climbing direction being enhanced by the stress, no
average macroscopic strain can develop and there will be no
creep.

In summary, the comparison with atomistic simulations
shows that a classical approach at a mesoscopic scale manages
to quantitatively describe dislocation climb. Such an approach
not only allows rationalizing results of atomistic simulations,
but it is also necessary to extrapolate them in a range of
dislocation densities corresponding to experiments. Thanks
to such an extrapolation based on a physical sound model, a
fair test of the validity of the creep model proposed by Kabir
et al.14 can be made, thus showing its inability to reproduce
experimental data on creep in iron.
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