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Monotonic and bimodal size distributions of surface nanowires caused by postdeposition annealing
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Reversible growth of one-dimensional monatomic islands (or nanowires) on the steps of vicinal surfaces has
been modeled with the use of the rate equations and the kinetic Monte Carlo technique. It has been found that
the size distributions of the islands grown during low-temperature deposition quickly change their shape under
postdeposition annealing at higher temperature provided the average island size at the high temperature thermal
equilibrium is smaller than that corresponding to the low-temperature island size distribution (ISD). This process
of antiripening produces in the course of its evolution bimodal and monotonous ISDs with characteristic shapes
distinct from the geometric equilibrium ISD. The fast kinetics associated with this process can be used to weaken
the influence of competing processes on the kinetics, thus facilitating an accurate determination of the growth
parameters. Experimental setups needed for experimental verification of the theoretical predictions are briefly
discussed.
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I. INTRODUCTION

The growth of surface nanostructures has been exten-
sively studied in the past years as a prospective tool of
nanoengineering.1 In technological application of major im-
portance are the means of modeling and control. Theoretical
simulations, however, are severely hampered by poor knowl-
edge of mechanisms and parameters governing the growth.
For example, there is no agreement even on the mechanism
of the growth of the atom-thick one-dimensional (1D) surface
nanowires, arguably, the simplest of all nanostructures.2–9

Much debate caused the monotonically decreasing size
distributions of 1D nanowires of group III metals on Si(100)
surface studied in Refs. 2 and 5–9. It was noted that such
distributions naturally arise at thermal equilibrium3,4 but in
the case of Ga atoms the interatomic interaction found from
the fit to experimental data4 was essentially weaker than that
obtained in ab initio calculations.10 At strong interatomic
binding, however, the equilibrium cannot be reached under
conventional growth conditions, in which case the irreversible
growth takes place. However, the latter leads to monomodal
island size distributions (ISDs).11,12 In Refs. 6 and 9 it was
suggested that in the irreversible growth the monotonous ISDs
may appear as a consequence of nucleation on surface defects.
Additional research, however, showed that this mechanism
alone is insufficient to quantitatively explain existing data.7

Therefore, in recent studies some growth reversibility was
admitted in the hope that it would contribute to the monotonous
behavior.9,13,14 Furthermore, other mechanisms leading to
monotonous ISDs exist, such as nucleation via exchange with
the substrate and the adatom evaporation.15–19 In Ref. 9 it was
noted that with several mechanisms leading to qualitatively
similar ISDs it is difficult to make a distinction between
different models and that additional data are needed to identify
the correct growth mode(s). Obviously, it would be desirable
to be able to establish the nature of the growth experimentally
without resort to theoretical modeling.

In the present paper we discuss a possibility to distinguish
the reversible and irreversible growth modes using the postde-
position annealing. We show that in the case when the average

size of the islands before the annealing is larger than that
after the annealing, the change of the ISD can be very fast.
We call this process antiripening because in the absence of
the deposition the islands can diminish their average size only
when the large islands would mainly evaporate the atoms while
small islands would grow at their expense, that is, exactly the
opposite to what is taking place during the ripening.

We show that the antiripening can be so fast that it can
take place even in the cases where the annealing was not
intended or deemed important. For example, sometimes the
experimental setup is being used when deposition is carried
out at a low temperature while STM images for convenience
are taken at a higher temperature (see, e.g., Ref. 20 and
references therein). This technique has been developed for
strongly irreversible growth when the exposition to higher
temperature does not influence the ISD. However, in the case of
appreciable reversibility the ISD shape can undergo qualitative
change even during a short annealing. In particular, we predict
that the growth conditions can be adjusted in such a way that in
a 1D system with homogeneous nucleation the ISD can acquire
a bimodal form. This finding may be of importance also for the
2D growth where bimodal ISDs were observed experimentally
and were explained by the nucleation via exchange with the
substrate21–24 and by excessive misfit strain.25

Besides, the high speed of the antiripening kinetics allows
for its effects to manifest themselves during short annealing
time so the competing slower processes cannot significantly
distort the data. It should be remembered that heteroepitaxial
structures at the surface are intrinsically unstable because at the
true thermal equilibrium they should either dissolve in the bulk
or evaporate. Therefore, such slow kinetics as, for example,
the Ostwald ripening, cannot be reliable sources of growth
parameters because other kinetics, such as intermixing with
the substrate or evaporation may significantly obscure other
processes. Therefore, the antiripening can be used to measure
some parameters of reversible growth with better precision.

We illustrate the above points with the use of the mean-field
rate equations and the kinetic Monte Carlo (KMC) technique
which we introduce in Sec. III; in Sec. IV we use these
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FIG. 1. (Color online) Schematic picture of the deposition of
cobalt atoms on a vicinal copper surface. The lower (L) and the
upper (U) Cu(111) terraces are separated by a B-type step with a kink
(K). Shown are two cobalt and one copper atoms diffusing on the
terraces, as well as a four-atom cobalt island and a single cobalt atom
attached to the step. (For further explanations, see the text.)

techniques to simulate the growth of 1D nanowires using
as an example the monatomic Co wires on the steps of the
Cu(775) vicinal surface studied in Ref. 20; this system is briefly
discussed in Sec. II. In the concluding Sec. V we discuss some
experimental consequences of our predictions.

II. 1D GROWTH ON THE STEPS OF A VICINAL SURFACE

Heteroepitaxial growth is a complex phenomenon whose
theoretical modeling requires knowledge of a large number
of parameters which describe numerous kinetic processes
underlying the growth. Because of their simple geometry, the
number of parameters is considerably reduced in the case of
1D nanostructures.2,5–9 From a theoretical point of view the
simplest systems are those that can be adequately represented
by purely 1D models because in many cases such models
can be solved exactly, which makes their analysis particularly
easy.3,20,26–28 However, care needs to be taken in the application
of such models to real systems because real physical objects
are always 3D. The 1D modeling is usually based on some
assumptions whose validity needs to be justified. Because there
exist many possibilities for embedding 1D structures into 3D
systems, for concreteness we discuss the problems that arise
here using as an example the Co/Cu(775) system studied in
Ref. 20.

The growth in this system is shown schematically in Fig. 1.
As can be seen, the step with kinks can be formally viewed
as a stepped 1D “surface” with the kinks playing the role of
the zero-dimensional “steps.” The steps are mobile due to the
copper atoms diffusing on the terraces which can attach and
detach to/from the kinks. In the experimental data of Ref. 20
the kink mobility at room temperature (RT) was seen as the
frizz on the STM photographs, which means that the mobility
of the kinks at RT was high.

If for the time being we forget about the kinks, the growth
on the steps proceeds as follows. The cobalt atom arrives on the
surface and diffuses on a terrace until attaching to the bottom
of a step edge, where it creates either a mobile monomer
on the 1D surface or an end atom of an island (see Fig. 1).

Such purely 1D kinetics were observed in this system at low
coverages θ � 0.1, where the islands remained strictly 1D;
that is, no second-row nucleation was seen. In an exhaustive
theory this behavior should have been explained but in the
model of Ref. 20 it was accepted as an empirical fact.

Even more drastic simplification is achieved if the state
of thermodynamic equilibrium is assumed. This is because the
equilibrium state is unique and does not depend on the kinetics
which led to it, so the kinetic parameters can be ignored. Thus,
the system can be fully characterized by the Hamiltonian which
in the case under consideration can be chosen in the form of
a lattice gas model with nearest-neighbor (NN) interactions
between the atoms (explicit ab initio calculations29 show that
the NN interactions between Co atoms on the Cu surface
dominate),

HNN = −ε2

∑
i

nini+1, (1)

where ε2 is the strength of the NN interatomic interaction, ni =
0,1 describes the occupation of site i by an adsorbed atom, and
index i numbers the deposition sites along the step edge. The
deposition site is defined as the energetically favorable place
of attachment of the adsorbed atom to the step (see Fig. 1).
The deposition is considered to be coherent because of small
size misfit between the cobalt and copper atoms.30

As is known, with the use of the substitution ni = (si +
1)/2, where si = ±1, the lattice gas model can be transformed
into the Ising model whose exact solution in the 1D NN case
is well known. Equilibrium ISDs for heteroepitaxial systems
described by Hamiltonian Eq. (1) were calculated in Refs. 26
and 3 and used in Ref. 20 to fit experimental data on the
Co/Cu(775) heteroepitaxy. The fit at coverage θ = 0.09 made
it possible to assess the interaction parameter ε2 ≈ 0.13 eV.

This, however, is almost an order of magnitude smaller
than the value 1.2 eV of the NN interaction between two
Co atoms placed on the Cu(111) substrate found in ab initio
calculations of Ref. 29. One may argue that ε2 = 0.13 eV
corresponds to the Co atoms attached to the step. However, it
is hardly possible that in the vicinity of a step the interatomic
interaction would diminish almost ten times. For example,
the difference in the binding energies between the isolated
Co dimer31 and the dimer placed on the Cu(111) surface29

is at most 25%. This situation is similar to the heteroepitaxy
of the gallium atoms on silicium surface mentioned in the
Introduction.2 Because the interaction parameter found from
the fit to an equilibrium distribution turned out to be several
times smaller than in ab initio calculations,4,10 an alternative
explanation of the monotonous ISDs was proposed based on
the nucleation on surface defects.6,9

However, in the Co/Cu(775) system there also exists a pos-
sibility of nucleation on the defects, namely, on the kinks which
should be preferable places for island nucleation because of the
higher coordination they provide for the adsorbed atoms (see
Fig. 1). It is remarkable that the kinks share with the C-type
defects of Refs. 6 and 9 the property that the island grows only
on one side of the defect. Thus, similar to the above references,
the kinks could be responsible for monotonous ISDs provided
their concentration was sufficiently high for the majority of
islands to nucleate on them.14
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In Ref. 32 the kink formation energy was found to be EK ≈
0.116 eV so the equilibrium concentration of these 1D steps
directed on both sides is

cK ≈ 2e−EK/kBT . (2)

According to this formula, at the RT cK is about 2%,
which is more than enough for all islands to be nucleated
on the kinks because the island concentration N = θ/sav ≈
0.1/30 ≈ 0.3%. However, the deposition was carried out at
T = 165 K. At this temperature the equilibrium concentration
cK ≈ 0.06%, which is five times less than the number of
islands. To resolve this difficulty additional information on
the thermal history of the experimental specimens would be
helpful. Most probably, the specimens started their evolution
at RT, where cK ≈ 2%. Then they were cooled down to
165 K for the deposition. The information which would be
necessary is how long the specimens were annealed at this
temperature before the start of the deposition. A kinked surface
step can be formally considered as an assembly of 1 + 1D
islands on a flat substrate (assuming for simplicity that the 1D
surface represented by the step is not vicinal). As temperature
goes to zero, the islands should flatten to reduce the kink
concentration. This process can be rather slow because of slow
kinetics at low temperature so the kink concentration at which
the cobalt deposition had taken place could be sufficient to
nucleate the majority of islands. However, to simulate this
scenario we would need a detailed thermal history of the ingot
before the deposition which is missing.

It should be noted, however, that in contrast to C-type
defects whose surface concentration did not change during
the deposition,6,9 the number of kinks is not conserved. So
there is another possibility for the nucleation. When some or
all of the kinks are “passivated” by attached cobalt atoms,
the equilibrium between the copper-terminated kinks and the
copper atoms on the terraces (the 1 + 1D “vapor” atoms—
see Fig. 1) will be violated, so new kinks should appear.
This may provide the necessary number of kinks for the
majority of islands to be nucleated in this way. This may
serve as a mechanism of island nucleation with the critical
nucleus size equal to zero.11,16,18,33,34 This case is characterized
by monotonous11,16,18,33,34 or bimodal ISDs.23,35,36 Another
possibility of realization of the nucleation of this type is the
exchange of the adsorbate atoms with the substrate.16,23,34–36

The latter process was observed experimentally in Ref. 20 [see
their Fig. 2(d)]. It should be noted that only the exchange in
the immediate vicinity of the step edge or within the edge itself
will nucleate 1D islands we are discussing.

Yet another mechanism of monotonous ISD formation is
the adsorbate evaporation.17,18 In our 1 + 1D model three
evaporation mechanisms are possible: The evaporation from
the substrate into the surrounding space of the camera,
detachment of atoms from the step edge and subsequent
exchange with the substrate atom, and the dissolution of
adatoms on the steps into the substrate bulk.

Besides, in Sec. IV we study the antiripening mechanism
of the growth leading to monotonous and bimodal ISDs which
only partly exploits the reversibility and thus can be operative
when the interatomic binding is not strong enough to produce
completely irreversible growth, yet it is sufficiently strong for

the complete thermal equilibration to be impossible on the
experimental time frame.

III. SIMULATION TECHNIQUES

As was noted in the Introduction, the difficulties with
predictable modeling of heteroepitaxial growth to a large
degree are a consequence of our poor knowledge of the growth
parameters. This is because currently they cannot be reliably
measured or calculated separately but should be found from
a fit of the growth model to experimental data (see, e.g.,
Refs. 2, 20, 37 and 14). Therefore, numerically accurate growth
modeling is very important.

The most popular tool in the growth simulations is the KMC
technique because given a model it provides, in principle, its
exact solution. A serious drawback of the KMC, however, is
that it is very computationally demanding when good statistics
are needed. Taking into account that the experimental data are
rather noisy, the interpretation of the simulations is not always
convincing and the fitted parameters cannot be defined with
sufficient accuracy.14,19 Because of this, of great interest are
exact analytical solutions which can be obtained in 1D case at
equilibrium3,20,26–28 and also the rate equations which usually
can be improved so as to provide very good agreement with
the exact KMC data.12,38

For simplicity, in our simulations in the next section we
explicitly treat only the case described by Hamiltonian Eq. (1).
This model is considered to be adequate for the Co/Cu(775)
system studied in Ref. 20, which we use as a concrete example
of nanowire growth. The Co/Cu system was also studied in
Refs. 29 and 37 and it was found that the NN interactions
dominate29 and that the size misfit between the substrate and
the deposit is small.37

In heteroepitaxial systems, however, negligible misfit is
an exception rather than the rule. Therefore, the general
formalisms we discuss below are suitable to account for
the misfit in the harmonic approximation.27,28 In Refs. 27
and 28 it was shown that a system with only NN “chemical”
interaction and the misfit strain can be described by a cluster
generalization of Hamiltonian Eq. (1), where all interactions
are confined to the contiguous sequences of atoms as

H = −
∑

i

(ε2nini+1 + ε3nini+1ni+2 + · · ·), (3)

where ε2, ε3, . . ., are the interactions within the clusters of
two, three, etc., adjacent atoms. As is seen, if two islands are
separated by at least one vacant site all interactions in Eq. (3)
containing this site become zero. Such interactions appear in
epitaxial systems with size misfit and can lead to the island
size calibration.27,28,39

A. Thermal equilibrium

In the conventional notation of the growth theory11,12,33 the
exact expression for the ISD of the model defined by Eq. (3)
derived in Refs. 27 and 28 reads

N (eq)
s = (1 − θ − N ) exp[(μs − Es)/kBT ], (4)
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where Ns is the per site density of the islands of size s, the
coverage θ is equal to the total number of atoms M divided by
L, the number of the deposition sites in the system,

N =
L∑

s=1

Ns, (5)

is the total island density, μ is the chemical potential-like
parameter which fixes the total number (M) of the deposited
atoms (i.e., the coverage), and Es is the energy of an island of
size s calculated with the use of Eq. (3). The meaning of the
first coefficient in Eq. (4) is easy to understand by multiplying
the whole expression by the total length of the system L.
Now this coefficient became L − M − K , where K ≡ LN

is the total number of islands. Thus, the number of islands
of size s Ms = LNs is proportional to the statistical weight
given by the exponential factor and to the available free phase
space. The latter is given by the number of empty sites L − M

available for the deposition minus one empty site per each
island (hence, K sites in total) because if an island of size
s were placed near another island without an empty space
between them, then a new island corresponding to larger size
would form while the island of size s would disappear.

In the absence of the strain contributions the Hamiltonian
Eq. (3) reduces to Eq. (1), where only the “chemical”
interaction ε2 is present. The energy of the island of size s

in this case is

Es = −ε2(s − 1), (6)

so Eq. (4) can be cast in the form

N (eq)
s = (1 − θ − N )e−Qps, (7)

where

Q = ε2/kBT (8)

and p = exp[(μ + ε2)/kBT ]. In this notation in the thermo-
dynamic limit L → ∞,

N =
∞∑

s=1

Ns = (1 − θ − N )e−Qp/(1 − p). (9)

Here and below we omit the superscript (eq) because the
definitions of N and θ are valid also in general case. The
coverage can be calculated from Eq. (9) by applying p(d/dp)
to the right-hand side:

θ =
∞∑

s=1

sNs = (1 − θ − N )e−Qp/(1 − p)2. (10)

Now dividing Eq. (9) by Eq. (10), one gets

p = 1 − N/θ. (11)

This can be substituted back to Eq. (9) to give

eQ = (1 − θ − N )(θ − N )/N2. (12)

In the equations above all densities can be expressed through
the experimentally measurable numbers L, M , and K . In this
case the ISD and the interaction parameter ε2 can be expressed
through the observable quantities and we thus recover the
formulas of Refs. 3, 20 and 26. We note, however, that the
experimental numbers of this type do not have much physical

meaning because they depend on the size of the specimen
studied. More physical formulas can be obtained by expressing
the right-hand side of Eqs. (11) and (12) in terms of the average
island size4:

sav = θ/N. (13)

Now we can express the left-hand side of Eq. (12) as

eQ = (1 − θ − θ/sav)sav(sav − 1)/θ (14)

and derive the exact expression for the average island size,

sav = 1/2

1 − θ
+

√
θeQ

1 − θ
+

(
1/2 − θ

1 − θ

)2

. (15)

Equations (14) and (15) relate the interaction parameter ε2 (via
Q) with the intensive quantities sav , θ , and T .

B. Rate equations

In the studies of irreversible growth it was found that the
mean-field rate equations can be improved in such a way as to
give very accurate solutions,11,12,33 thus providing a viable
alternative to computationally intensive KMC simulations.
Generalization of the mean-field equations to the reversible
growth is completely straightforward.38 It is not evident, how-
ever, that non-mean-field corrections derived for irreversible
growth can be successfully used also in this case.

In the present paper we show that the detailed balance
condition combined with the island density-dependent capture
numbers introduced in Ref. 12 for irreversible case make it
possible to describe the reversible case in a semiquantitative
manner both with and without the deposition flux and across
many orders of magnitude of the time scale.

The mean-field rate equations (5) and (6) of Ref. 38 for the
reversible growth can be cast in the form

dN1

dt
= F + 2�2 +

∑
s>2

�s, (16a)

dNs

dt
= �s+1 − �s, s > 1, (16b)

where

�s = K−
s Ns − K+

s−1N1Ns−1, (17)

F is the deposition flux, and K±
s are the kernels describing

either capture (+) or detachment (−) of monomers by or from
the islands of size s. The capture kernel is defined as

K+
s = Dσs, (18)

where D is the monomer diffusion constant and σs the capture
number.11,33 The detailed balance condition requires that

K−
s = K+

s−1 exp(�Es/kBT ), (19)

where �Es = Es − Es−1. The formalism is quite general
and can be used for simulating growth in any number of
dimensions. The capture numbers from Ref. 12 which we will
use in our simulations are specific to 1D systems:

σ1 = 4[(2 − β)N1 + βN ], (20a)

σs>1 = βσ1, (20b)
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where the coefficient β = 1.389 accounts for some non-mean-
field features (the mean-field value of β is unity). Formal
difference of Eq. (20a) from the expression of Ref. 12 is
because of our definition of the total island density in Eq. (5)
which includes the monomers (s = 1) in contrast to the
definition of N in Ref. 12.

It is easy to see that the expression derived from the law of
mass action in Ref. 40,

N (eq)
s � exp[(μs − Es)/kBT ], (21)

satisfies

�s = 0.

Hence, the ISD Eq. (21) is the equilibrium distribution because
it satisfies the stationary Eqs. (16) in the absence of the
deposition flux (F = 0). Equation (21) approximates the exact
1D distribution Eq. (4) at low coverages θ � 1 (we remember
that N = θ/sav). This defines the range of validity of the rate
equations (16).

IV. GROWTH KINETICS

Our aim in the present paper is to study annealing
behavior in 1D heteroepitaxial systems with sufficiently strong
reversibility. By the latter we mean such reversibility that
is easily detectable under conventional experimental setups.
In particular, such systems should exhibit strong tendency to
equilibration. In the 1D case this will show itself in the ISD
close to the geometric distribution Eq. (7) because usually the
NN interaction dominates. Our major simulation tool is the
KMC technique, which gives practically an exact solution
to the model studied. The conventional activated hopping
dynamics is used.41 Our model is a straightforward extension
of the irreversible 1D system we studied in Ref. 42. For
simplicity, only the detachment of atoms from the island
ends was taken into account while the interior atoms were
considered to be inactive due to their stronger binding. The
KMC technique, however, is computationally rather demand-
ing. In the simulations below we used the system consisting of
L = 218 ≈ 2.6 × 105 deposition sites and the statistics were
gathered from 20–40 parallel processes. Still, as is seen below,
the data obtained are rather noisy. Therefore, we duplicated the
simulations with solutions of the rate equations. To establish
the contact between the two approaches the formula for the
diffusion constant in terms of the hopping rates was used:

D = ν

2
e−Ee/kBT , (22)

where ν is the attempt frequency (in Ref. 37 assessed to be
equal to 1012 in the Co/Cu system) and Ee is the activation
energy for the edge diffusion.

Though the techniques we use are fully general, below for
concreteness we use explicit parameters corresponding to the
growth of the Co wires on the steps of a vicinal copper surface,
which was studied, in particular, in Refs. 20 and 37. In this
study statistical data were gathered for two 1D, coverages
θ = 0.09 and θ = 0.12, so below for simplicity we consider
only one coverage θ = 0.1.

The value of interatomic coupling found in Ref. 20 was
ε2 = 0.13 eV. Co was deposited at 165 K during ∼10 min
and the STM measurements carried out at the RT revealed
approximately geometric (exponential) ISDs with average
island sizes sav ≈ 27 and sav ≈ 40 atoms at coverages θ =
0.09 and θ = 0.12, respectively. According to Eq. (15) at
coverage 0.1 the equilibrium value at 165 K sav ≈ 33.

According to Ref. 37 the activation energy of diffusion
along the step edges Ee = 0.35 eV, so the ratio R = D/F

of the diffusion constant Eq. (22) to the deposition flux
F = 0.01 ML/min can be calculated as R ≈ 6 × 104. In the
irreversible growth theory this is considered to be a rather low
value, which means that the deposition is fast.11,12,33 Therefore,
we may neglect the reversibility and assess the average island
size with the use of the asymptotic formula,11

sav ∼ (2θ3R/π )1/4, (23)

which gives sav ∼ 2.5 atoms, that is, a value which is much
smaller than the needed 33 atoms estimated above. This
situation only slightly improves if exact KMC simulations and
the reversibility are taken into account: sav � 4 (see Sec. IV A
below).

Thus, the mobility of atoms at 165 K as assessed above is
too small to equilibrate the system. To understand whether the
equilibrium or, at least, a monotonous ISD can be obtained
in this system during deposition at 165 K we carried out
both KMC and the rate equations simulations with the value
of R = 6 × 108 or four orders of magnitude larger than that
calculated on the basis of the data of Ref. 37. This corresponds
to assuming that the diffusion barrier is ∼30% less than
0.35 eV, that is, Ee = 0.22 eV. This is still larger than the
barrier for the surface diffusion Esurf = 0.19 eV, so some
influence of the larger coordination at the step edge is taken
into account. We note in passing that the edge diffusion can
be faster than the surface diffusion (see Ref. 43 and references
therein) so even larger values of R are, in principle possible.
From a more general standpoint, because of the Arrhenius
dependence in Eq. (22), the diffusion constant is very sensitive
to small errors in both calculations and in experiment. So, in
practice, D is often used as a fitting parameter.44 Thus, our
choice of another value of D can be viewed as an attempt to
fit the model to experimental data.

The results of the simulations both with the use of the rate
equations and with the KMC are presented in Fig. 2. From
the simulation data we see that at the end of the deposition
the ISD is monotonous but with some negative curvature
of the logarithm of the island density [the logarithm of the
equilibrium distribution Eq. (4) should be a straight line].
However, experimental data, especially at coverage θ = 0.12
shown in the inset, are also far from being a straight line. (The
first point in the inset is placed at s = 7 because the island
statistics in Ref. 20 were gathered in the bins of size ∼12:
s = 1–12, 13–25, etc.) Their qualitative behavior, however, is
quite different from that of the t = td curve. However, as is seen
from Fig. 2, under annealing the shape of the ISD begins to
qualitatively resemble the experimental curve. Unfortunately,
it is hardly possible to explain the experimental data by higher
diffusivity and subsequent annealing because of the very fast
equilibration kinetics.
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FIG. 2. (Color online) ISDs at the end of the deposition at time
td = θ/F (	) and after subsequent annealing during 2.5 × 10−4td (+),
10−3td (�), and 10−2td (×); time is measured in KMC units
(the inverse hopping rate of a monomer). The rate equations and
KMC simulations data are shown on the upper and the lower
panels, respectively. The straight lines correspond to the equilibrium
geometric distributions Eqs. (7) and (21) describing, respectively,
the KMC and the RE cases. Coverage θ = 0.1 and ε2 = 0.13 eV
were chosen to allow qualitative comparison with experimental data
of Ref. 20; the ISD corresponding to θ = 0.12 from this reference is
shown in the inset. With R = 6 × 108 the ISD at the end of deposition
was monotonous and sKMC

av (td ) ≈ 24.

Because the value of the diffusion activation energy Ee is
not known with sufficient precision, time td in Fig. 2 and in
all figures below is measured in the KMC units (the inverse
hopping rate of an isolated atom along the step edge). However,
we know that the deposition took 10 min. So with the annealing
times being given in units of td , the corresponding physical
time can be found with the use of the coefficient

C = exp

[
Ee

kB

(
1

Ta

− 1

Td

)]
, (24)

which describes the ratio of the KMC time units at the two
temperatures: that at the deposition (Td ) and that at the anneal-
ing (Ta). With the use of this formulas with Ee = 0.22 eV and
Ta = 300 K (the RT) we find that the annealing time scale in
Fig. 2 is very short and corresponds to ∼0.1–5 ms. This kinetics
can hardly be detected without the use of some sophisticated
experimental techniques. In the usual experimental setup only
the final equilibrium ISDs shown in Fig. 2 as straight lines
are seen with the average island size according to Eq. (15)
sav ≈ 4.7 atoms. Thus, with the measurements carried out
at RT the interatomic interaction ε2 = 0.13 is too weak to
reproduce the experimentally observed ISDs.

We note that this fast reduction in the average island size
can be used as a mean to detect and quantify the reversibility by
measuring sav at both low and high temperatures. This kinetics
can be useful in effectively reducing the influence of many

slow high-temperature processes, thus effectively improving
the accuracy of the measurements.

A. 1D coarsening

In a previous section we saw that the equilibration at
Td = 165 K is not easy to reconcile with the experimental
setup and with the parameters taken from literature sources.
Therefore, if we still assume that the ISDs observed were
measured at thermal equilibrium, the latter should correspond
to Ta � 300 K. However, because the experimental values of
the average island sizes and the coverages are the same, the
NN interatomic interaction ε2 should be equal according to
Eqs. (8) and (14) to 0.13(Ta/Td ) = 0.236 eV. Now, once again
assuming the slow diffusion at the deposition temperature
and R = 6 × 104, we expect that the small islands (sav � 4
atoms—see Fig. 3) grown at low temperature will coarsen
during annealing to produce large islands distributed according
to the geometric law.

As is known, however, at finite temperature there is no
different phases in 1D so the conventional phase separation is
impossible. One may speak only about some saturated growth.
The growth mechanism also is different from the conventional
Ostwald ripening. In the latter, the driving force of the growth
is the higher atomic pressure near the islands with higher
surface curvature (the Gibbs-Thomson effect) which forces
the atoms to evaporate from smaller islands and attach to the
larger ones. However, this mechanism is inoperative in 1D
because all island “surfaces” are the same. Presumably, in 1D
the coarsening is driven by the stochastic ripening mechanism
proposed in Ref. 45. The mechanism acts as follows: Different
islands exchange atoms which they randomly lose or attach.
Because of the randomness, occasionally some islands will

FIG. 3. (Color online) Same as in Fig. 2 but for R = 6 × 104 and
ε2 = 0.236; the monomodal distribution at the end of the deposition
(	, the line is guide to the eye) had sKMC

av (td ) ≈ 4. The ISDs during
postdeposition annealing are shown at times 2.5 × 103td (+), 104td
(�), 4 × 104td (×), and 2 × 105td (◦). (All times are measured in
KMC time units.)
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lose all their atoms and disappear. In this way the average
island size in the ensemble will grow because the nucleation is
strongly suppressed at low temperature where the monomer
concentration is low while it takes at least two atoms to
nucleate an island. Because the detachment probability is
assumed to be small and the same for wires of any length,
the probability for a wire to lose all atoms diminishes
exponentially with its size.

This picture is confirmed by our simulations where we saw
very slow coarsening with the equilibration time being �2 ×
105td in KMC units. Because of the high adatom mobility at the
RT, the corresponding time in physical units was not very large.
Yet even with Ee = 0.35 eV37 the annealing time �30 min is
necessary according to Eq. (24) to reach a monotonous ISD.
This choice of the duration of annealing was motivated by the
fact that it approximately corresponds to the time interval the
experimental assembly was kept at the RT before the STM
photographs were taken.46 It would be highly desirable to
know the temperature history of the specimens during this
process since it is quite plausible that they were not subject
to the RT during all 30 min because of the finite heating rate
of the assembly. However, at small annealing times the ISDs
are monomodal, as is seen from the simulated ISDs shown in
Fig. 3.

It should also be noted that after 30 min of annealing the
ISD is not yet at perfect equilibrium and if the interatomic
interaction is considerably stronger than ε2 ≈ 0.24, as the ab
initio calculations suggest,29 the coarsening scenario of the
present section also can hardly be reconciled with all available
information.

It is pertinent to note that, experimentally, the time evolution
of the ripening ISDs of 1D islands was observed in In/Si system
in Ref. 8.

B. Annealing-induced bimodal ISDs

The last scenario we consider is realized when both
the enhanced diffusivity (Ee = 0.22 eV, R = 6 × 108) and
stronger binding (ε2 = 0.236 eV) are effective. In this case the
shape of the ISD at the end of the deposition is monomodal
(see Fig. 4). The difference with the case shown in Fig. 2 is
due to stronger interatomic coupling. Similar to that case is
the fast annealing to the monotonous ISD. The coefficient
C in Eq. (24) in this case is ∼103 so the annealing to
the monotonous ISD takes about 4 s. In the course of the
kinetics the ISD acquires a transient bimodal shape, which
can be used for qualitative identification of the antiripening.
It should be remembered, however, that similar shapes of the
ISDs were observed in the 2D growth and were explained
by the nucleation via exchange with the substrate21–24 and
by excessive misfit strain.25 Careful investigation of possible
mechanisms of appearance of bimodal distributions may turn
out to be of interest for the interpretation of the Co/Cu(775)
data if the bimodal distribution seen in the ISDs at both
coverages studied in Ref. 20 (see their Fig. 3) will turn out to
be real and not caused by insufficient statistics, as the authors
seem to suggest.

Qualitatively, the antiripening mechanism can be explained
as follows. When the average island size of the epitaxial islands
exceeds the average island size corresponding to equilibrium

FIG. 4. (Color online) Same as in Fig. 3 for R = 6 × 108 (note
nonlogarithmic ordinate). Shown are ISDs at td (+) and for postdepo-
sition annealing during 0.3td (	) and 8.5td (�); sKMC

av (td ) ≈ 37. The
equilibrium distributions are shown by solid lines.

at the temperature of the substrate, under the annealing the
majority of islands will lose atoms to reduce their size. The
free monomers thus produced will nucleate small islands
which, in contrast to large islands, should grow to attain the
equilibrium size. Thus, during some stage of the evolution
there will be two distinct distributions: one corresponding
to the shrinking large islands and another one which would
describe the growing newly nucleated islands. It should be
noted that the low-temperature large-size ISD can be both
equilibrium and nonequilibrium: The mechanism described
will be operative in both cases. The only difference is that
when both equilibrium distributions are of geometric character
(we recall that this is characteristic for nonstrained systems),
the intermediate bimodal distributions will not be observed.

V. DISCUSSION

In the present paper we discussed the problem of for-
mation of monotonous ISDs in heteroepitaxial growth on
the surface steps. In particular, we studied the possibility
of their explanation by equilibrium statistics as suggested
in Ref. 20. The main difficulty with such an explanation is
that the strength of the coupling between the cobalt atoms
ε2 = 0.13 eV obtained in Ref. 20 from the fit to experimental
data is an order of magnitude smaller than the value 1.2 eV
found in ab initio calculations for the interaction of two NN
Co atoms on the Cu(111) substrate.29 It should be noted
that in the STM photographs of Ref. 20 there exists an
indirect experimental evidence for larger than 0.13 eV value
of ε2. According to Ref. 32, the kink formation energy has
about the same value EK ∼ 0.12 eV and because this energy
corresponds to cutting one copper bond, if the interaction
between the cobalt atoms were of similar value then the
frizz on the cobalt-decorated parts of the steps would have
been comparable to the pronounced frizz observed on the
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copper-terminated parts of the steps. Experimentally, however,
the cobalt chains are perfectly straight within the resolution of
the STM photographs20 which may indicate that the cobalt
bonds are much stronger than the copper ones.

In our study we somewhat alleviated the discrepancy
between the fitted and the calculated values of the interatomic
bonding by showing that under the hypothesis of thermal
equilibrium the experimental data can be fitted to the value
of ε2 ≈ 0.24 eV, which is about two times larger than 0.13 eV.
Still the difference with the ab initio estimate remains very
large. Some further improvement may be achieved if we
assume that the experimental data correspond not to thermal
equilibrium but to some intermediate stage of the growth
corresponding, for example, to our Fig. 4, where the bimodal
ISDs exhibit behavior similar to that seen in both ISDs of
Ref. 20. (We recall the data shown on these figures were
gathered in the bins of size 12, so the curves are smeared and
in reality their bimodal structure should be more pronounced.)

The origin of the bimodal behavior of the curves in Fig. 4
is easily understood: At higher values of island sizes we see
the universal scaling curve of the irreversible growth12 formed
during the deposition at 165 K (see the first KMC curve in
Fig. 4). At this temperature the value of interatomic binding
ε2 ≈ 0.24 eV is strong enough for the growth to be irreversible.
The same distribution would have been obtained for any value
of ε2 > 0.24 eV. In contrast, the first maximum at the bimodal
curve in Fig. 4 is fully due to the growth reversibility because
it corresponds to the small islands which nucleated from the
atoms detached at the RT. The number of such atoms is
proportional to the detachment rate which in the simulations
shown at the figure corresponds to ε2 ≈ 0.24 eV while the
annealing lasted about 0.14 s. An elementary estimate shows
that during ∼30 min of the annealing accomplished in the
experiments on the Co/Cu(775) growth,46 a similar quantity
of atoms could have been evaporated with the detachment
rate corresponding to ε2 ≈ 0.34 eV at most. Presumably, this
is the maximum value which can be reconciled with the
assumption of the growth reversibility in the experiments of
Ref. 20 because if the bimodal character of the data is indeed
statistically insignificant and the true ISDs are monotonous,
then the experimental data would be described by the curves
in Fig. 4 corresponding to later stages of annealing which
would require smaller values of ε2 in order for the ISD shape
to be reached during ∼30 min.

The value ε2 ≈ 0.34 eV, however, is still considerably
smaller than the ab initio estimate.29 To resolve this contro-
versy experimentally we propose to exploit the antiripening
growth mode. The peculiarity of the antiripening kinetics
which distinguishes it from other growth modes is that it leads
to diminution of the average island size of the ISD in the
absence of the deposition flux. Obviously, this is possible only
if the detachment of atoms from islands takes place, so the
antiripening can be used to detect and quantify the strength
of the interatomic coupling. Experimental realization of this
phenomenon may require annealing at rather high temperature,
where many other processes became energetically allowed.
The fastness of the antiripening kinetics, however, can be
helpful in separating it from the competing processes.

Though only 1D systems were explicitly treated in the
present paper, the simple physics underlying the antiripening

should be operative also in higher dimensions. Critical to
the reversibility is the possibility of the atomic detachment
which presupposes sufficiently weak interatomic interaction.
Some systems with monolayer-high 2D islands and sufficiently
weak interatomic coupling are listed in Part II of Ref. 33. The
evaporation from 2D islands was already observed in Ref. 47 in
the ripening regime. As is known, the ISD at ripening acquires
a monomodal shape.48,49 However, it is quite obvious that
the heating above the phase separation temperature will, on
the one hand, enhance the evaporation; on the other hand,
the system will strive to reach a monotonous ISD (some
distributions of 2D islands observed in Ref. 21 are quite close
to being monotonous). Thus, at intermediate stages a bimodal
distribution should be observable.

Experimental realization of the antiripening should not be
very difficult. Having chosen some high temperature where
the average island size is sufficiently small it is necessary to
choose a not-too-low temperature and to adjust the deposition
flux in such a way that the ensuing ISD is monomodal and
has the average island size larger than the higher-temperature
one. In this way bimodal distribution at intermediate annealing
stages should be seen. It must be remembered, however, that
there exist competing processes that were mentioned in the
Introduction which may lead to bimodal distributions and
which were invoked to explain the bimodal ISDs observed
in 2D growth in Refs. 21–24.

The bimodal ISDs should be easier to detect because their
shape is qualitatively different from both the monomodal ISDs
due to the irreversible growth at low temperature and from the
monotonous equilibrium ISDs. However, the antiripening of
monotonous ISDs (see Figs. 2 and 4) should be easier to realize
experimentally by simply equilibrating the system at some
temperature and then annealing it at a higher temperature.

To conclude, in the present paper, with the use of the the
rate equations and the KMC simulations, we investigated
the reversible growth of 1D epitaxial islands. We studied
possible scenarios of postdeposition annealing and showed
that it may produce nonequilibrium monotonous and bimodal
ISDs. The antiripening kinetics found in our simulations can
be used to identify the reversible growth and assess the kinetic
parameters.

Because the growth of surface nanostructures is a techno-
logically important process, there exists a need in the tools
for its predictive simulation. The use of the KMC method is
not practical because of the necessity to gather voluminous
statistics. As a byproduct of our study, we showed that good
semiqualitative description of the reversible growth can be
achieved with the use of the rate equations corrected for non-
mean-field behavior. We included only the simplest correction
derived in Ref. 12. However, in the case of irreversible growth
it was possible to further improve the equations to such a
degree as to reach almost perfect agreement with the KMC.12

This gives hope that similar improvement can be achieved also
in the reversible case.
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