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Tight binding within the fourth moment approximation: Efficient implementation
and application to liquid Ni droplet diffusion on graphene
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Application of the fourth moment approximation (FMA) to the local density of states within a tight binding
description to build a reactive, interatomic interaction potential for use in large scale molecular simulations,
is a logical and significant step forward to improve the second moment approximation, standing at the basis
of several, widely used (semi-)empirical interatomic interaction models. In this paper we present a sufficiently
detailed description of the FMA and its technical implications, containing the essential elements for an efficient
implementation in a simulation code. Using a recent, existing FMA-based model for C-Ni systems, we investigated
the size dependence of the diffusion of a liquid Ni cluster on a graphene sheet and find a power law dependence of
the diffusion constant on the cluster size (number of cluster atoms) with an exponent very close to −2/3, equal to
a previously found exponent for the relatively fast diffusion of solid clusters on a substrate with incommensurate
lattice matching. The cluster diffusion exponent gives rise to a specific contribution to the cluster growth law,
which is due to cluster coalescence. This is confirmed by a simulation for Ni cluster growth on graphene, which
shows that cluster coalescence dominates the initial stage of growth, overruling Oswald ripening.
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I. INTRODUCTION

The interest in modeling finite temperature equilibrium,
dynamic, and reactive properties of large systems at the atomic
scale with sufficient accuracy has increased considerably in
the last decades with the appearance and improvement of
various types of (semi-)empirical interatomic potentials that
are computationally much more efficient and faster than
ab initio methods. The (semi-)empirical approaches include
Stillinger- and Weber-type models,1–3 (modified) embedded
atom methods,4–8 empirical bond order potentials (BOPs),9–16

and higher-order, so-called analytical bond order potentials
(ABOPs),17–25 which remain closer to tight binding (TB)
models building on the works in, for example, Refs. 26–29.
It is clear that the qualification “sufficient accuracy” strongly
depends on the application. It is generally assumed, and to
a certain extent confirmed by experiments, that nowadays
state-of-the-art ab initio methods are more accurate than
(semi-)empirical methods in situations to which the latter
models have not been fitted. In fact, a serious difficulty when
using a (semi-)empirical model is that it is not so easy to know
how accurate it actually is, which undermines its predictive
qualities. Normally, such a potential gradually reveals its
properties and failures while it is being tested and applied
to a variety of systems and conditions for which experimental
data are available and/or which allow for comparison with
ab initio calculations. After that, models can be improved or
another model may be selected for a certain application. The
fact remains that for many applications empirical models give
access to thermodynamic and kinetic properties via simulation
for which ab initio methods, say within density functional
theory (DFT), and even standard TB methods are simply
too slow and for which the assumed additional accuracy of
these latter methods seems only a matter of details. Of course,
there are many other applications which absolutely require an
ab initio approach.

In the context of the present paper, it is important to
mention that the most successful (semi-)empirical, reactive
models (i.e., able to describe chemical bond formation and
breaking) are essentially rooted in a TB description.30–34 In
fact, they can be derived starting from the so-called second
moment approximation (SMA) to the electronic local density
of states (LDOS) at the atomic positions. Usually, the final
model takes a purely analytical form. The SMA involves
only interactions between atoms within a close neighborhood
(sometimes reaching beyond first nearest neighbors) and by
this it benefits from the locality in the dependencies of the terms
describing the total energy of the system. Here we are paying
a first price for such a description, as we know that quantum
mechanics is essentially a nonlocal theory. Although most
current quantum mechanical computation models also build
on certain local approximations, they are clearly less local
than the empirical models. Fortunately, for many systems and
especially for pure systems the assumption of a local theory is
not so bad as it seems for a property like the cohesive energy
due to an intrinsic mechanism which strongly favors states for
which local charge neutrality is preserved.

While the SMA has been fairly successful for metals,
its limitations clearly show up when applying it to covalent
systems. For example, for carbon, the large variation in the
bond strength between two carbon atoms, including single,
double, triple, and conjugated bonds, requires a description
which goes beyond nearest neighbors, as is illustrated in Fig. 1.
A logical next step to improve the models based on the SMA
is to build a model in which the LDOS is treated within the
fourth moment approximation (FMA). This approximation
stands at the basis of a recently published interaction model
for nickel-carbon systems.25 It does not belong to the above-
mentioned ABOPs, as the analyticity is lost to a certain extent.
In turn, more quantum aspects are preserved, including the
explicit evaluation and filling of the LDOS. Retaining the
electronic structure up to the fourth moment level would, in
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FIG. 1. (Color online) The bond energies of a CC bond between
two threefold coordinated carbon atoms i and j depends significantly
on the coordinations of the other neighbors, and thus on the second-
nearest neighbors. In panel (a) these neighbors are saturated with
coordination 4, giving rise to a double CC bond, whereas in panel (b)
the environment is sp2, like, for example, in graphene.

principle, make it possible to consider electronic (transport)
properties and to deal with charge transfer effects, etc. For
the description of the energetics of a pure metal, for example,
it seems unnecessary to retain the electronic structure up to
this level. However, for systems composed of more than one
component, such as carbon-nickel systems,25 the importance
of such an approximation becomes evident. In particular, it
is the lowest-order (simplest) approximation that takes into
account both diagonal disorder (difference in on-site energy
levels) and off-diagonal disorder (difference in hopping matrix
elements). For example, this property seems to be crucial for a
proper description of the mixing behavior of transition metal
alloys, as has been demonstrated very recently.35

The major aim of this work is to give a basic description
of the FMA and its (technical) implications, considering it
a natural next step and for certain systems the necessary
improvement beyond the so widely used SMA. This analysis
directly applies to the model in Ref. 25, being a prototype
FMA model, and stands at the basis of a very efficient
implementation in a Monte Carlo (MC) simulation code, which
we recently realized and of which we will provide the most
important ingredients. The code, which gave an improvement
in speed by a factor 100 to 2000 with respect to a previous
version based on straightforward implementation, shows a
linear dependence of the simulation time on the system size
(number of atoms). For a system of a few thousand atoms it
is several orders of magnitude faster than standard TB, using
diagonalization of the TB Hamiltonian matrix, and only up
to one order of magnitude slower than SMA-based models.
The linear scaling makes it a so-called order-N method, along
with previous, alternative order-N methods.36–44 It should be
noticed, however, that, due to a smaller prefactor, FMA is
significantly faster than, for example, the method involving
the approximation of the Fermi function by a polynomial
of an unavoidable, relatively high order41,43 requiring as
many moments to be calculated, albeit that the latter method
may provide higher accuracy depending on the type of
system.

As an example of a simulation study of an interesting and
relevant physical problem, which has become feasible with
the new code, we used it to simulate the diffusion of liquid
Ni clusters on a graphene sheet. Here our aim is to investigate

the dependence of the cluster diffusion constant on its size
N (number of Ni atoms in the cluster), in order to establish
whether there is a power law behavior DN ∝ N−α and, if so,
to extract the exponent α.

The fact that there is no true time scale in MC simulation
has sometimes led to the idea that MC simulation cannot be
used for studying dynamical processes. However, as has been
shown in, for example, Ref. 45, under certain conditions one
can assume that MC “time,” taking it as the average number
of displacement attempts per atom, is proportional to the real
time except for short time scales. In the present application,
keeping the acceptance rate for the MC displacement trials
constant is enough to recover the essential features of diffusion
in our MC simulations. It is indeed not possible to determine
(directly) absolute values of DN , but this does not hinder the
study of the size dependence of DN at a fixed temperature T .
An estimate of absolute values can be obtained by choosing a
suitable reference process with a (experimentally) known time
scale like the atomic (self-)diffusion, as we will do.

The value of the above-mentioned exponent α is important
for the contribution of cluster coalescence to cluster growth
on a two-dimensional (2D) substrate, as a second mechanism
besides Oswald ripening. For Oswald ripening the (average)
linear cluster size grows as tβ with β = 1/3 if diffusion is the
rate limiting process46 and β = 1/2 when surface kinetics is
the slowest process.47 For compact, 3D clusters this would give
rise to a contribution 〈N (t)〉 ∝ t3β to the cluster growth law.
For cluster coalescence, an analytical solution48 predicts the
average density of clusters to behave as 〈ρcl(t)〉 ∝ t−3/(3+γ ),
implying 〈N (t)〉 ∝ t3/(3+γ ) where γ is the exponent in the
diffusion constant power law dependence D(r) ∝ r−γ on the
cluster radius r . So in any case, since normally γ > 0 implying
3β > 3/(3 + γ ), Oswald ripening will be the fastest, and
thus prevailing, growth process for large times. However, for
small and intermediate times scales cluster coalescence may
contribute significantly to the growth, depending on the kinetic
prefactors. The two growth mechanisms together and using
α = γ /3 give rise to

〈N (t)〉 = N0 + KCCt1/(1+α) + KORt3β, (1)

predicting a crossover in the prevailing mechanism. KCC and
KOR are the kinetic constants for cluster coalescence and
Oswald ripening, respectively.

While the diffusion of solid clusters has been stud-
ied frequently in the past, both experimentally49–53 and
theoretically,54–61 investigations of liquid cluster diffusion are
limited to only a few.62,63

Most of the works on solid clusters focus on 2D clusters,
epitaxially attached to the substrate, for which the diffusion
is quite slow, of the order of 10−17 cm2/s, and takes place
by single-atom events. Different mechanisms were identified,
giving rise power law dependencies ranging from D(r) ∝ 1/r3

for periphery diffusion to D(r) ∝ 1/r2 and D(r) ∝ 1/r for
respectively a correlated and an uncorrelated evaporation and
condensation mechanism (see Ref. 56), r being the 2D cluster
radius now. However, these single-atom mechanisms cannot
explain the very fast diffusion of the order of 10−8 cm2/s at
room temperature reported in Refs. 51 and 52. A plausible
explanation for this fast diffusion is given in Ref. 60 in which
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it is shown by simulations based on Lennard-Jones (LJ) inter-
actions for 3D clusters on a substrate, that is, the partial wetting
case, that the diffusion constant can increase by many orders of
magnitude when changing from a situation in which the cluster
and the substrate lattice parameters are commensurate to a
situation in which they are incommensurate. The exponent α in
the power law DN ∝ N−α was found to vary between α = 2/3
for the incommensurate case with a Brownian-like mechanism
to α = 1.4 for the small mismatch case with a hoppinglike
mechanism. In both mechanisms the cluster moves as a whole,
contrary to the case of single-atom mechanisms.

It is not so clear to what extent 3D liquid cluster diffusion
on a substrate, as considered here, is qualitatively different
from that of 2D and/or 3D solid clusters. In the simulation
study of Ref. 62 of a 3D liquid gold (Au) cluster diffusion
on an amorphous frozen-in substrate, an exponent α = 1.3
was found for the smaller clusters, but the largest cluster (555
atoms) was found to diffuse even slower than predicted by
this power law. Here a rolling-like, or rather a stick-and-roll,
mechanism was identified which to some extent corresponds to
the stick-and-glide mechanism observed in the small mismatch
case of solid cluster diffusion. This could explain the similarity
in the power law exponents, that is, 1.3 versus 1.4. In the
incommensurate case the energy barriers for diffusion are
much smaller, giving rise to a random walk mechanism. It
seems that the substrate properties used in Ref. 62, being amor-
phous and static, might have been decisive for the diffusion
mechanism. Apparently, the cluster is able to find relatively
stable positions on the surface, with a relatively low escape
probability. In our simulations the substrate is crystalline and
its atoms are allowed to move. While the (111) surface of
Ni matches almost perfectly with graphene, one expects no
particular lattice matching for a liquid cluster. In addition, the
effect of energy barriers is reduced at high temperature. This
makes us expect a power law behavior similar to that for the
incommensurate solid cluster case, with α = 2/3, that is, a DN

which is inversely proportional to the contact area.
In the next two sections we give a description of the TB

model within the fourth moment approximation (TBFMA),
such as it is applied in Ref. 25, and all important implications
and ingredients for constructing a fast MC simulation code.
Section IV is devoted to its application to liquid Ni cluster
diffusion and growth on graphene, while Sec. V contains a
summary and conclusions.

II. TIGHT BINDING WITHIN THE FOURTH
MOMENT APPROXIMATION

The total energy E of the TBFMA model in Ref. 25 is the
sum of atomic energies Ei :

E =
Nat∑
i=1

Ei =
∑

i

(ER,i + EC,i), (2)

where ER,i and EC,i are the atomic repulsive and cohesive
energies for atom i, respectively, and Nat is the number of
atoms in the system. The repulsive energy of atom i reads

ER,i = F

⎛
⎝∑

j

VR(rij )

⎞
⎠ , (3)

where VR(rij ) is a repulsive pair potential and F is an em-
bedding function to extend the transferability of the model for
different coordination environments. A finite cutoff distance
at which VR(rij ) smoothly vanishes limits the sum over j to
atoms within this distance from atom i. The atomic, cohesive
energy is given by

EC,i = 2
∫ EF

−∞
(E − εi)ni(E) dE

= 2
∫ EF

−∞
(E − εi)

∑
λ

ni,λ(E) dE, (4)

where the prefactor 2 accounts for the two spin states, EF is the
Fermi energy, εi is the average orbital energy per electron for
an isolated atom i, and ni(E) is the LDOS of atom i, consisting
of a sum of contributions ni,λ(E) from the different, involved
orbital groups or bands λ (e.g., 2s and 2p for carbon), forming
the basis of orbitals. Within the TB description the LDOS for
band λ is defined as

ni,λ(E) = −nλ

π
lim
ε→0

Im

(
1

nλ

nλ∑
m

〈iλm|G(z)|iλm〉
)

≡ −nλ

π
lim
ε→0

ImĜii,λλ(z), (5)

where the sum runs over the nλ orbitals λm in band λ (e.g.,
2px , 2py , and 2pz for the 2p band yielding nλ = 3) and where
G(z) = (zI − HT B)−1 is the Green’s function operator with
z = E + iε and HT B the Slater-Koster64 TB Hamiltonian.
Employing Lanczos tridiagonalization of HT B with the appro-
priate initial Lanczos vector and using a recursive relation for
the cofactors of a tridiagonal matrix, Ĝii,λλ(z) can be rewritten
as a continued fraction (CF) expansion27:

Ĝii,λλ(z) = 1

z − aiλ
1 − biλ

1

z−aiλ
2 − biλ

2
z−aiλ

3 −biλ
3 /...

, (6)

where the continued fraction coefficients (CFCs) aiλ
m and biλ

m =
(βiλ

m )2 are the diagonal and the squares of the off-diagonal
elements of the Lanczos tridiagonal matrix, respectively.

Alternatively, Ĝii,λλ(z) can be expanded as

Ĝii,λλ(z) = 1

nλ

nλ∑
m

〈iλm|(zI − HT B)−1|iλm〉 =
∞∑

n=0

μiλ
n

zn+1
,

(7)

where μiλ
n = (1/nλ)

∑
m〈iλm|Hn

T B |iλm〉 represents the nth
moment for atom i and band λ. The moment μiλ

n involves
all closed hopping pathways consisting of n nearest-neighbor
hoppings and/or onsite loops beginning and ending on a
λm orbital of atom i (see Fig. 1). There is a one-to-one
correspondence between the moments and the CFCs. The CF
expansion is much more suitable for evaluation of the LDOS
than the moments expansion and normally the CFCs can be
calculated accurately using the Lanczos algorithm. However,
an efficient implementation of the TBFMA model in a MC
code requires the moments, as will be shown in Sec. III A.
Since the moments μiλ

n rapidly diverge for increasing n,
contrary to the CFCs, naive calculation of the CFCs from
the moments can easily lead to large inaccuracies in the
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CFCs. This problem can be solved by using the following
numerically stable algorithm, in which the CFCs aiλ

n and biλ
n

for n = 1, . . . ,m/2 (m even) are calculated from the first m

moments μi (i = 1, . . . ,m) iteratively by65

ν
(n)
1 = −μ

(n)
1 ,

ν
(n)
i = −μ

(n)
i −

i−1∑
j=1

μ
(n)
i−j ν

(n)
j for i = 2, . . . ,m − 2(n − 1),

aiλ
n = −ν

(n)
1 , biλ

n =−ν
(n)
2 (8)

μ
(n+1)
i = −ν

(n)
i+2

/
biλ

n for i = 1, . . . ,m − 2n,

for n = 1, . . . ,m/2 with μ
(1)
i = μi(i = 1, . . . ,m).

In principle there are several options to terminate the CF
expansion. The simplest option would be to truncate it at
some level n by just taking biλ

n = 0. This leads to a LDOS
containing only Dirac peaks, maximally n. For the application
to bulk phases, a more realistic LDOS, containing an energy
band, is obtained by taking the CFCs constant beyond a certain
level. In particular, within the TBFMA model of Ref. 25 all
CFCs beyond n = 2 are taken constant and equal to aiλ

n = aiλ
2

and biλ
n = biλ

2 . Eventually, this leads to a relatively simple
analytical expression for the LDOS, as described in Sec. III B.
The four coefficients aiλ

1 , aiλ
2 , biλ

1 , and biλ
2 require only the first

four moments and are readily calculated in two steps of the
algorithm in Eq. (8).

Another approximation applied in the TBFMA model for
C-Ni systems of Ref. 25 is that charge transfer is neglected by
applying the constraint

Zi = 2
∫ EF,i

−∞
ni(E) dE, (9)

where EF,i is the highest occupied level of the LDOS of atom
i and Zi is the number of valence electrons for atom i in
the chosen basis of orbitals for that atom. For C, described
within the (2s,2p) basis, Zi = 4, whereas Zi = 8 for Ni,
described within the 3d basis. The neglect of charge transfer
is a reasonable approximation for C-Ni systems,25 but not a
necessary requirement for the analytical analysis in Sec. III B.

III. EFFICIENT IMPLEMENTATION

A. (Re)calculating moments in an efficient way

For standard MC simulation, in order to calculate the
change in the total energy for a new trial configuration gen-
erated by a random displacement of a randomly chosen atom
i, only certain moments of atoms up to second neighbors of
atom i need to be recalculated. To facilitate the discussion here,
let us consider a move which does not cause a coordination
change (no cutoff radius is crossed). After such a move, in
principle all four moments for atom i change. For the nearest
neighbors j of atom i, the second, the third, and the fourth
moments change. However, for a second-nearest neighbor k

of atom i, only the fourth moment changes (see Fig. 2). In
addition, the change of the fourth moment of such an atom k

is only due to the change of a very limited number of closed
hopping pathways, namely, only those pathways which pass
by the displaced atom i. Also for the first nearest neighbors j ,
only a fraction of the pathways pass by atom i and contribute

k1

k2

nearest neighbor

next nearest neighbor

central atom i

2

1

3

4

2

1

3
4

i

2

1

4

3

FIG. 2. (Color online) Schematic representation of all the atoms
whose energies change after a displacement of the central atom
i. The hopping pathways from i to a second neighbor k1 can be
reused to compute the change in the fourth moment of the atom
k1, as these are the only pathways for atom k1 which change after
a displacement of the atom i. For atom k1 this includes only one
pathway. For atom k2, we have drawn all pathways that change and
that start and end on k2, which include four pathways in this case.
All the possible changed pathways are automatically included in the
algorithm presented in Table I.

to the changes in the second, third, fourth moment. To exploit
these facts we designed a very efficient and relatively simple
algorithm for updating the moments after a move, which is
outlined in Table I.

In the description in Table I, Hij represents a (nixnj ) matrix
block of the TB hamiltonian. For j = i, Hij is diagonal and
contains the average band energy levels, while for j �= i, Hij

contains the probabilities for hopping from each of the ni

orbitals of atom i to each of the nj orbitals of atom j . HT
ij

and H 2T

ik are just the transposed matrices of Hij and H 2
ik ,

respectively, and D[· · ·] stands for “diagonal of”. The ni

components of the vector μi,n contain the nth moment for
each orbital on atom i. In particular, the change of the fourth
moment of all second-nearest neighbors can be computed very
efficiently from the matrix blocks H 2

ki = H 2T

ik which have
already been computed in the recalculation of the moments
of the central atom i!

B. Analytic integration of the local density of states

Within the FMA, the integrated, normalized LDOS for band
λ at atom i, Iiλ, reads

Iiλ(EF,i) = − 1

π
lim
ε→0

Im
∫ EF,i

−∞
Ĝii,λλ(z)

= − 1

π
lim
ε→0

Im
∫ EF,i

−∞

dE

z − aiλ
1 − biλ

1

z−aiλ
2 −biλ

2 
iλ(z)

,

(10)

where 
iλ(z) = 1/[z − aiλ
2 − biλ

2 
iλ(z)]. It holds that
Iiλ(∞) = 1 by construction.

Allan et al.66 have found an analytical solution for the
general variant of the integral (10) and the corresponding
energy integral with a CF expansion of arbitrary length
terminated by a 
(z) of the above-described form. It was
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TABLE I. Computation steps for efficient recalculation of the moments after a displacement of
an atom i in MC simulation. Note that the quantities δμk,m, δμj,m(m = 2,3,4) include only a part of
closed hopping pathways for atoms k and j , namely, only the ones that change. The quantities with
and without prime indexes indicate the values after and before the displacement of atom i. The terms
“nn” and “nnn” stand for nearest and next-nearest neighbors respectively.

(1) Atom i all moments change
– Compute: H 2

ik = ∑
j HijHjk for k = i, k nn of i and k nnn of i

– Compute:
	μ ′

i,1 = D[Hii]

	μ ′
i,2 = D[

∑
j HijHji] = D[

∑
j HijH

T
ij ]

	μ ′
i,3 = D[

∑
j H 2

ijHji] = D[
∑

j H 2
ijH

T
ij ]

	μ ′
i,4 = D[

∑
k H 2

ikH
2
ki] = D[

∑
k H 2

ikH
2T

ik ]

(2) Next-nearest neighbors k of atom i only 	μk,4 changes
– Compute: δ 	μ ′

k,4 = D[H 2
kiH

2
ik] = D[H 2T

ik H 2
ik]

– Compute: 	μ ′
k,4 = 	μk,4 + δ 	μ ′

k,4 − δ 	μk,4

(3) Nearest neighbors j of atom i 	μj,2, 	μj,3, and 	μj,4 change
– Compute: H 2

jj ′ = ∑
k HjkHkj ′ only for j ′ = i and j ′ nn of i

– Compute: δ 	μ ′
j,2 = D[HjiHij ] = D[HT

ij Hij ]

– Compute: δ 	μ ′
j,3 = D[

∑′
j ′ H 2

jj ′Hj ′j ] = D[
∑′

j ′ H 2
jj ′HT

jj ′ ] j ′ = i,j or (j ′ nn of j ánd of i) !

– Compute: δ 	μ ′
j,4 = D[

∑
j ′ H 2

jj ′H 2
j ′j ] = D[

∑
j ′ H 2

jj ′H 2T

jj ′ ] j ′ = i,j or j ′ nn of i !

– Compute: 	μ ′
j,m = 	μj,m + δ 	μ ′

j,m − δ 	μj,m m = 2,3,4

shown that these solutions allow a much faster and more
accurate evaluation of the relevant quantities in comparison
to numerical integration. We have worked out the solutions for
the case of the FMA, which allows additional simplifications
and explicit analytical expressions for the integrals in terms of
the four CFCs, as given below.

It is convenient to apply the following change of variable:

z′ = z − aiλ
2√

biλ
2

⇒ z =
√

biλ
2 z′ + aiλ

2 , (11)

by which Eq. (10) transforms into

I ′
iλ(E′

F,iλ) = − 1

π
lim
ε→0

Im
∫ E′

F,iλ

−∞

dE′

z′ − aiλ′
1 − biλ′

1 
′(z′)
, (12)

where 
′(z′) = 1/[z′ − 
′(z′)], aiλ′
1 = aiλ

1 − aiλ
2 , biλ′

1 =
biλ

1 /biλ
2 , and E′

F,iλ = (EF,i − aiλ
2 )/

√
biλ

2 . In fact, in the trans-

formed CF expansion, aiλ′
2 = 0 and biλ′

2 = 1. Hence, by this
variable change, consisting of a scaling and a shift of the
energy, we have obtained a simplified CF expansion with only
two parameters, aiλ′

1 and biλ′
1 . The Eq. (9) to find EF,i can be

rewritten in terms of the transformed integral as

Zi = 2
∑

λ

nλIiλ(EF,i) = 2
∑

λ

nλI
′
iλ(E′

F,iλ). (13)

Solving Eq. (13) for E′
F,i (and EF,i) with the analytical

expressions for I ′
iλ given below, has to be done numerically

with an appropriate method, such as Newton-Raphson and/or
bisection. Once we have E′

F,i , the cohesive energy for atom

i can be determined by the energy integral (4), which after
transformation becomes

EC,i = 2
∑

λ

nλ

(√
biλ

2 I ′
E,iλ(E′

F,iλ) + (
aiλ

2 − εi

)
I ′
iλ(E′

F,iλ)
)
,

(14)

where

I ′
E,iλ(E′

F,iλ) = − 1

π
lim
ε→0

Im
∫ E′

F,iλ

−∞

E′dE′

z′ − aiλ′
1 − biλ′

1 
′(z′)
.

(15)

So to find EC,i we have to perform the integrals I ′
iλ(E′

F,iλ) and
I ′
E,iλ(E′

F,iλ), expressed in terms of aiλ′
1 , biλ′

1 , and E′
F,iλ. In the

further description of this problem we drop the prime indexes
and superscript/subscript iλ for convenience.

Solving the quadratic equation for 
, the integrand of
Eq. (12) can be rewritten as

Ĝ(E) = 2

(2 − b1)z − 2a1 ∓ b1

√
z2 − 4

≡ 2

D∓(z)
, (16)

where D∓(z) ≡ (2 − b1)z − 2a1 ∓ b1

√
z2 − 4, the signs ∓

corresponding to the two roots 
± = (z ± √
z2 − 1)/2. For

real z = E, Eq. (16) can be worked out to

Ĝ(E) = (2 − b1)E − 2a1 − b1S
√

|4 − E2|
2
[
(1 − b1)E2 − a1(2 − b1)E + a2

1 + b2
1

] , (17)
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where S = i for |E| � 2, S = −1 for E < −2, and S = 1 for
E > 2, the signs of S being chosen such that the LDOS is
always positive. For energies within the interval −2 � E � 2,
Ĝ(E) has a continuous imaginary part, giving rise to an energy
band. Other contributions to the LDOS may come from poles
on the real axis giving rise to Dirac peaks. Normally, Dirac
peaks only occur for strongly distorted local configurations.
One should be careful with the interpretation of the details
of the LDOS, like the Dirac peaks (normally indicating
singular states), since the LDOS within the TBFMA is only an
approximation. Fortunately, integrated quantities like the total
energy are not so sensitive for these details.

From Eq. (16) it readily follows that any pole zi is a solution
of the equation

z2 = 4 + 1

b2
1

[(2 − b1) z − 2a1]2 , (18)

which immediately shows that for a real pole zi = Ei it holds
that |Ei | � 2; that is, real poles are at the edge or outside
the band. However, a real root Ei of Eq. (18) is not always
a pole. As Eq. (18) was obtained after multiplying numerator
and denominator of Eq. (17) with D+ (D−), Ei is only a pole
if D+(Ei) �= 0 [D−(Ei) �= 0]. It also follows from Eq. (18)
that for any value of a1, there is always a b1 value for
which there is a root Ei = −2 at the lower band edge and
a b1 value yielding a root Ei = 2 at the upper band edge.
Indeed, substitution of Ei = −2 into Eq. (18) yields b1 =
2 + a1, whereas substitution of Ei = 2 leads to b1 = 2 − a1.
Moreover, a negative root Ei of Eq. (18) is only a pole when
b1 > 2 + a1, whereas a positive Ei is only a pole when b1 >

2 − a1. The general, complex roots of Eq. (18) for b1 �= 1 are

zi =
a1(2 − b1) − (−1)ib1

√
4b1 − 4 + a2

1

2(1 − b1)
, (19)

for i = 1,2, showing that the LDOS may only contain pole
contributions (Dirac peaks) for b1 > 1 − a2

1/4.
The coefficient a1 describes the asymmetry of the band.

Indeed, for a1 = 0, we have Im[Ĝ(−E + iε)] = Im[Ĝ(E +
iε)], so that n(E) ≡ −1/π ImĜ(E) is symmetric with respect
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FIG. 3. (Color online) Local density of states for a1 = 0 (sym-
metric case) and four values of b1.
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FIG. 4. (Color online) Local density of states for a1 = −1 and
four values of b1.

to E = 0. The coefficient b1 controls the tendency to form a
band gap. Examples of n(E) for symmetric and asymmetric
bands are shown in Figs. 3 and 4, respectively. Figure 5 gives a
graphical representation of the properties of n(E) as a function
of b1 for the symmetric and an asymmetric case with a1 = −1.
For b1 < 2 − |a1| there are no Dirac peak contributions to the
LDOS. For 2 − |a1| � b1 � 2 + |a1| the LDOS contains one
Dirac peak and for b1 > 2 + |a1|, it contains two Dirac peaks,
as also shown in Fig. 6. The quantities Wp1 and Wp2 in Fig.
5 are the electronic weight factors (residues) of the poles.
In the limit of very large b1, the band contribution vanishes
and the LDOS consists of just two Dirac peaks corresponding
to the two poles with Wp1 + Wp2 tending to one. This situation
can occur for a dimer.

Following Allan et al.,66 the band contribution Ib to I =
Ib + Ip can be found to be

Ib(EF ) = 1

π

∫ EF

−2

b1

√
4 − E2

2(1 − b1)(E − z1)(E − z2)
dE

=
2∑

i=1

ciIb,i(EF ), (20)

where

ci = −(−1)i

2π

√
4b1 − 4 + a2

1

(21)

and

Ib,i(EF ) = 2 cos(tF ) − zi

(π

2
+ tF

)
+

√
4 − z2

i

×
[

log

(
u+

i + 1

u−
i + 1

)
− log

(
uF − u+

i

uF − u−
i

)]
, (22)

with tF = arcsin(EF /2), uF = tan(tF /2), and zi(i = 1,2)
given by Eq. (19) and where u±

i are the roots of the equation
u2 − (4/zi)u + 1 = 0, reading

u±
i =

2 ±
√

4 − z2
i

zi

. (23)
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FIG. 5. (Color online) Graphical representation of the LDOS
properties as a function of the parameter b1 for the symmetric case
(a1 = 0, top graph) and a nonsymmetric case (a1 = −1, bottom
graph). The energies of real roots Eri of the denominator in Eq. (17)
and the real poles Epi are indicated on the left vertical axis, whereas
the corresponding weight factors Wpi (residues) are given on right
vertical axis. For a1 = 0, both roots become poles for b1 > 2 − a1 =
2. For a1 = −1, Er1 becomes a pole Ep1 for b1 > 2 − a1 = 3,
whereas Er2 becomes a pole Ep2 for b1 > 2 + a1 = 1.

The imaginary parts of both complex logarithms in Eq. (22)
have to be taken within the interval [0, 2 π ).

There are two cases where the evaluation of Ib by the
above equations becomes numerically unstable. The first case
is when a root zi becomes very large due to a b1 value close to
one. Then, for the corresponding Ib,i both the second and
the third term on the right-hand side of Eq. (22) diverge,
leading to inaccuracy in the sum of them, knowing that the
sum remains finite since Ib(EF ) � 1 by construction. The
second problematic case for similar reasons occurs when ci

diverges for b1 tending 1 − a2
1/4. In MC simulation, especially

at high temperature where the domain of accessible CFC values
increases, these situations unavoidably occur so that one has
to deal with it rigorously. We solved these difficulties in a
practical way by bridging the parameter intervals, which cause
troubles with linear interpolations. For example, for b1 within
the interval [b1,min,1], with b1,min close to 1 we calculate Ib,i

as

Ib,i(b1; EF ) = 1 − b1

1 − b1,min
Ib,i(b1,min; EF )

+b1 − b1,min

1 − b1,min
Ib,i(1; EF ), (24)

-2-2 0 2

two Dirac peaks

one Dirac peak
right of band

one Dirac peak
left of band

no Dirac peaks

4

2

b
1

a
1

FIG. 6. (Color online) Domains in the parameter space spanned
by the transformed CF coefficients a1 and b1 for which the LDOS
contains 0, 1, and 2 Dirac peaks. In the domain where it contains 2
Dirac peaks, there is one at the left and one at the right side of the
band. In the domain enclosed by the dashed line and the a1-axis the
roots of Eq. (18) are complex.

where Ib,i(b1,min; EF ) and Ib,i(1; EF ) are the band integrals
for b1 = b1,min and b1 = 1, respectively. Typically, a value of
b1,min = 0.975 is enough to avoid numerical problems. Strictly
speaking, this interpolation introduces kinks in the energy
curves, which would be a problem for molecular dynamics
(MD) simulations requiring continuity of the derivative of the
energy. However, for the MC implementation considered here
it is not a problem. Moreover, in practice, within the mentioned
small parameter intervals, the kinks are so weak that they
cannot or can hardly be detected.

The case b1 = 1 (and a1 �= 0) is a special case, where the
denominator of Ĝ(E) is a linear function of E and has one,
real root equal to E1 = (a2

1 + 1)/a1, implying |E1| � 2. For
a1 > 0, E1 � 2 and is only a pole when a1 > 1, whereas for
a1 < 0, E1 � −2 and is only a pole when a1 < −1. In Eq. (20),
now the most right-hand side contains only one term, c1Ib,1,
instead of two with c1 = −1/(2πa1) and Ib,1 given by Eq. (22)
for i = 1 with z1 = E1, u±

1 from Eq. (23), and tF and uF as
before.

An even more special and rare case occurs when b1 = 1
and a1 = 0. In that case,

Ib(EF ) = 1

2π

∫ EF

−2

√
4 − E2dE

= 1

2π
[π + 2tF + sin(2tF )] . (25)

The pole contribution, Ip, to the integrated density of states,
I = Ib + Ip, is given by

Ip(EF ) =
Np∑
i=1

fpiWpi�(EF − Epi), (26)

where � is Heaviside step function, Np (1 or 2) is the number
of real poles, fip ∈ [0,1] is a filling factor, Epi is the energy of
the pole, and Wpi its weight factor. For EF > Epi , the filling
factor fpi = 1, but when EF = Epi only part of the pole level
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may be filled so that fpi � 1 in that case. Unless b1 = 1,
Wpi(i = 1,2) is given by

Wpi =
2a1 − (2 − b1)Epi + b1S

√
E2

pi − 4

(−1)i 2b1

√
4b1 − 4 + a2

1

,

(27)

whereas for b1 = 1 and |a1| > 1, that is, a case with a single
Dirac peak, Wp1 is equal to

Wp1 = a2
1 − 1

a2
1

. (28)

Unless b1 = 1 and a1 = 0, the band and pole contributions
to the energy integral IE = IE,b + IE,p are given by

IE,b(EF ) =
Nr∑
i=1

ci[π + 2tF + sin(2tF ) + ziIb,i(EF )], (29)

with Nr (1 or 2) the number of (complex) roots of Eq. (18) and

IE,p(EF ) =
Np∑
i=1

fpiWpiEpi�(EF − Epi), (30)

respectively. For b1 = 1 and a1 = 0, there is only a band
contribution, which is equal to

IE,b(EF ) = 1

2π

∫ EF

−2
E

√
4 − E2dE = − 4

3π
cos3 (tF ) . (31)

There are two other special cases which have not been
considered so far. In nontransformed coefficients, these cases
are biλ

1 = 0 and biλ
2 = 0, corresponding to a free atom and a

dimer, respectively. In these two cases the transformation (11)
is useless and impossible, respectively, and the cohesive energy
should be calculated directly without this transformation.
For biλ

1 = 0, the contribution from band λ to the LDOS
consists of just one Dirac peak due to a pole at E = aiλ

1 .
Using niλ(E) = −(1/π ) Im[1/(E + iε − aiλ

1 )] = δ(E − aiλ
1 )

for ε → 0, we find

Iiλ(EF,i) = fiλ�
(
EF,i − aiλ

1

)
and

IE,iλ(EF,i) = fiλa
iλ
1 �

(
EF,i − aiλ

1

)
, (32)

with fiλ ∈ [0,1] a filling factor as before. For biλ
2 = 0 (and

biλ
1 �= 0), niλ(E) contains two Dirac peaks at E± = [aiλ

1 +
aiλ

2 ±
√

(aiλ
1 − aiλ

2 )2 + 4biλ
1 ]/2 and we find

Iiλ(EF,i) =
∑
±

f ±
iλW±

iλ�(EF,i − E±) and

(33)
IE,iλ(EF,i) =

∑
±

E±f ±
iλW±

iλ�(EF,i − E±),

with W±
iλ = ±(E± − aiλ

2 )/(E+ − E−) and f ±
iλ again filling

factors.

IV. NICKEL DROPLET DIFFUSION ON GRAPHENE

Details of simulations. To investigate the size dependence
of liquid cluster diffusion on graphene, a prototype crystalline
membrane, we performed six simulations for clusters contain-
ing N = 19, 38, 92, 147, 276, and 405 Ni atoms, initially
positioned in the middle of a 71.3 × 72.4 Å2 graphene sheet
containing 1972 C atoms. Periodic boundary conditions were
applied in both directions parallel to the sheet. In contrast to
previous work,62 the substrate was not taken static, but the
MC displacement trials were applied randomly to both Ni
and C atoms. A Metropolis acceptance rule was used. The
temperature was taken equal to 2000 K, which is close to the
Ni bulk melting temperature, Tm = 2010 K, according to our
model, but well above the melting temperatures of all clusters
considered here.67 Indeed, during a first run at the given
temperature melting of the clusters took place in all cases.
Instead, the graphene substrate did not melt, in agreement
with the recently estimated melting temperature of 4900 K for
graphene.68 For each cluster size, the simulation consisted of
2.5 × 107 MC cycles. One cycle corresponds to, on average,
one trial displacement per atom. In contrast to single-particle
(self-)diffusion in a bulk phase, where the statistics is collected
by averaging over all the particles, here we have just a single
cluster and sufficient statistics has to be collected by running
long simulations (see below).

To investigate the growth process in terms of Eq. (1), we
also performed a simulation of the growth of liquid Ni clusters
on graphene at 2000 K, starting from an initial configuration
with 400 Ni atoms randomly distributed on a graphene sheet
of 123.0 × 123.5 Å2 containing 5800 carbon atoms.

Ni-graphene adhesion. To obtain information on the adhe-
sion of Ni with graphene according to our TBFMA model,
we investigated the low-temperature energetics of several
reference structures.

For a monolayer of Ni on graphene, the adhesive energy is
equal to −0.25 eV per Ni atom, the optimal geometry being that
with all Ni atoms positioned above the centers of the hexagons
of the graphene substrate. Adding more layers, forming a
Ni slab with the (111)-face in contact with the graphene
substrate, the adhesive energy reduces from −0.078 to −0.055
to −0.024 eV per Ni interface atom for two, three, and more
than three layers, respectively. This weak Ni bulk-on-graphene
adhesion, in spite of the almost perfect lattice matching of the
Ni-(111) surface with the graphene substrate, is in agreement
with DFT calculations.69,70 For clusters with numbers of atoms
ranging between 55 and 201 atoms, the cohesive energies were
found to vary between −0.1 and −1.2 eV per Ni interface
atom, depending on the shape of the cluster, the Ni-interface
orientation, and the size of the clusters, the adhesion being
stronger for small clusters.

These results show that there is a weak to moderate
chemical interaction between Ni and the graphene substrate.
They are indicative for the nature and magnitude of the
Ni-graphene interaction, although the adhesion for liquid
clusters can be expected to be weaker than for solid clusters.

Analysis of the simulations. Our MC “time” unit τ was
chosen to be equal to 500 MC cycles. Assuming that MC
“time” is proportional to real time for not-too-short time scales,
the real (physical) time interval t per MC “time” unit τ is
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equal to t = DMCτ/D, where DMCτ is the mean squared
center-of-mass displacement (MSD) of the cluster per MC
“time” unit τ and D is the diffusion constant in real units.
Then, for normal diffusion in 2D, Einstein’s Brownian motion
formula tells us that

〈�R2(n)〉 = 4DMCτn, (34)

where 〈�R2(n)〉 is the average MSD of the cluster after n MC
“time” units, defined as

〈�R2(n)〉 = 1

Mn

Mn−1∑
m=0

�R2
m(n)

= 1

Mn

Mn−1∑
m=0

[R(m + n) − R(m)]2, (35)

where Mn = M − n + 1, with M the total MC simulation
“time” and where we defined Rm(n) = R(m + n) − R(m). We
corrected for substrate motion defining

R(n) = Rcl(n) − Rgr (n) − [Rcl(0) − Rgr (0)], (36)

where Rcl and Rgr represent the cluster and graphene center of
mass positions, respectively. Typically, the “time” interval over
which Eq. (34) can be verified reliably is much smaller than the
total simulation “time” M due to the lack of statistics for large
“times” within the interval [0,M]. So, before plotting the MSD
versus n, we first investigated the statistics by calculating the
average MSD distribution function, which we formally define
as

ρMC(�R2; n) = 1

πMn

Mn−1∑
m=0

δ
[
�R2 − �R2

m(n)
]

(37)

for a given MC “time” n, where δ is the Kronecker δ function,
and the prefactor 1/π normalizes the 2D space integral of ρMC

to one. For normal diffusion, ρMC(�R2; n) should correspond
to the analytical solution of the diffusion equation ∂ρ/∂t =
D∇2

r ρ(r) in 2D, which for the initial condition of a particle
placed at the origin r = 0 at t = 0 is given by

ρ(r,t) = ρ(r2,t) = 1

4πDt
exp

(
− r2

4Dt

)
. (38)

This solution, also known as the diffusion propagator, gives the
probability that the particle has moved over a distance r within
the time interval t . Hence, the statistics of our simulation can
be checked by calculating ρMC(�R2; n) for a given MC “time”
n and compare it to the analytical shape (A/π ) exp(−A�R2)
of Eq. (38). Typically, when n is a large fraction of the total
simulation “time,” M , statistics will be poor and ρMC will not
have converged to the analytical shape.

Results. To check the statistics for our single cluster diffu-
sion simulations, we plotted the MSD distribution functions
ρMC(�R2; n) as a function of �R2 for a given, fixed MC
“time” interval n. Examples are given in Fig. 7 for the
cluster with 92 atoms for four different “times” n. The dashed
lines in the graphs represent a best fit of the analytical
form (A/π )exp(−A�R2) with only one fitting parameter
A = 1/(4D). For small “time” intervals n, ρMC(�R2; n)
follows closely the fit, indicating good statistics, while for
the largest “time” interval it deviates considerably indicating

FIG. 7. (Color online) The mean squared displacement distribu-
tion function from MC simulation, ρMC(�R2) (solid lines), and the
best fitting analytical solution (38) (dashed lines) for different “time”
intervals n, as indicated in the graphs. These results are for the Ni
cluster with 92 atoms.

poor statistics, due to the reduced number of contributions to
the sum in Eq. (37).

The results for the MSD distribution functions for various
“time” intervals and the six clusters indicated that we can
expect reliable values for the MSD as a function of n for “time”
intervals up to (at least) n = 100, which is indeed confirmed
by Fig. 8. Apart from a relatively small initial “time” interval
this figure shows a linear relationship between �R2 and n,
allowing for a straightforward determination of the MSD
per MC “time” unit, DMCτ , for each cluster. Subsequently
plotting DMCτ as a function of N in a logarithmic plot (see
inset of Fig. 8) shows a power law behavior DMCτ ∝ N−α

with an exponent equal to α = 0.645, practically equal to
the value 2/3 found in Ref. 24 for solid clusters with a
lattice parameter incommensurate with respect to that of the
substrate. The considerably larger exponent α = 1.3 found for
a liquid cluster on a rigid, amorphous substrate in Ref. 62
might be attributed to the observed stick-and-roll diffusion
mechanism. We visually checked for rolling by marking the
atoms at one side of the cluster (the one with 92 Ni atoms)
with a different color and following these atoms in successive
MC snapshots. After only a few MC “time” intervals the
marked atoms were distributed almost randomly throughout
the cluster while the cluster as a whole had hardly moved. This
suggests that the diffusion of the clusters does not proceed by
rolling in our case. The difference in “time” scale for cluster
diffusion and that of atomic self-diffusion inside the cluster
is also demonstrated by the average MSD as a function of n

for atomic diffusion shown by the dotted line in Fig. 8. This
self-diffusion curve was determined for the biggest cluster
with 405 Ni atoms by initially selecting all atoms inside a
spherical region around the center of the cluster and following
the average MSD only for these atoms to limit the effects of the
cluster boundaries for some “time”. Indeed, for large “time”
scales we found that the MSD versus n curve starts to fluctuate
around a constant value due to the finite cluster size, but for
smaller “time” scales the linear MSD versus n behavior was
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~N−0.645

FIG. 8. (Color online) The mean squared displacement (MSD) as
a function of MC “time” from the MC simulations (red solid lines)
for the six different clusters as indicated by the total number of Ni
atoms and the average number of atoms in the Ni cluster during
the simulation (number in parentheses). We note that at the give
temperature Ni atoms can detach from the cluster and eventually
rejoin the cluster at a later “time.” The dashed line gives the best
linear fit. The dotted line gives the MSD for atomic self-diffusion
inside the cluster with 405 atoms. The inset gives the MSD per MC
“time” unit, DMCτ , as a function of the average number of atoms
inside the cluster using logarithmic scales obtained from the slopes in
the main figure (solid diamonds) and from the best fit of ρMC(�R2)
using the analytical solution (38) (open circles). The dashed line in
the inset gives the best fitting power law resulting in an exponent
α = 0.645.

recovered, as shown in Fig. 8, allowing for the determination
the atomic MSD per MC “time” unit, DMC,at τ . As a result
we find that, at 2000 K, the atomic self-diffusion is more than
two orders of magnitude faster than the cluster diffusion for
the cluster with 405 atoms. Using this ratio from our MC
simulations and the literature value Dat = 7.0 10−5 cm2/s
for the atomic self-diffusion constant,71 we obtain a cluster
diffusion constant of D405 = 5.7 10−7 cm2/s, comparable to
the experimentally found, large cluster diffusion constant
of the order of 10−8 cm2/s for nonepitaxially oriented gold
and antimony clusters on graphite.51,52 This large diffusion
constant suggests a mechanism dominated by random motion
of the whole cluster rather than by single-atom events, although
the latter is present as well. We note that in the above analysis,
we tacitly made the assumption that the real time per MC
“time” unit is the same for both diffusion processes; that is, we
assumed that DMC,at τ/Dat = DMCτ/D, which for the present
rough estimation is reasonable.

Our simulation of the growth process of liquid Ni clusters
on graphene is illustrated in Fig. 9. The snapshots in panels (b)
and (c) of this figure are separated by only a limited number
of MC “time” units during which the four clusters in the upper
right corner have merged to two clusters, which suggests the
cluster coalescence represents an important contribution to the
growth process. We also see single Ni atoms, detached from
the cluster, diffusing on the graphene surface, demonstrating
the presence of Oswald ripening. Note the apparently much
larger mobility of the single atoms than that of the clusters by
comparing again the images of Figs. 9(b) and 9(c). Finally,

FIG. 9. (Color online) Snapshots of the simulation of the liquid
droplet growth on graphene starting from randomly deposited Ni
atoms (a). The snapshots (b) and (c), separated by only a limited
number of MC “time” units, clearly shows the occurrence of cluster
coalescence. Graph (d) gives the average cluster size 〈N (t)〉 (in
number of atoms) as a function of the MC “time” tMC .

the evolution of the average cluster size, 〈N (t)〉, is shown
in Fig. 9(d), and compared with a best fit of the form N0 +
KCCt3/5 + KORt3β from Eq. (1) with α = 2/3 (dashed line).
This good agreement could only be obtained by assuming a
value for KOR much smaller than that for KCC , which implies
that the growth process is almost completely dominated by
cluster coalescence for the “time” scales here considered.

V. SUMMARY, CONCLUSIONS

We have presented an analytical description of TBFMA.
While the TBFMA model can be considered as a next step
beyond the SMA model, it is, in fact, closer to the classical
TB model of which it contains the essential physics. Important
implications and technical details are discussed, including, for
example, an overview of the shapes of the local densities of
states possible within the FMA, and the analytical expressions
for the relevant integrals, obtained by applying and elaborating
the general solution in Ref. 66 to the FMA. These and several
other important ingredients provide the basis for a very effi-
cient implementation of the FMA model in a MC simulation
code, which allows for a simulation speed approaching that
of the simpler models, based on SMA, to within one order
of magnitude and which scales linearly with the system
size.

Due to the possible discontinuities in the derivatives of the
energy, mentioned in Sec. III B, constructing a rigorous MD
implementation is not a straightforward task. We are currently
working on an MD version of the model.

Our MC implementation of the TBFMA model allowed
us to simulate the diffusion and growth of Ni liquid droplets
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on a graphene sheet. Despite the absence of a true time scale
in MC simulation, an analysis of our simulations confirms
that the MC “time,” taken equal to the number of MC
cycles, can be assumed to be proportional to the real time
for not-too-short time scales, as has also been demonstrated
previously.45 Simulation of the single droplet diffusion for
different sizes of the droplet revealed a power law behavior
of the diffusion constant DMC ∝ N−α with α = 0.645, very
close to the value α = 2/3 found earlier for solid clusters
with an incommensurate matching to the substrate.60 As
in the latter case, the main diffusion mechanism is the
random motion of the whole cluster, giving rise to a much
faster diffusion (10−7 cm2/s) than the diffusion dominated by
single-atom events (10−17 cm2/s). Our exponent α is different
from the value α = 1.3 found for a liquid cluster on an
amorphous, rigid surface, where the diffusion was shown to
proceed via a stick-and-roll mechanism62 not observed in our

simulations. These facts are likely to explain the different
exponents.

The exponent α = 2/3 for the size dependence of the
diffusion constant gives rise to a contribution proportional to
t3/5 in the growth of the average cluster size by coalescence
in an ensemble of clusters on a 2D substrate. Our simulation
of such a cluster growth process on a graphene sheet is well
described by the law t3/5 and suggests that cluster coalescence
is by far the dominant process for the “time” scale and
system size considered here, which did not allow us to see
the crossover to a regime were Oswald ripening becomes the
dominant process.
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