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Conductance and persistent current in quasi-one-dimensional systems with grain boundaries:
Effects of the strongly reflecting and columnar grains

J. Feilhauer and M. Moško*
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We study mesoscopic transport in the quasi-one-dimensional wires and rings made of a two-dimensional
conductor of width W and length L � W . Our aim is to compare an impurity-free conductor with grain
boundaries with a grain-free conductor with impurity disorder. A single grain boundary is modeled as a set of the
two-dimensional δ-function-like barriers positioned equidistantly on a straight line and disorder is emulated by a
large number of such straight lines, intersecting the conductor with random orientation in random positions. The
impurity disorder is modeled by the two-dimensional δ barriers with the randomly chosen positions and signs.
The electron transmission through the wires is calculated by the scattering-matrix method, and the Landauer
conductance is obtained. Moreover, we calculate the persistent current in the rings threaded by magnetic flux: We
incorporate into the scattering-matrix method the flux-dependent cyclic boundary conditions and we introduce
a trick allowing us to study the persistent currents in rings of almost realistic size. We mainly focus on the
numerical results for L much larger than the electron mean-free path, when the transport is diffusive. If the grain
boundaries are weakly reflecting, the systems with grain boundaries show the same (mean) conductance and the
same (typical) persistent current as the systems with impurities, and the results also agree with the single-particle
theories treating disorder as a white-noise-like potential. If the grain boundaries are strongly reflecting, the rings
with the grain boundaries show the typical persistent currents about three times larger than the white-noise-based
theory, thus resembling the experimental data of Jariwala et al. [Phys. Rev. Lett. 86, 1594 (2001]. Finally, we
extend our study to the three-dimensional wires/rings with columnar grains. Due to the columnar shape of the
grains, the resulting persistent current exceeds the white-noise-based theory by one order of magnitude, similarly
as in the experiment of Chandrasekhar et al. [Phys. Rev. Lett. 67, 3578 (1991)].
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I. INTRODUCTION

Magnetic flux � piercing the opening of a mesoscopic
conducting ring gives rise to the equilibrium electron current
circulating along the ring. This current is known as persistent
current.1 A single electron at the energy level En carries
the current In = −∂En(�)/∂� (see Refs. 2 and 3). At zero
temperature the persistent current in the ring is given as
I = ∑

In, where one sums over all occupied states below the
Fermi level.4 In a single-channel ballistic ring, the amplitude
of the persistent current is I0 = evF /L, where e is the electron
charge, vF is the electron Fermi velocity, and L is the ring
circumference. The current changes its sign when a single
electron is added into the ring. In the ballistic ring with Nc

conducting channels the amplitude of the persistent current
scales as

√
NcI0 due to the random sign of the current in each

channel.5

If disorder is present, the persistent current does not
vanish and the amplitude and sign depend on the specific
configuration of disorder. Therefore, it is customary to study
the typical persistent current Ityp = 〈I 2〉1/2, where 〈· · ·〉 is the
ensemble average. The authors of Refs. 6 and 7 analyzed the
persistent current in a disordered normal-metal multichannel
ring by considering the noninteracting electron gas. They
assumed that the electrons are scattered by disorder with the
scattering potential V (r) obeying the white-noise condition
〈V (r)V (r′)〉 ∝ δ(r − r′). Using the Green’s functions, they
found for the typical current at � = ±0.25h/e the formula

I theor
typ = 2 × 1.6

d
I0

l

L
, l � L � ξ, (1)

where the factor of 2 is due to the spin, l is the electron mean-
free path, ξ is the localization length, d is the dimensionality
of the ring, and the condition l � L � ξ means the diffusive
regime. (The factor 1.6/d is derived in Appendix A from a
more general formula from the literature.)

The persistent current in a single isolated ring was for
the first time measured by Chandrasekhar et al.8 In that
experiment, three different Au rings of size L ∼ 100l showed
the persistent currents ranging from ∼0.2evF /L to ∼2evF /L,
which is one to two orders more than predicts the formula
I theor

typ 
 (evF /L)(l/L). This disagreement has so far not been
explained, specifically, the effort to explain it by considering
the electron-electron interaction was not successful (see
Ref. 9). Ten years after the work of Ref. 8 the same laboratory10

prepared a new Au samples and observed the typical persistent
currents much closer to the formula I theor

typ 
 (evF /L)(l/L), but
still two to three times larger.

On the other hand, recent measurements of the persistent
current in a single ring,11 performed for 30 Au rings, have
shown a good agreement with formula (1). In addition, the
persistent current in a single Al ring has quite recently been
measured by a new highly sensitive method.12 This work
definitely demonstrates agreement of the experimental data
with formula (1), modified by a temperature-dependent factor.
The experiments11,12 thus strongly suggest that the typical
persistent current in a single disordered normal-metal ring
is not affected by the electron-electron interaction at least
for such metals like Au and Al. If this is the case, then the
disagreement between formula (1) and previous measurements
of the Au rings8,10 is not due to the electron-electron interaction
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and the explanation, if any, may be hidden in the single-particle
interaction with disorder.

As already mentioned, formula (1) holds for disorder
modeled by the white-noise-like potential with spatially
homogenous randomness. In reality, fabrication of the metallic
wires/rings from such metals like Au, Ag, Cu, etc., involves
techniques like the electron beam lithography, lift-off, and
metal evaporation, which provide wires/rings with disorder
due the grain boundaries, impurity atoms, and rough edges.9

Thus it seems reasonable to study realistic disorder and to
compare the results with the white-noise-based theory.6,7

In this work, electron transport in the mesoscopic wires
and rings is studied with the aim to compare an impurity-free
system with grain boundaries with a grain-free system con-
taining the impurity disorder. (We ignore the edge roughness
which is studied elsewhere.13,14) The mesoscopic wire is
called quasi-one-dimensional (Q1D) if its length L is much
larger than the width (W ) and thickness (H ).15 We mainly
study the Q1D wires and rings made of a two-dimensional
conductor (H → 0) of width W and length L � W , when the
dimensionality entering formula (1) is d = 2 (see Ref. 7). At
the end we extend our study to the case d = 3, that is, to the
three-dimensional (3D) wires and rings with H ∼ W .

In our d = 2 study, a single grain boundary is modeled as a
set of the two-dimensional δ-function-like barriers positioned
equidistantly on a straight line and disorder is emulated by a
large number of such straight lines, intersecting the conductor
with random orientation in random positions (Fig. 1). The
impurity disorder is represented by many two-dimensional
δ barriers with randomly chosen positions and signs. The
electron transmission through the wires is calculated by the
scattering-matrix method,16,17 and the Landauer conductance
is obtained. To calculate the persistent current in the rings
with magnetic flux, we include into the scattering-matrix
method the flux-dependent cyclic boundary conditions and
we introduce a trick allowing us to study the typical persistent
current in rings of almost realistic size. We mainly focus on
the systems with L � l, when the transport is diffusive.

If the grain boundaries are weakly reflecting, we find that
the systems with grain boundaries exhibit for large enough
L the same (mean) conductance and the same (typical)
persistent current as the systems with impurities. The obtained
results also agree with the single-particle theories6,7,18 treating
disorder as a white noise.
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FIG. 1. Wire made of the 2D conductor of width W and length L.
The figure on the left depicts the wire with impurities positioned at
random with random signs of the impurity potentials. The figure on
the right depicts the impurity-free wire with grain boundaries. The
grain boundaries are represented by the straight lines which intersect
the wire with a random orientation in randomly chosen positions.

If the grain boundaries are strongly reflecting, the rings
with the grain boundaries are found to exhibit the typical
persistent currents which can be (in the diffusive regime) about
three to four times larger than the white-noise-based result
I theor

typ 
 (evF /L)(l/L). This finding resembles the experimen-
tal findings of Ref. 10.

Finally, we extend our study to the 3D conductors. We
focus on the 3D conductors with the columnar grains,19–28

which are fundamentally different from the tiny randomly
oriented grains, implicitly assumed in any white-noise-based
description of disorder. We find that the typical persistent
current in the diffusive metallic ring with the columnar grains
is given by the formula Ityp 
 1.26

√
NH (evF /L)(l/L), where

NH 
 HkF /π is the number of the 2D subbands within the
thickness H . For the Au ring with H = 70 nm the formula
gives the result Ityp 
 20(evF /L)(l/L), which is not far from
the experimental results of Ref. 8.

The text is organized as follows. In Sec. II we discuss
our calculation of the Landauer conductance: we review the
scattering-matrix method for the wire with impurity disorder
and we include the grain boundaries. In Sec. III we describe our
calculation of the persistent current. Our results are discussed
in Sec. IV which also contains extension to the case d = 3.
Appendices A, B, and C contain a few technical aspects.

II. SCATTERING MATRIX AND CONDUCTANCE

We consider the electron gas confined in the two-
dimensional (2D) conductor depicted in Fig. 1. At zero
temperature the wave function ϕ(x,y) of the electron at the
Fermi level (EF ) is described by the Schrödinger equation

Hϕ(x,y) = EF ϕ(x,y) (2)

with Hamiltonian

H = − h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (y) + UD(x,y), (3)

where m is the electron effective mass, UD(x,y) is the potential
due to disorder, and V (y) is the confining potential due to the
edges. The confining potential can be expressed as

V (y) =
{

0, 0 < y < W

∞, elsewhere
. (4)

For the impurity disorder we use the simplest model potential

UD(x,y) =
∑

i

γ δ(x − xi)δ(y − yi), (5)

where we sum over the random impurity positions [xi,yi] with
a random sign of the impurity strength γ , as it is shown
in Fig. 1. Disorder due to the grain boundaries can also be
modeled by means of (5), if the individual δ barriers in Eq. (5)
are positioned on the straight lines (grain boundaries in Fig. 1)
equidistantly and with a positive sign of the constant γ . Details
will be given later on. Now it is important that both the impurity
disorder and grain-boundary disorder are represented by a sum
of the two-dimensional δ functions. This allows us to treat both
of them by a very similar scattering-matrix technique. We
first review the scattering-matrix technique for the impurity
disorder.13,16,17
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Assume that the disordered wire in Fig. 1 is connected to
two ballistic semiinfinite contacts of constant width W . In the
contacts the electrons obey the Schrödinger equation[

− h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (y)

]
ϕ(x,y) = EF ϕ(x,y), (6)

where V (y) is the confining potential given by Eq. (4). Solving
Eq. (6) one finds the independent solutions

ϕ±
n (x,y) = e±iknxχn(y), n = 1,2, . . . ,∞, (7)

with the wave vectors kn given by equation

EF = εn + h̄2k2
n

2m
, εn ≡ h̄2π2

2mW 2
n2, (8)

where εn is the energy of motion in the y direction and

χn(y) =
{√

2
W

sin
(

πn
W

y
)
, 0 < y < W

0, elsewhere
(9)

is the wave function in the direction y. The electron state with
quantum number n is called the nth channel. The channels with
εn < EF are conducting due to the real values of kn while the
channels with εn > EF are evanescent due to the imaginary
kn. For the conducting channels the vectors kn in Eq. (7) are
assumed to be positive, that is, the waves eiknx and e−iknx

describe the free motion in the positive and negative direction
of the x axis, respectively.

We define coefficients A±
n (x) ≡ a±

n e±iknx for x � 0 (left
contact) and coefficients B±

n (x) ≡ b±
n e±iknx for x � L (right

contact). The wave function ϕ(x,y) in the contacts can be
expanded in the basis of the eigenstates (7). At the boundary
x = 0

ϕ(0,y) =
N∑

n=1

[A+
n (0) + A−

n (0)]χn(y), (10)

while at the boundary x = L

ϕ(L,y) =
N∑

n=1

[B+
n (L) + B−

n (L)]χn(y), (11)

where N is the considered number of channels (ideally N =
∞). We define the vectors A±(0) and B±(L) with components
A±

n=1,...,N (0) and B±
n=1,...,N (L), respectively, and we simplify

the notations A±(0) and B±(L) as A± and B±. The amplitudes
A± and B± are related through the matrix equation(

A−

B+

)
=

[
r t ′

t r ′

] (
A+

B−

)
, (12)

where

S ≡
[

r t ′

t r ′

]
(13)

is the scattering matrix. Its dimensions are 2N × 2N and its
elements t , r , t ′, and r ′ are the matrices with dimensions
N × N . Physically, t and t ′ are the transmission amplitudes
of the waves A+ and B−, respectively, while r and r ′ are the
corresponding reflection amplitudes. The matrix t is composed
of the elements tmn(kn), where tmn(kn) is the probability
amplitude for transmission from the channel n to channel m.

If we know tmn(kn), the conductance g can be obtained from
the Landauer formula.29 In units 2e2/h it reads

g =
Nc∑

n=1

Tn =
Nc∑

n=1

Nc∑
m=1

|tmn|2 km

kn

, (14)

where we sum over all (Nc) conducting channels and Tn is the
probability of electron transmission through disorder for the
electron which impinges the disordered region within the nth
conducting channel. To obtain tmn, we need to determine the
scattering matrix S.

Consider two wires, 1 and 2, described by the scattering
matrices S1 and S2. The matrices are defined as

S1 ≡
[

r1 t ′1
t1 r ′

1

]
, S2 ≡

[
r2 t ′2
t2 r ′

2

]
. (15)

Let

S12 ≡
[

r12 t ′12

t12 r ′
12

]
(16)

be the scattering matrix of the wire obtained by connecting
the wires 1 and 2 in series. The matrix S12 is related to the
matrices S1 and S2 through the matrix equations18

t12 = t2[I − r ′
1r2]−1t1,

r12 = r1 + t ′1r2[I − r ′
1r2]−1t1,

(17)
t ′12 = t ′1[I + r2[I − r ′

1r2]−1r ′
1]t ′2,

r ′
12 = r ′

2 + t2[I − r ′
1r2]−1r ′

1t
′
2,

where I is the unit matrix. Equations (17) are usually written
in the symbolic form

S12 = S1 ⊗ S2. (18)

Consider the wire with impurity potential (5). Between any
two neighboring impurities there is a region with zero impurity
potential, say the region xi−1 < x < xi , where the electron
moves along the x axis like a free particle. The wire with n

impurities contains n + 1 regions with free electron motion,
separated by n point-like regions where the scattering takes
place. As illustrated in Fig. 2, the scattering matrix S of such
wire can be obtained by applying the combination law

S = p1 ⊗ s1 ⊗ p2 ⊗ s2 ⊗ · · · sn ⊗ pn+1, (19)

where pi is the scattering matrix of free motion in the
region xi−1 < x < xi and si is the scattering matrix of the
ith impurity. The symbols ⊗ mean that the composition law
(18) is applied in (19) step by step: one first combines the
matrices p1 and s1, the resulting matrix is combined with
p2, etc.

The scattering matrix pi can be expressed as

pi =
[

0 �

� 0

]
, (20)

where 0 is the N × N matrix with zero matrix elements and
� is the N × N matrix with matrix elements

�mn = eiknci δmn, ci = xi − xi−1, (21)
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FIG. 2. Wire with the randomly positioned point-like impurities,
where an individual impurity is represented by the two-dimensional
δ-function-like potential with random sign. The n impurities de-
scribed by the scattering matrices si divide the wire into the n + 1
free regions described by the matrices pi . Also shown are the wave
amplitudes A± and B±.

Finally, the scattering matrix

si ≡
[

r t ′

t r ′

]
(22)

is composed of the matrices

t = t ′ = [K + i�]−1K, (23)

r = r ′ = −[K + i�]−1i�, (24)

where K and � are the N × N matrices with matrix elements

Kmn = knδmn, �mn = mγ

h̄2 χ∗
m(yi)χn(yi). (25)

The scattering matrix method for the grain boundaries is the
same like for the impurities, because a single grain boundary
is formally modeled by a set of the point-like impurities
(see Fig. 3). We start with the grain boundaries oriented

Δ
G

L

y

α4

x0

W

α1 α2 α3 α5

q1 q2 q3 q4q5

p1 p2 p3 p4 p5

FIG. 3. Wire with grain boundaries represented by straight lines.
The ith grain boundary starts at point qi and ends at point pi . The
positions qi and pi are chosen as random. To avoid appearance
of the mutually intersecting boundaries, the random numbers are
ordered increasingly, that is, q1 < q2 . . . < q5 and p1 < p2 . . . < p5.
The angle between the ith boundary and wire edge is αi , another
important parameter is the mean lateral size of the grain dG. Inset
shows in detail a single boundary. The boundary is represented by
a set of the equidistantly positioned repulsive point-like impurities
(plus signs), where a single impurity is modeled as a two-dimensional
δ-function-like energy barrier (see the text). If we choose the nearest-
neighbor distance 
G � λF , the grain boundary effectively behaves
as a structureless one-dimensional energy barrier.

perpendicularly to the wire. Disorder due to the perpendicular
boundaries is modeled by the potential

UD(x,y) =
∑

i

γGδ(x − xi), (26)

where γG is the strength of the perpendicular boundary and
xi is its random position along the wire. Obviously, the S

matrix of the wire with perpendicular boundaries is given by
the combination law (19), where si are the scattering matrices
of the individual boundaries and the matrices pi describe the
free electron motion between two neighboring boundaries. The
potential of the perpendicular boundary at x = 0 reads

UD(x,y) = γGδ(x). (27)

Formally, it is a one-dimensional version of the impurity
potential γ δ(x)δ(y − yi), for which the matrix si is known: it
is given by Eqs. (23), (24), and (25). Therefore, the scattering
matrix si for the potential (27) is given by the same equations,
except that the elements of the matrix � now read

�mn = mγG

h̄2 δmn. (28)

The elements of the matrices t , t ′, r , and r ′ can be written as

tmn = t ′mn = kn

kn + iγ̄G

δmn, (29)

rmn = r ′
mn = − iγ̄G

kn + iγ̄G

δmn, (30)

where γ̄G = mγG/h̄2. Since the matrices t , t ′, r , and r ′ are
diagonal, the electron impinging the perpendicular boundary
in the channel n is reflected back to the same channel. The
reflection probability for the channel n = 1 is

RG ≡ |r11|2 = γ̄ 2
G

k2
F + γ̄ 2

G

, (31)

where we use the approximation k1 
 kF , with kF being the 2D
Fermi wave vector. In other words, the 2D electron impinging
the grain boundary perpendicularly is reflected from kF to
−kF with the reflection probability RG coinciding with |r11|2.
Equation (31) allows us to describe the grain boundary by the
parameter RG which is measurable.

In real metallic wires the perpendicular grain boundaries
usually do not exist.30 Indeed, the matrix elements (29) and
(30) are diagonal. This means that there is no interchannel
scattering, that is, transport through such wire takes place in the
mutually independent channels. However, a single disordered
1D channel is always in the localization regime31,32 while the
metallic Q1D wires usually exhibit diffusive regime.33 So we
consider the grain boundaries with random orientation.

As shown in Fig. 3, a single grain boundary is modeled
by a set of the equidistantly positioned repulsive point-like
impurities with the nearest-neighbor distance 
G � λF . In
this model, the potential of the grain boundaries is given as

UD(x,y) =
∑

i

Bi(x,y), (32)

where

Bi(x,y) =
∑

j

γ δ(x − xij )δ(y − yij ) (33)
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is the potential of the ith boundary, the same positive γ is
used for all impurities, and [xij ,yij ] is the position of the j th
impurity at the ith boundary. Following Fig. 3 we find

xij = qi + j
G cos(αi), yij = j
G sin(αi). (34)

The grain boundaries described by the potentials (32)–(34) are
formally a special case of the impurity disorder and therefore
can be treated by the same scattering-matrix algorithm.

In our model, the reflectivity of a single randomly oriented
grain boundary depends on the parameters 
G and γ . We can
find the relation between these parameters and parameter RG,
defined by Eq. (31). Assume that the grain boundary described
by potential (33) intersects the wire perpendicularly at x = 0.
This simplifies (33) into the form

B(x,y) =
∑

j

γ δ(x)δ(y − j
G). (35)

Here γ δ(x)δ(y − j
G) is the same single-impurity potential
for which we have already expressed the scattering matrix
[Eqs. (24), (23), and (25)]. Therefore, the matrix � of the
potential (35) is simply a sum of the � matrices of all individual
potentials δ(x)δ(y − j
G), that is,

�mn = m

h̄2

γ


G

∑
j

χ∗
m(j
G)χn(j
G)
G. (36)

For small 
G the sum in Eq. (36) can be replaced by integral∫ W

0 χ∗
m(y)χn(y)dy and we obtain

�mn = m

h̄2

γ


G

δmn. (37)

Comparing this expression with (28) we obtain the relation
γG = γ /
G. The perpendicular reflectivity (31) becomes

RG = γ̄ 2

k2
F 
2

G + γ̄ 2
, (38)

where γ̄ = mγ/h̄2. The randomly oriented grain boundaries
can thus be characterized by a single parameter RG, related to
the model parameters γ̄ and 
G through Eq. (38). If we use

G � λF , the resulting wire conductance (for a fixed value of
RG) is independent on the choice of γ̄ and 
G.

III. CALCULATION OF PERSISTENT CURRENT

We consider a circular ring of width W and length L � W

shown in Fig. 4. The opening of the ring is pierced by
magnetic flux φ due to the magnetic field directed along the
axis z. The ring is in fact the Q1D wire from the previous
text, but circularly shaped and with the wire ends connected.
Therefore, the electron wave function ϕ(x,y) and electron
eigenenergy E in the ring can be described by the Schrödinger
equation

Hϕ(x,y) = Eϕ(x,y) (39)

with Hamiltonian (3), that is, by the same Schrödinger equation
as Eq. (2), but with EF replaced by E. However, we also
need to ensure the continuity of the wave function and its

FIG. 4. Circular ring of width W and length L � W , pierced by
magnetic flux φ. Also shown are the wave amplitudes A± and B±

entering the scattering-matrix equation.

first derivative at the connection. This implies the boundary
conditions

ϕn(0,y) = exp

(
− i2π

φ

φ0

)
ϕn(L,y),

(40)
∂ϕn

∂x
(0,y) = exp

(
− i2π

φ

φ0

)
∂ϕn

∂x
(L,y).

where φ0 = h/e is the flux quantum and the exponential factor
is the Peierls phase factor due to the flux φ (see Refs. 1 and 3).
Due to the boundary conditions (40) the energy E is discrete
and depends on φ. Now we show how to find the spectrum
En(φ) (see also Ref. 14).

Since the Schrödinger equation for the ring [Eq. (39)] is
identical with Eqs. (2) and (3), we can directly apply for any
energy E the scattering-matrix method introduced in Sec. II
(in Sec. II the method was discussed for E = EF , but it is
obviously applicable for any E). Thus, the wave function
ϕ(x,y) can be expressed in the ring positions x = 0 and
x = L by means of the expansions (10) and (11), where the
amplitudes A± and B± are related through the scattering-
matrix equation (12). If we set the expansions (10) and (11)
into the boundary conditions (40), we can rewrite (40) into the
matrix form(

A−

B+

)
=

[
0 Q−1(φ)

Q(φ) 0

] (
A+

B−

)
, (41)

where Qαβ(φ) = exp(i2πφ/φ0)δαβ . Combining the matrix
equations (12) and (41) we obtain the equations[

0 Q−1(φ)

Q(φ) 0

] (
A+

B−

)
=

[
r t ′

t r ′

] (
A+

B−

)
, (42)

which can be rearranged into the form[
r t ′ − Q−1(φ)

t − Q(φ) r ′

] (
A+

B−

)
= 0. (43)

We label the matrix on the left side of (43) as M(E,φ). To
fulfill Eq. (43), the determinant of the matrix M(E,φ) has to
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FIG. 5. Determinant |det(M(E,φ))|2 vs E. The presented data
points are the values of |det(M(E,φ))|2, calculated for equidistant
energies with a small energy step 
E. The minima of the sharp
valleys are the zero values of |det(M(E,φ))|2: each zero occurs at
an eigenenergy En(φ). All data were obtained for the specific ring
parameters discussed in Fig. 10, but the presented dependence is
(qualitatively) typical for any disordered ring.

be zero, that is,

det(M(E,φ))

= det

[
r(E) t ′(E) − Q−1(φ)

t(E) − Q(φ) r ′(E)

]
= 0. (44)

The submatrices t , r , t ′, and r ′ are functions of the electron
energy E. Therefore, the matrix M is a function of the magnetic
flux φ and energy E. The determinant of M(E,φ) is a complex
number. Therefore, the real as well as imaginary parts of
det(M(E,φ)) have to be zero to fulfill Eq. (44). Equation (44)
is thus equivalent to the equation

|det(M(E,φ))|2 = 0, (45)

which we solve numerically. For a given value of magnetic
flux, the determinant |det(M(E,φ))|2 is calculated numerically
as a function of the energy E which is varied with a small
energy step 
E from zero up to the Fermi energy. In Fig. 5
a typical numerical result for |det(M(E,φ))|2 is shown for a
small energy window. The eigenenergies En(φ) are the zero
points of |det(M(E,φ))|2. In Fig. 5 the oscillating function
|det(M(E,φ))|2 show a series of very sharp valleys with a
zero minimum value, that is, the positions of these minima
are the eigenenergies of interest. We repeat this procedure for
magnetic flux φ + 
φ, where 
φ = 10−4φ0, and we obtain
the eigenenergies En(φ + 
φ).

At zero temperature the persistent current is given as2,3

I =
∑

∀En�EF

In = −
∑

∀En�EF

∂En

∂φ
, (46)

where one sums the single-electron currents for all energy
levels below the Fermi level. Thus, to obtain the persistent
current in a single sample, one needs to determine all single-
electron energies En(φ + 
φ) and En(φ) below the Fermi
level, to evaluate all single-electron currents

In(φ) = −∂En

∂φ
(φ) 
 −En(φ + 
φ) − En(φ)


φ
(47)

and to sum them as shows Eq. (46). This procedure takes a lot
of computer time and allows us to study only small rings, but
later we introduce a trick allowing us to study large rings.

Finally, we note that describing the ring by means of (2), (3),
and (40) we ignore the magnetic field in the ring. Furthermore,
the approach ignores the effect of the ring curvature because we
assume that the x axis circulates along the ring circumference
(see Fig. 4). Both approximations hold for L � W .

IV. RESULTS

A. Conductance of wires with grain boundaries
and impurities

In this subsection we present our scattering-matrix results
for the wire conductance. The wires with disorder due to the
randomly oriented grain boundaries are compared with the
wires with impurity disorder. Also included are the wires with
disorder due to the perpendicular grain boundaries.

We use the material parameters m = 9.109 × 10−31 kg and
EF = 5.6 eV (λF = 0.52 nm), typical of the Au wires. We
first study the Au wires of width W = 9 nm, with the number
of the conducting channels being Nc = 34. This number well
emulates the limit Nc � 1, but later we also use larger Nc.

The parameters of the grain-boundary disorder are chosen
as follows. The perpendicular reflectivity RG [Eq. (38)] and
the mean lateral size of the grain dG are kept the same for
the randomly oriented as well as perpendicular boundaries in
order to isolate the effect of random orientation. We recall that
a single grain boundary is modeled as a line with equidistant
impurities of strength γ̄ and nearest-neighbor distance 
G.
Since we keep 
G � λF , the choice of γ̄ and 
G has no
effect on the resulting conductance for a given RG. However,
once the parameters dG, 
G, and γ̄ are chosen, we keep
the same γ̄ and also the same total number of impurities in
the wire with impurity disorder. Both types of disorder are
thus represented by the same numerical model. Therefore,
any difference between their transport properties exclusively
reflects the difference between the scattering by repulsive lines
and scattering by a random array of point-like scatterers.

In the ensemble of macroscopically identical wires disorder
fluctuates from wire to wire and so does the conductance.
Hence we evaluate (14) for the ensemble of (typically)
103 wires and we obtain the mean conductance 〈g〉, mean
resistance 〈ρ〉 where ρ = 1/g, and variance 〈g2〉 − 〈g〉2.

Figure 6 shows our results for the mean resistance,
conductance, and conductance fluctuations in dependence on
the wire length. If we compare the wires with randomly
oriented grain boundaries (data shown by squares) with the
wires with impurity disorder (data shown by the full lines),
we see that the results for both types of wires are in good
mutual agreement and also in accord with what one expects
for the white-noise-like disorder. The following features are
worth stressing.

First we look at the mean resistance. Both the impurity
disorder and randomly oriented grain boundaries first show
the linear diffusive dependence18

〈ρ〉 = 1

Nc

+ ρdif
L

W
, ρdif = kF

πnel
, (48)

085454-6



CONDUCTANCE AND PERSISTENT CURRENT IN QUASI- . . . PHYSICAL REVIEW B 84, 085454 (2011)

0 10 20 30 40 50 60
L /l

0

0.5

1

σ  
/σ

di
f

0 10 20 30 40 50 60
L /l

0

0.2

0.4

0.6

0.8

1

√⎯
⎯

⎯
va

r(
g 

)

0 10 20 30 40
L  [nm]

0

9

W
  [

nm
]

0 10 20 30 40 50 60
L /l

0

0.5

1

1.5

2

<
ρ >

randomly oriented
boundaries                 13.7

perpendicular
boundaries                 15.2

impurities                  68.2

l [nm]

0.365

FIG. 6. Mean resistance 〈ρ〉, conductivity σ , and conductance
fluctuations

√
var(g) vs L/l. The results for the wires with impurity

disorder, randomly oriented grain boundaries, and perpendicular
grain boundaries are shown by full lines, squares, and dashed lines,
respectively. The dotted line in the top left panel is the linear
fit 〈ρ〉 = 1/Nc + ρdifL/W , where ρdif = 2/(kF l) is the diffusive
resistivity and the mean-free path l is fitted. The conductivity σ

is extracted from the mean conductance 〈g〉 by means of (49)
and normalized by σdif = 1/ρdif. The dotted line in the top right
panel shows the theoretical formula (51). The parameters of the
grain-boundary disorder are RG = 0.2 and dG = 10 nm, the impurity
strength is γ̄ = 0.303, and the impurity density is nI = 2.18 nm−2.
All three types of disorder are shown schematically in the right bottom
panel.

where ρdif is the diffusive resistivity and ne = k2
F /2π is the

2D electron density. Notice that in the former case l = 68 nm
while in the latter case l = 13.7 nm only. In other words, the
point-like scatterers constituting the repulsive lines scatter the
electrons much more effectively like the point-like scatterers
of the equivalent strength in a random lattice.

For L � l the full line and squares start to deviate from the
linear rise (48). The deviation is due to the weak localization
and eventually due to the strong one, manifested by exponential
rise of 〈ρ〉 with L. On the other hand, for the wire with
perpendicular grain boundaries (dashed line) we see the
exponential rise of 〈ρ〉 already for L/l ∼ 1, which means that
the Q1D wire is in the localization regime. This is because each
channel behaves like an independent 1D disordered channel.

Figure 6 also shows the wire conductivity

σ = 1

1/〈g〉 − 1/Nc

L

W
, (49)

normalized by the diffusive conductivity σdif = 1/ρdif. In
absence of localization σ/σdif = 1 independently on L. In
fact, we see that σ/σdif decreases with L linearly both for
the impurity disorder and randomly oriented grain bound-
aries. This linear decrease is in accord with the weak-
localization-mediated behavior predicted for the white-noise-
like disorder.15,34 Indeed, the theory15,34 predicts

〈g〉 = σdif
W

L
− 1

3
, l � L � ξ, (50)

0 5 10 15
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     3.7
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FIG. 7. Typical conductance 〈ln g〉 in dependence on L and L/ξ .
The results for the wires with impurity disorder, randomly oriented
grain boundaries, and perpendicular grain boundaries are shown by
full lines, squares, and dashed lines, respectively. The dotted lines in
the left panel show the fit 〈ln g〉 = −L/ξ which gives the localization
lengths ξ shown in the figure. All parameters are the same as in Fig. 6.

where σdifW/L is the classical diffusion term and the term 1/3
is the weak localization correction typical of the Q1D wire. If
we write (50) in terms of the conductivity, we obtain

σ

σdif
= 1 − 1

3

kF

πneW

L

l
. (51)

In Fig. 6 this equation is compared with the numerical data
for σ/σdif. Indeed, the agreement is very good both for the
impurities and randomly oriented grain boundaries. On the
contrary, for the perpendicular grain boundaries we see that
σ/σdif decreases with L exponentially. In such Q1D wire there
is no weak localization, only the strong one.

Finally, we look at the conductance fluctuations
√

var(g) ≡√
〈g2〉 − 〈g〉2. For the Q1D wire with the white-noise-like

disorder the theory predicts the universal value35,36√
var(g) = 0.365. (52)

Figure 6 shows that the impurity disorder and randomly
oriented grain boundaries exhibit

√
var(g) in accord with

prediction (52). For the perpendicular boundaries we see a
quite different

√
var(g) as the diffusive regime is absent.

Figure 7 shows the typical conductance 〈ln g〉 versus the
wire length. For all three types of disorder, our numerical
data approach at large L the dependence 〈ln g〉 = −L/ξ (see
Refs. 37 and 36). This is a sign of the localization. Fitting of
the numerical data provides the values of ξ shown in Fig. 7. We
find the result ξ/ l 
 0.9Nc for the impurity disorder as well as
for the randomly oriented grain boundaries. The result ξ/ l 

0.9Nc reasonably agrees with the result ξ/ l = Nc predicted for
the white-noise-like disorder38 and with the numerical studies
for impurity disorder.16 For the perpendicular grain boundaries
we find the value ξ/ l 
 3.7, which differs from the 1D result
ξ/ l1D = 1 (see Ref. 18). The difference is due to the fact that
our l is the mean over many channels.

Figure 8 shows the numerical data for 〈Tn〉. The theory
based on the white-noise disorder predicts that the conducting
channels are equivalent31,39 in the sense that 〈T1〉 = 〈T2〉 . . . =
〈TNc

〉. In Fig. 8 this equivalency is reasonably confirmed for
the wire with impurity disorder and for the wire with randomly
oriented grain boundaries. Nevertheless, in the latter case the
equivalency is not so good as in the former one. This can be
understood if we look at the sketch of the grain boundaries in
Fig. 3. It is obvious that the boundaries with the angles α → 0
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FIG. 8. Transmission probability 〈Tn〉 vs L/ξ for the channel
indices n = 1,2, . . . ,Nc, where Nc = 34. For n ordered increasingly,
the resulting curves are ordered decreasingly: the top curve shows
〈Tn=1〉, the bottom one shows 〈Tn=Nc

〉. The data are presented sepa-
rately for the impurity disorder, randomly oriented grain boundaries,
and perpendicular grain boundaries. All presented data originate from
the same calculation as the data in Fig. 6.

or α → π are very unlikely because the mutually intersect-
ing boundaries are prohibited. Consequently, the probability
distribution of α in the interval (0,π ) is not homogenous:
it has a broad maximum around π/2. Our scattering-matrix
approach also works for the intersecting boundaries, but such
study is beyond the scope of this paper: In such a case the
angle distribution tends to be homogenous in the whole interval
(0,π ), which improves the channel equivalency. Disorder with
nonintersecting grain boundaries, studied here, is typical for
the so-called bamboo-like wires,40–43 with dG > W . Finally,
for the perpendicular boundaries the channel equivalency is
absent due to the localization.

In Fig. 9 the wires with the randomly oriented grain
boundaries are studied for various values of the grain-boundary
reflectivity RG and grain size dG. The experimentally mea-
sured values of RG in the polycrystalline wires range from 0.1
up to 0.8 in dependence on the fabrication conditions.30,44–49

For all RG and dG considered in Fig. 9, the resulting mean
resistance and conductance fluctuations are similar to the
results for impurity disorder (full lines), albeit a noticeable
quantitative differences emerge with increasing RG. The data
for the conductance fluctuations suggest that the conductance
fluctuations in realistic samples might be correlated with the
measured values of RG. However, no matter what is the value
of RG, the mean resistance of the Q1D wire with the randomly
oriented grain boundaries rises with L linearly up to L 
 ξ ,
where ξ 
 Ncl even for Rg as large as 0.8. To see the standard
diffusive regime for the strongly reflecting boundaries is rather
surprising.
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FIG. 9. Mean resistance 〈ρ〉 and conductance fluctuations√
var(g) vs L/ξ . The results for the wires with randomly oriented

grain boundaries (shown by symbols) are compared for various values
of the reflectivity RG and grain size dG. The results for the wire with
impurity disorder (the same as in Fig. 6) are presented in a full line.

B. Persistent current in rings with grain boundaries
and impurities

In this subsection the persistent currents are studied numer-
ically in the rings with randomly oriented grain boundaries
and rings with impurity disorder. Our numerical results are
compared with the theoretical result [Eq. (1)] valid for the
diffusive rings with white-noise-like disorder.

In the ensemble of the macroscopically identical disordered
rings the persistent current (46) strongly fluctuates from
sample to sample. To asses a typical size of the current in a
single sample, one can calculate the typical persistent current

Ityp =
√

〈I 2〉, (53)

where 〈· · ·〉 means the ensemble averaging. In fact, the
persistent current I also fluctuates in a single ring when the
number of the electrons (the Fermi energy) is varied. It has
been found in Ref. 50 that averaging over the electron number,
performed for a single configuration of disorder, leads to the
same results as the averaging over different configurations and
number of particles at the same time. In this work we average
over the electron number (over the Fermi energy) in a single
disordered sample. This helps to reduce the computational
time, but for our purposes still not sufficiently. Fortunately,
we will soon see that the computational time can be further
decreased remarkably, when the typical persistent current is
studied for magnetic flux � = ±0.25h/e. In what follows we
use � = −0.25h/e.

Figure 10 shows the single-electron current In versus En

and persistent current I = ∑
∀En�EF

In versus EF , calculated
for the ring with impurity disorder and ring with randomly
oriented boundaries. In both cases the ring parameters (see
Fig. 10 caption) are chosen to give roughly the same mean-free
path l and ratio L/l. In spite of their chaotic nature, the data for
I (EF ) are centered symmetrically around zero mean, which is
in accord with the theoretical result51

〈I 〉 = 0, � = ±0.25h/e (54)

and which we have also verified by calculating the mean
numerically. It is not trivial that the numerical data for
I = ∑

∀En�EF
In plotted in dependence on EF are centered

symmetrically around zero mean current. We stress that the
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FIG. 10. The top panels show the single-electron current In vs
the eigenenergy En, calculated by using relation (47) and algorithm
described in Fig. 5. The bottom panels show the persistent current
I (EF ) = ∑

∀En�EF
In, where we sum the single-electron currents

from the top panels. The dependence I (EF ) is centered around zero
mean current, as expected for flux � = ±0.25h/e. The parameters
of the ring with randomly oriented grain boundaries are W = 9 nm,
RG(2 eV) = 0.2, dG = 10 nm, l(2 eV) = 13.9 nm, and L/l = 9.4.
For the ring with impurity disorder W = 9 nm, nI = 2.5 nm−2,
γ̄ = 0.4, l(2 eV) = 16.7 nm, and L/l = 9.0.

I (EF ) dependence (the cloud of the data points in Fig. 10)
would become strongly asymmetric when just a single electron
level is omitted (mistakenly or intentionally) from the sum∑

∀En�EF
In. It is just this symmetry around zero mean which

allows us to calculate the typical current by means of a very
efficient trick. Now we explain the trick in detail.

The first row of panels in Fig. 11 shows the single-
electron currents In from Fig. 10 once again, but only for
the energy window δE = 0.2 eV centered around the energy
E = 1.3 eV. The second row of panels shows the current
I ′ = ∑

Emin�En�EF
In, where we sum over the energy levels

in the window δE from the minimum En up to En = EF .
Notice that the data for I ′(EF ) are not centered around zero
mean. The third row of panels in Fig. 11 shows the current
I c(EF ) = I ′(EF ) − 〈I ′〉, where 〈I ′〉 is the mean obtained by
averaging over all EF in the window δE. In other words, the
dependence I c(EF ) is just the dependence I ′(EF ), but centered
around zero mean artificially. Now we are ready to examine
the typical persistent current.

Figure 12 shows the typical persistent current Ityp, calcu-
lated in dependence on the Fermi energy EF and normalized
to the theoretical value I theor

typ = 1.6(evF /L)(l/L). The open

circles show the numerical data for Ityp =
√

〈I 2〉, where
I = ∑

∀En�EF
In is the persistent current due to all single-

electron currents below the Fermi level. Such calculation
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FIG. 11. The first row of panels shows the single-electron currents
In from the preceding figure for the energy window δE = 0.2 eV
centered around the energy E = 1.3 eV. The second row of panels
shows the current I ′(EF ) = ∑

Emin�En�EF
In, where we sum over the

energy levels in the window up to a level En = EF . The third row of
panels shows the current I c(EF ) = I ′(EF ) − 〈I ′〉, where 〈I ′〉 is the
mean obtained by averaging over all EF in the window δE. Unlike
I ′(EF ), the dependence I c(EF ) is centered around zero mean. Note
that the data points are connected by a full line which serves as a
guide for eye but obscures the discrete character of the data, seen in
the previous figure.

is computationally cost because one has to determine all
single-electron eigenenergies En below the Fermi level.

However, Fig. 12 also shows the numerical data (squares)
for the typical current I c

typ =
√

〈I ′2〉 − 〈I ′〉2, where I ′ =∑
Emin�En�EF

In is the current obtained by solely summing the
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FIG. 12. Typical persistent current Ityp vs Fermi energy EF ,
normalized to the theoretical value I theor

typ = 1.6(evF /L)(l/L). The

circles show Ityp =
√

〈I 2〉, where I = ∑
∀En�EF

In is the persistent
current due to all single-electron currents below the Fermi level
(Fig. 10) and 〈· · ·〉 means averaging in the interval δEF = 0.2 eV
around EF . The squares show I c

typ =
√

〈I ′2〉 − 〈I ′〉2, where I ′ =∑
Emin�En�EF

In is the current obtained by solely summing the
single-electron currents from the energy window δE around EF ,
as discussed in Fig. 11. The values I c

typ originating directly from the
data in Fig. 11 are labeled by arrows.
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single-electron currents from the energy window δE around
EF , as discussed in Fig. 11. This approach works much faster
because it is no longer necessary to determine all En below
the Fermi level. Indeed, one only needs to determine all En in
a small energy window δE centered around EF . The value of
δE should be much larger than the typical interlevel distance,
but keeping δE � EF still saves a lot of computational time.
Figure 12 shows that the data for I c

typ reproduce the data for
Ityp very well.

Moreover, it can be seen that both calculations agree quite
well with the theoretical value I theor

typ = 1.6(evF /L)(l/L). The
exception are the data in the wire with grain boundaries at small
Fermi energies. These data deviate from I theor

typ due to onset
of the localization regime at small Fermi energies. (A closer
inspection also shows why such deviation is not observed for
the impurity disorder. The reason is that the mean-free path
decays with the Fermi energy much slower than in the case of
the grain-boundary disorder.)

In what follows we speak about the typical current Ityp

but we in fact evaluate I c
typ. We consider the Au rings with

material parameters m = 9.109 × 10−31 kg and EF = 5.6 eV.
In Fig. 13 the typical persistent currents in rings with impurity
disorder and rings with randomly oriented grain boundaries are
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FIG. 13. Top panels: Typical persistent current Ityp vs the ring
length L, with Ityp normalized to I0 = evF /L and with L normalized
to the mean-free path l. The symbols show our numerical results
obtained for various parameters listed in the figure. Other parameters
are m = 9.109 × 10−31 kg and EF = 5.6eV. The theoretical result
I theor

typ = 1.6(evF /L)(l/L) is shown in a full line. Bottom panels: The
same data as in the top panels, but with Ityp normalized to I theor

typ .

studied with impact on the length dependence. The numerical
data for Ityp (shown by symbols) are obtained for various ring
parameters and compared with the theoretical result I theor

typ =
1.6(evF /L)(l/L). For the impurity disorder the numerical data
agree with the formula I theor

typ = 1.6(evF /L)(l/L) very well and
for the grain boundaries the agreement is also very good for
large enough L/l. We conclude that for large enough L/l not
only the impurity disorder but also the randomly oriented grain
boundaries behave like the white-noise-like disorder.

However, it can also be seen, that for L/l as large as ∼10–20
the typical current in the ring with the randomly oriented grain
boundaries can exceed I theor

typ by a factor of 3 to 4, when the
grain-boundary reflectivity RG is large and/or the grain size dG

is small. It is remarkable that this happens for the ring lengths
for which the corresponding wire resistivity is in the diffusive
regime (see the left panel of Fig. 9). Of course, the factor
of 3 to 4 is too small to explain the huge persistent currents
(∼evF /L) measured8 in a single Au ring of length L/l ∼ 100.
However, it is large enough to resemble the experiment10 where
the measured typical currents exceeded the formula I theor

typ 

(evF /L)(l/L) about two to three times.

C. Extension to the 3D conductors with columnar grains

So far we have studied the polycrystalline wires/rings
made of the 2D conductor of finite width (Fig. 1). It is
intuitively clear that the obtained results are representative also
for the polycrystalline wires/rings made of the 3D conductor,
if the grain boundaries in the conductor are randomly oriented
in the 3D space. To extend our numerical study to such 3D
systems is therefore not meaningful.

It is however meaningful to extend our study to the 3D
wires/rings with columnar grains.19–28 In particular, we would
like to pay attention (see Fig. 14) to the bamboo-like 3D wires
with the columnar grains separated by the planar boundaries

FIG. 14. Model of the bamboo-like 3D wire with columnar
grains. The columnar grain is a grain shaped as a column parallel with
the growth direction—in our case with the axis z. In the bamboo-like
wire shown in the figure, the columnar grains are simply the wire
segments separated by the planar boundaries (shaded areas) randomly
oriented with respect to the sidewalls. When viewed from the top,
such 3D wire looks exactly like the 2D wire with the line-shaped
grain boundaries (Fig. 1), analyzed up to now.
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oriented randomly with respect to the wire sidewalls. In reality,
the bamboo-like wires40–43 with the columnar grains can
be viewed as an opposite limit to the polycrystalline wires
composed of the tiny 3D grains (with typical size much smaller
that the wire cross section) oriented randomly in the wire
volume. The bamboo-like 3D wires in Fig. 14 are a reasonable
idealization of the real bamboo-like wires, and we will see that
the diffusive persistent currents in the rings made of such wires
are remarkably larger that the white-noise-based prediction
I theor

typ 
 (evF /L)(l/L).
We assume (Fig. 14) that the wire of the width W and

thickness H is connected to the semi-infinite contacts. The
wave function of the electron at the Fermi level is described
by the 3D Schrödinger equation[

− h̄2

2m

 + Vy(y) + Vz(z) + VD(x,y)

]
ψ(�r) = EF ψ(�r),

(55)

where 
 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2, VD(x,y) is the po-
tential of disorder due to the columnar grain boundaries, and
Vy(y) and Vz(z) are the confinement potentials:

Vy(y) =
{

0, 0 < y < W

∞, elsewhere
, Vz(z) =

{
0, 0 < z < H

∞, elsewhere
.

(56)

First we solve (55) in the contacts, where we keep VD = 0
as is customary in the Landauer conductance theory.18 For
VD = 0 the energies in the directions y and z, εW

m and εH
n , are

εW
m = h̄2π2

2mW 2
m2, εH

n = h̄2π2

2mH 2
n2, m,n = 1,2, . . . ,

(57)

and the corresponding wave functions are

χW
m (y) =

√
2

W
sin

(πm

W
y
)

, χH
n (z) =

√
2

H
sin

(πn

H
z
)

.

(58)

The wave function in the contacts can thus be expressed as

ψ(�r) =
∞∑

m=1

∞∑
n=1

[a+
mne

ikmnx + a−
mne

−ikmnx]χW
m (y)χH

n (z),

(59)

where the wave vectors kmn obey the equation

EF = h̄2k2
mn

2m
+ εmn, εmn ≡ εW

m + εH
n , (60)

with εmn being the bottom energy of the channel [m,n]. Clearly,
kmn is the Fermi wave vector in the channel [m,n]. The vectors
kmn are real for EF � εmn and imaginary for EF < εmn. The
number of the conducting channels (channels with εmn � EF )
is Nc = πNWNH /4, where NW = kF W/π and NH = kF H/π

are the numbers of the conducting channels in the y and z

directions, respectively. We can order the terms [mn] in the
sum (59) so that the energies εmn are ordered increasingly
starting by ε11. Then the first Nc terms in the sum (59) are due
to the conducting channels.

Now we analyze (55) in the disordered region, where
VD(x,y) is not zero. Since VD(x,y) is z independent, it is useful
to set into (55) the expansion ψ(�r) = ∑∞

n′=1 ϕn′(x,y)χH
n′ (z).

Multiplying (55) by χH
n (z)∗ and integrating over z we get the

equations[
− h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2

)
+ Vy(y) + VD(x,y)

]
ϕn(x,y)

= Enϕn(x,y), (61)

where n = 1,2, . . . and En = EF − εH
n are the Fermi ener-

gies in the 2D subbands arising in the vertical direction.
Equation (55) thus splits into a set of equations (61) which
are formally the same as the Schrödinger equation (2) for
the 2D conductor. Hence, the disordered 3D conductor in
Fig. 14 can be viewed as a parallel connection of independent
2D conductors with the same disordered potential VD(x,y),
but with various Fermi energies En. Of course, these 2D
conductors are in fact the 2D subbands in the vertical direction.

Therefore, the Landauer conductance of the wire with
columnar grains can be expressed as

g =
NH∑
n=1

gn(En), (62)

where

gn(En) =
NW (En)∑

j=1

NW (En)∑
m=1

|tjm(En)|2 kj (En)

km(En)
(63)

is the Landauer conductance (14) rewritten for the nth 2D
conductor (nth vertical 2D subband) with Fermi energy En.
We recall that kj (En) = kjn, where kjn is the Fermi wave
vector in the 1D channel [j,n], defined by Eqs. (59) and
(60). The transmission amplitudes tjm, describing the electron
transmission through the columnar grain boundaries, can be
evaluated by means of the same scattering matrix as we have
introduced in Sec. II for the line-shaped grain boundaries
(Fig. 3), except that now the Fermi energy is En.

In Fig. 15 transport in the 3D wire with columnar grains
is compared with transport in the corresponding 2D wire,
obtained from the 3D wire by setting H → 0 and NH = 1,
and by keeping the same Fermi energy. This means that the
grain boundaries in the 2D wire are the randomly oriented
line-shaped boundaries studied in the preceding text (right
sketch in Fig. 1). The comparative study shows a few results
which are worth stressing.

First a comment on the localization length ξ in Fig. 15.
Note that the values of ξ in the 3D wire and 2D wire are
the same. The 3D wire with the columnar grains is a parallel
connection of NH independent 2D wires (2D subbands) with
the same disorder and different Fermi energies. The 2D wire
with the largest Fermi energy provides the largest localization
length and this is just the localization length of the whole
3D wire because the conductance contributions from other
NH − 1 wires become negligible for large L. The 2D wire
with the largest Fermi energy is just the 2D wire obtained
from the 3D wire by setting H → 0 and by keeping the same
Fermi energy. As a result, ξ is the same in the 3D and 2D
wires.
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FIG. 15. Mean resistance 〈ρ〉, conductivity σ , and conductance
fluctuations

√
var(g) vs L/ξ for the Au wire with grain boundaries.

The left column of panels shows the results for the 3D wire with the
columnar grains (Fig. 14), calculated for three different sets of the
parameters W , H , dG, and RG. The right column of panels shows
the results for the 2D wire with the line-shaped grain boundaries,
which is “fabricated” from the 3D wire with the columnar grains
by setting H → 0 and NH = 1, and by keeping the same Fermi
energy EF = 5.6 eV. In other words, the 2D wire and the first vertical
2D subband of the 3D wire are the microscopically identical 2D
conductors. The dashed lines show the linear fit of the 〈ρ〉 vs L

dependence, from which we obtain the diffusive resistivity ρdif. The
mean-free paths l3D and l2D are extracted from ρdif and from the 3D
and 2D Drude-resistivity expressions. The conductivity σ is obtained
from the mean conductance 〈g〉 by means of (49) and normalized by
σdif = 1/ρdif.

Notice now the mean resistance for L < ξ . It is roughly
NH times smaller for the 3D wire than for the 2D wire and the
resulting mean-free paths l3D and l2D give the numerical ratio
l3D/l2D 
 0.9, which is in good accord with the formula

l3D = 9π

32
l2D 
 0.88l2D, (64)

derived in Appendix B. One also sees that for L < ξ the
conductivity σ exhibits in the 3D wire essentially the same
weak localization behavior as in the 2D wire. In summary,
the resistance and conductance of the 3D wire with columnar
grains exhibit a standard diffusive behavior, similarly as for
disorder which is white-noise-like in the 3D space. The fact
that the wire is effectively composed of the NH independent
2D wires is reflected by the conductance fluctuations: Fig. 15
shows that

√
var(g) is roughly

√
NH times larger than the

standard value, which one expects.
Consider now the ring made of the 3D wire with the

columnar grains. The ring is composed of the NH independent

2D rings. If the nth 2D ring carries the persistent current In,
the total persistent current ICG in the ring with the columnar
grains reads

ICG =
NH∑
n=1

In(En). (65)

To calculate In numerically, we evaluate for each individual
2D ring the spectrum of all single-electron currents below the
Fermi level (in the same way as in Fig. 10) and we sum these
currents to obtain In. After that we evaluate the sum (65) and
we eventually perform averaging to obtain the typical current
ICG

typ =√
〈I 2

CG〉.
We also estimate ICG

typ analytically. The simplest estimate,
ICG

typ 
 √
NH (evF /L)(l2D/L), assumes that each of the NH

rings supports the same typical current [the value of which
is (evF /L)(l2D/L) because the columnar grains create the
white-noise-like 2D disorder in the plane perpendicular to the
columns]. A more precise estimate (Appendix C) gives

ICG
typ = 64

3
√

35π

√
NHI 3D

typ


 1.26
√

NH (evF /L)(l3D/L), (66)

where

I 3D
typ = 1.1(evF /L)(l3D/L) (67)

is the expression (1) for d = 3, the 3D mean-free path l3D =
0.88l2D [Eq. (64)], and the 2D mean-free path is assumed in
the form l2D = CEF (the constant C is determined by fitting
the numerically calculated l2D as shows the inset to Fig. 16).

In Fig. 16 the typical current in the ring with the columnar
grains is calculated as a function of the Fermi energy. It can
be seen that formula (66) (full line) agrees quite well with
the numerically calculated ICG

typ (open circles), while formula
(67) (dotted line) underestimates the numerical data about√

NH times. Obviously, formula (67) holds only for disorder
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FIG. 16. Typical persistent current in the 3D ring with the
columnar grains ICG

typ vs the Fermi energy. The ring dimensions are
W = 9 nm, H = 7 nm, and L = 130 nm (L � l for all considered
EF ), the parameters of the grain boundaries are RG(EF = 2 eV) =
0.2 and dG = 10 nm. The circles show the numerical data, the
full line represents the estimate (66), and the dotted line is the
white-noise-based result (67). Inset shows the mean-free path in the
2D wire (l2D) as a function of the Fermi energy: the squares show the
numerical data and the dotted line is the linear fit l2D = CEF .
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which is white-noise-like in the 3D space, not the case for the
columnar grains.

The ring considered in the Fig. 16 is rather small. For the Au
ring with H = 70 nm the formula (66) gives the result Ityp 

20(evF /L)(l3DL). This result resembles the experiment [8],
where the diffusive persistent currents in three individual Au
rings of length L/l ∼ 100 exceeded the value (evF /L)(l3D/L)
one-to-two order of magnitude.

V. SUMMARY AND CONCLUDING REMARKS

A. Summary of results

We have studied mesoscopic transport in the Q1D wires and
rings made of a 2D conductor of width W and length L � W .
We have compared transport in an impurity-free conductor
with grain boundaries with transport in a grain-free conductor
with impurity disorder.

The transmission through the disordered conductors was
calculated by the scattering-matrix method, and the Landauer
conductance has been obtained. We have also calculated the
persistent current in the rings threaded by magnetic flux: we
have incorporated into the scattering-matrix method the flux-
dependent cyclic boundary conditions and we have introduced
a trick allowing to study the persistent currents in rings of
almost realistic size (the typical persistent current for magnetic
flux ±0.25h/e was extracted from the single-electron energies
in a narrow window around the Fermi energy). We have mainly
studied the conductance and persistent current in the diffusive
transport regime. Our results are the following.

If the grain boundaries are weakly reflecting, the systems
with the randomly oriented grain boundaries show the same
(mean) conductance and the same (typical) persistent current
as the systems with impurities. The obtained results also agree
with the single-particle theories of diffusive transport6,7,18

which treat disorder as a white-noise-like potential.
However, if the grain boundaries are strongly reflecting,

we find that the rings with the randomly oriented grain
boundaries can exhibit in the diffusive regime the typical
persistent currents about three to four times larger than
the white-noise-based formula I theor

typ 
 (evF /L)(l/L). This
finding resembles the experiment10 where the typical persistent
currents measured in the diffusive Au rings were two-to-three
times larger than I theor

typ 
 (evF /L)(l/L).
We have also extended our study to the 3D conductors with

the columnar grains. We have shown that the typical persistent
current in the diffusive metallic ring with the columnar grains
is given by the formula Ityp 
 1.26

√
NH (evF /L)(l/L), where

NH 
 HkF /π is the number of the 2D subbands within
the thickness H . For the Au ring with H = 70 nm the
formula gives the result Ityp 
 20(evF /L)(l/L), which is
not far from the experiment8 where the diffusive persistent
currents measured in three individual Au rings of length
L/l ∼ 100 were one to two orders of magnitude larger than
I theor

typ 
 (evF /L)(l/L).

B. Comment on relevance for experiment

Of course we cannot conclude that our study is a definite
explanation of the experiments in Refs. 8 and 10 because
the polycrystalline structure of the experimental samples in

these works is not known in detail. Moreover, even if we
would assume that the polycrystalline grains in the experiment
of Ref. 8 are both columnar and strongly reflecting, our
study predicts the persistent current only 30 to 50 times
larger than the formula I theor

typ 
 (evF /L)(l/L) while the largest
experimental value in Ref. 8 exceeds the value (evF /L)(l/L)
almost 200 times.

Nevertheless, according to our study one should not be sur-
prised when two experiments11,12 confirm the formula I theor

typ 

(evF /L)(l/L) convincingly and two other experiments8,10 do
not. Our study shows clearly within the single-particle picture,
that the experimental results can depend quite strongly on the
nature of the polycrystalline grains being very different for
different fabrication conditions.19–28

The columnar grains are fundamentally different from
the tiny randomly oriented grains, implicitly assumed
in any 3D white-noise-based description of disorder.
Unlike the tiny random grains, the columnar grains give rise to
the white-noise-like disorder only in the plane perpendicular to
the columns, which gives rise to the factor

√
NH in the formula

Ityp 
 1.26
√

NH (evF /L)(l/L) but which has essentially no
effect on the diffusive resistance of the wire. It might be
instructive to intentionally fabricate the diffusive normal-metal
rings with various types of grains, to measure the persistent
current, and to correlate the data with the grain properties:
the results Ityp 
 (evF /L)(l/L) and Ityp 
 √

NH (evF /L)(l/L)
should appear for the tiny random grains and columnar grains,
respectively.

C. Comment on large persistent currents in rings with
perpendicular grain boundaries

Finally, we make a comment on the rings and wires with the
grain boundaries perpendicular to the current. By considering
the perpendicular boundaries, the work of Ref. 52 predicted the
persistent currents of size ∼evF /L in rings of length L � l〈g〉,
where l〈g〉 is the mean-free path defined as

l〈g〉 = 2L

kF W
〈g〉, (68)

with 〈g〉 being the corresponding wire conductance. Since the
result ∼evF /L strongly resembles the experimental results of
Ref. 8 we revisit it briefly. We apply our 2D model (Fig. 3).

In Fig. 17(a) we compare the typical persistent currents
in the rings with the randomly oriented boundaries (empty
squares) and rings with the perpendicular boundaries (full
squares), while in Fig. 17(b) we show the corresponding wire
conductances 〈g〉. Note that these data are plotted in depen-
dence on the length L. We set the conductances from Fig. 17(b)
into formula (68) and we evaluate l〈g〉 and L/l〈g〉. In Fig. 17(c)
we plot the typical currents from Fig. 17(a) in dependence on
L/l〈g〉. Indeed, for the perpendicular boundaries we observe
the effect predicted in Ref. 52, namely the persistent currents
∼evF /L for the ring lengths L/l〈g〉 � 1. However, in Ref. 52
this result was not compared with the result for the randomly
oriented boundaries. Figure 17(c) shows that the large current
diminishes when the orientation of the boundaries becomes
random.

Since the values ∼evF /L resemble the large persistent
currents in the Au rings of the experiment in Ref. 8 one might

085454-13



J. FEILHAUER AND M. MOSKO PHYSICAL REVIEW B 84, 085454 (2011)

0 200 400 600 800
L  [nm]

0

0.5

1

1.5

2

1/
<

g>

0 200 400 600 800
L [nm]

10
-2

10
-1

10
0

I ty
p
 / 

I 0

0 10 20 30 40 50
L /l

<g>

10
-2

10
-1

10
0

I ty
p
 / 

I 0

(a) (b)

c)

FIG. 17. (a) Typical persistent current Ityp vs the ring length L,
normalized to I0 = evF /L. The empty squares are the numerical data
for the randomly oriented grain boundaries. The full squares are the
numerical data for the perpendicular grain boundaries. The full line
shows the formula I theor

typ = 1.6(evF /L)(l/L). The dotted line shows
formula (69), where ξ = 3.7l is the localization length determined
earlier. The mean-free path l in these formulas originates from the wire
resistivity ρdif = 2/kF l, determined in Sec. IV A. (b) Inverse mean
conductance 1/〈g〉 vs the wire length L in the wires corresponding to
the rings in (a). The dashed line is the diffusive dependence 1/〈g〉 =
1/Nc + (2/kF l)(L/W ). (c) The same numerical data as in (a), but
versus the ratio L/l〈g〉, where l〈g〉 is extracted from the data in (b) by
means of formula (68).

speculate about presence of the perpendicular grain boundaries
in the measured rings. However, we see in Fig. 17(b) that the
wire with the perpendicular boundaries is in the localization
regime for all wire lengths L, for which we observe the currents
∼evF /L in the ring. In contrast to this, the Au wires used to
determine the mean-free path experimentally8 were safely in
the diffusive regime, not in the localization regime.

Moreover, formula (68) should not be used when the wire is
in the localization regime. Indeed, the mean-free path should
be length independent, while l〈g〉 depends on L quite strongly
due to the exponentially raising 1/〈g〉.

Figure 17(a) also shows that the numerical data for the
perpendicular boundaries roughly agree with the formula

Ityp =
√

Nc(evF /L) exp(−L/2ξ ), (69)

while the numerical data for the randomly oriented boundaries
approach the formula I theor

typ = 1.6(evF /L)(l/L). Formula (69)
describes the Q1D ring with Nc noncommunicating channels
in the localization regime,4 which is not the case for the Q1D
rings of the experiment in Ref. 8
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APPENDIX A: TYPICAL PERSISTENT CURRENT FOR
MAGNETIC FLUX � = ±0.25�0

The persistent current I in a single mesoscopic Q1D ring
is a periodic function of magnetic flux �. The period of the
function is �0 = h/e. Therefore it can be expanded into the
Fourier series as

I (�) =
∞∑

p=1

Ip sin(2πp�/�0). (A1)

The current I in a disordered ring strongly fluctuates from
sample to sample due to the microscopic fluctuations of
disorder. We are therefore interested in the typical persistent
current Ityp =

√
〈I 2〉, where 〈· · ·〉 means averaging over differ-

ent configurations of disorder. Assuming the white-noise-like
disorder (see the text), the authors of Ref. 7 derived the
equation

〈I 2(�)〉 =
∞∑

p=1

〈
I 2
p

〉
sin2(2πp�/�0), (A2)

where

〈
I 2
p

〉 = 96

π2p3

(
e

τD

)2

(A3)

is the mean square of the pth harmonics, τD = L2/D is the
electron diffusion time around the ring, and D = vF l/d is the
electron diffusion coefficient. For � = ±0.25�0 expression
(A2) can be rewritten as

〈I 2〉 = 96

π2

(
e

τD

)2 ∞∑
p=0

1

(2p + 1)3
. (A4)

We perform summation in (A4) and we obtain the typical
persistent current in the form

I theor
typ =

√
〈I 2〉 
 3.2

e

τD

. (A5)

If we set into (A5) the above mentioned expressions for τD

and D, we obtain Eq. (1).

APPENDIX B: MEAN-FREE PATH IN 3D WIRE WITH
COLUMNAR GRAINS

We set into Eq. (62) the formulas g = WH
L

σ3D and gn =
W
L

σ 2D
n , where σ3D is the 3D conductivity and σ 2D

n is the
conductivity of the nth 2D wire. We obtain the equation

σ3D = 1

H

NH∑
n=1

σ 2D
n . (B1)

We set into (B1) the Drude expressions

σ3D = k2
F l3D

3π
, σ 2D

n = knln

2
, (B2)

where kF and l3D are the 3D Fermi wave vector and 3D mean-
free path, and kn = √

2mEn/h̄ and ln are the Fermi wave vector
and mean-free path in the nth 2D wire. We find that

l3D = 3

kF NH

NH∑
n=1

knln

2
. (B3)
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For the 2D wire with the grain boundaries we expect the
dependence ln ∝ En. This dependence is in good accord with
our numerical calculations (see the inset to Fig. 16). We
therefore set into (B3) the formula ln = CEn, where C is
a constant. Moreover, we also set into (B3) the expression
En/EF = 1 − n2/N2

H . We obtain the equation

l3D = 3l2D

2NH

NH∑
n=1

(
1 − n2

N2
H

)3/2

, (B4)

where we have used ln=1 = CE1 
 CEF ≡ l2D (here l2D is
the 2D mean-free path in the 2D wire with the same EF as in
the 3D wire). For NH � 1 the sum in (B4) can be replaced by
integral and we obtain the result

l3D = 9π

32
l2D 
 0.88l2D, (B5)

which is in good accord with our simulation (Fig. 15).

APPENDIX C: TYPICAL PERSISTENT CURRENT IN 3D
RING WITH COLUMNAR GRAINS

Using formula (65), the typical persistent current ICG
typ in

the 3D ring with columnar grains can be written as

ICG
typ =

√〈
I 2
CG

〉 =
√√√√ NH∑

n=1

〈
I2

n

〉
, (C1)

where we have utilized the fact that the persistent currents In

in the constituting 2D rings are mutually uncorrelated. Due to

the columnar grains, each 2D ring is subjected to the white-
noise-like 2D disorder and therefore carries the typical current
given by formula (1) with d = 2. Thus

〈
I2

n

〉 =
[

1.6
evn

L

ln

L

]2

. (C2)

We set the last equation into (C1) and we also apply
the equation v2

n = 2En/m and equation ln = CEn from the
preceding Appendix. We obtain the equation

ICG
typ = 1.6

e

L2
C

√
2

m

√√√√ NH∑
n=1

E3
n, (C3)

which can be rewritten into the form

ICG
typ = 1.6

evF

L

l2D

L

√√√√ NH∑
n=1

(
1 − n2

N2
H

)3

(C4)

by using the same procedure as in the preceding Appendix.
For NH � 1 the sum in (C4) can be replaced by integral and
calculated analytically. We obtain the formula

ICG
typ = 4√

35

√
NH 1.6

evF

L

l2D

L
. (C5)

which relates the typical current in the 3D ring with the
columnar grains to the typical current in the 2D ring with
the same Fermi energy and disorder. By means of formula
(B5) one can rewrite (C5) into the form (66).

*martin.mosko@savba.sk
1Y. Imry, Introduction to Mesoscopic Physics (Oxford University
Press, Oxford, 2002).
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