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The kinetic approach is applied to develop the Drude-Sommerfeld model for studying the optical and electrical
transport properties of spheroidal metallic nanoparticles when the free electron path is much greater than the
particle size. For the nanoparticles of an oblate or a prolate spheroidal shape a dependence of the dielectric function
and the electric conductivity on a number of factors, including the frequency, the particle radius, the spheroidal
aspect ratio, and the orientation of the electric field with respect to the particle axes, has been been found. The
oscillations of the real and imaginary parts of the dielectric permeability have been found with increasing particle
size at some fixed frequencies or with frequency increasing at some fixed radius of a nanoparticle. The results
obtained in the kinetic approach are compared with those known from the classical model.
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I. INTRODUCTION

Understanding how light interacts with matter at the
nanometer scale is a fundamental problem in nanophotonics
and optoelectronics. The variety of applications is based on
the surface-bound optical excitations in metallic nanoparti-
cles (MNs). They include plasmonic nanomaterials, optical
nanosensors, biomarkers, integrated circuits, and subwave-
length waveguides, molecular imaging, metamaterials with a
negative refractive index, optical antennas, and so on (see, e.g.,
Refs. 1–7).

The optical and transport properties of the MNs have
been investigated for a long time, and the results have
been presented quite completely in a number of reviews8–11

and monographs,12–16 especially for MNs of a spherical
shape.

The dielectric function is the most important factor for
the design and optimization of plasmon nanometer-sized
structures. However, this function for MNs differs from an
ideal bulk metal. The difference depends on many factors,
such as the size and shape of the MNs and the surrounding
media.18–22 That is why the dielectric function of MNs
has been under comprehensive study for many years.12–17

The size effect becomes more significant when the size d

of MN is comparable with the electron mean free path l.
The ratio between d and l is a very important physical
characteristic, which eventually defines the mechanism of an
electron relaxation rate inside the MN. As a rule, the cases
d � l and/or d � l are studied. The former case refers to the
so-called diffusive electron dynamics, and the latter one refers
to the ballistic electron dynamics. The diffusive case has been
studied in detail since it enables us to use the Mie theory
for a uniform media23 or the Maxwell-Garnett theory24 for a
composite media in the calculations of the optical properties of
the MN.

In particular, when d � l, the following expression for di-
electric permeability that results from the Drude-Sommerfeld

theory16,25 has been often used:

ε(ω) = ε′(ω) + iε′′(ω) = 1 − ω2
pl

ν2 + ω2
+ i

ν

ω

ω2
pl

ν2 + ω2
. (1)

Here ν is the collision frequency inside the particle bulk, ωpl =√
4πne2/m is the frequency of plasma electrons oscillations

in the metal, e and m are the electron charge and mass,
respectively, and n is the electron concentration. The imaginary
part of the dielectric permeability ε′′(ω) is connected to
the high-frequency (optical) conductivity by the well-known
relation

σ (ω) = ω

4π
ε′′(ω) = ν

4π

ω2
pl

ν2 + ω2
. (2)

For sufficiently low frequencies (ω → 0), one gets the expres-
sion σ0 = ne2/mν, describing the statical conductivity.

In the case when the sizes of the MN are less than the
mean electronic free path in the particle, the mechanism of
electron scattering is changed, and the surface of the particle
starts to play a dominate role. This effect will be called the
surface or boundary effect. Strictly speaking, in this case
neither Mie nor Drude-Sommerfeld theory can be applied,
and an another approach ought to be elaborated to present
the optical properties of MNs. As has been shown,26,27 a
clear size dependence of relaxation dynamics is observed
in experiments. This is a strong indication of an efficient
electron-surface phonon interaction in this regime. But the
experimental results18,28–33 are often analyzed within the frame
of the named theories, or to simplify the problem, Eqs. (1) and
(2) have been used with formal replacements15,33–35

ν → 3

4

υF

R
or ν → AυF

S

4V
, (3)

where υF is the electron velocity at the Fermi surface, R

refers to the particle radius, V and S refer to the volume and
the surface area of the spherical particle, respectively, and
A is a coefficient obtained by fitting the calculations to the
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experimental data. In other words, the collision frequency in
the particle volume is replaced by some effective collision
frequency. But such a replacement can be applied for the MNs
of a spherical shape only. If the geometry of MN differs from
the spherical one and the condition d � l holds for at least
one of the particle directions, then the optical conductivity
becomes the tensor quantity,21 and the formal replacement
similar to the one presented by Eq. (3) can no longer be used.
It is necessary to look more closely at the effect of the particle
boundaries on the optical properties. For a theoretical study
it is convenient to choose a particle with a spheroidal shape.
That is because the results obtained for particles with such a
shape can be easily extended to particles with other shapes by
means of the formal transformation of the spheroidal axes.

Thus, there arises a problem in the case d � l of how
to calculate the values of ε or σ when the above-mentioned
classical models cannot be used.

The present work is devoted to the elaboration of the new
approach, allowing us to calculate the real and imaginary parts
of the dielectric permeability for MNs of a spheroidal shape
in the case when the inequality d � l holds.

Since both the real and the imaginary parts of ε(ω)
govern the numerous properties of the MNs, the necessity
of the detailed study of the boundary effect on the dielectric
permeability has become evident.

The rest of the paper is organized as follows. The kinetic
approach to the problem is presented in Sec. II. Section III
contains the study of the conductivity in the spheroidal MNs.
In Sec. IV, we consider the limit cases of the problem and
the size effects. Section V is devoted to the discussion of the
obtained results, and Sec. VI contains the conclusions.

II. KINETIC EQUATION METHOD

To account for the effect of MN boundaries on the optical
and electrical transport properties of the MN, we will apply the
kinetic equations approach. The advantage of this approach is
that the obtained results can be applied to strongly anisotropic
spheroidal (needle-like or disk-shaped) MNs, but in the case
of MNs with a spherical shape it transforms to the well-known
results,16,25 such as the ones given by Eqs. (1) and (2). Thus,
it permits one to study the effect of the particle shape on the
measured physical values. Second, the kinetic method enables
us to investigate the MNs with sizes greater or less than the
electron mean free path l. But there exists a lower limit of the
applicability of this method in the small radius limit when
the particle size is comparable to the de Broglie wavelength
of the electron, and the quantization of the electron spectrum
starts to play an essential role.36–38 Practically, it is around a
radius of greater or less than 2 nm. Beyond the electronic Fermi
distribution function, the influence of quantum effects on the
optical conductivity can manifest itself in the quantization of
electron pulses and angular momentums. It is important at low
temperatures, when the distance between successive energy
levels is much higher than kBT .

Let us consider the single MN that is irradiated by an
electromagnetic wave, whose electric field is given as

E = E0 exp[i(kr − ωt)]. (4)

Here E0 is the amplitude of an electric field, ω is its frequency,
k is the wave vector, and r and t describe the spatial coordinates
and time.

We will assume that the electromagnetic wave length is far
above the particle size. If one chooses the coordinate origin in
the center of the particle, then the above-mentioned assumption
is written as

kr � 1. (5)

The inequality (5) implies that the E field of the electro-
magnetic wave can be considered to be spatially uniform on
scales of the order of a particle size. This means that the field
represented by Eq. (4) induces inside of the MN an electric
field that is varying in time but uniform in space. The amplitude
of such a field is connected to E0 by the relation39

Ej
in(ω) = E

j

0 (0,ω)

1 + Lj [ε(ω) − 1]
, (6)

where Lj are depolarization factors in the j th direction (in the
principal axes of an ellipsoid). The explicit expressions of Lj

for a single MN of an ellipsoidal shape can be found elsewhere
(see, e.g., Refs. 40 and 41).

The field Ein has an effect on the equilibrium electron
velocity distribution and thus determines the appearance of
a nonequilibrium addition f1(r,v,t) to the Fermi distribution
function f0(ε). Here ε = mυ2/2 is the kinetic energy of an
electron, and υ = |v| refers to the electron velocity. As is well
known,42 the equilibrium function f0(ε) does not give any
input to the current. Accounting for both the time dependence
of Eq. (4) and the inequality (5), the distribution function of
electrons, which generates the field Ein, can be written as

f (r,v,t) = f0(ε) + f1(r,v,t) ≡ f0(ε) + f1(r,v) eiωt . (7)

The function f1(r,v) can be found as a solution of the linearized
Boltzmann’s equation

(ν − iω)f1(r,v) + v
∂f1(r,v)

∂r
+ eEinv

∂f0(ε)

∂ε
= 0. (8)

In Eq. (8) we have assumed that the collision integral
(∂f1/∂t)col = −f1/τ is evaluated in the relaxation time ap-
proximation (τ = 1/ν). What is more, the function f1(r,v)
ought to satisfy the boundary conditions as well. These
conditions may be chosen from the character of electron
reflection from the inner walls of the MN. We will take, as
is usually done, the assumption of diffusive electron scattering
by the boundary of MN. Placing the origin of the coordinates
at the center of the particle, we can present this boundary
conditions in the form

f (r,v)|S = 0, vn < 0, (9)

where vn is the velocity of the component normal to the particle
surface.

Along with diffusive scattering, the mirror boundary condi-
tions at the nanoparticle surface were examined in the literature
for electron scattering (see, e.g., Refs. 42 and 43). In this case,
each electron is reflected from the surface at the same angle at
which it falls to the surface. In diffuse reflection, the electron is
reflected from the surface at any angle. In order for the mirror
mechanism to be dominant, the surface must be perfectly
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smooth in the atomic scale since the degree of reflectivity of the
boundary essentially depends on its smoothness. Practically,
for a nonplanar border such smoothness is extremely difficult
to achieve. As was shown,43 the mirror boundary conditions
give a small correction to the results obtained with the account
of only the diffusive electron reflections. Therefore, we chose
more realistic boundary conditions given by Eq. (9).

It is comparatively easy to solve Eq. (8) and to satisfy the
boundary conditions of Eq. (9) if one passes to the transformed
coordinate system, where an ellipsoid with semiaxes R1,R2,R3

transforms into a sphere of radius R with the same total
volume:

xj = Rj

R
x ′

j , R = (R1R2R3)1/3. (10)

A similar transformation should be made for the electron
velocities as well: υj = υ ′

jRj/R. Then, solving Eq. (8), one
finds

f1(r,v, t) = −e
∂f0

∂ε
vEin

1 − exp[−(ν − iω) t ′(r′,v′)]
ν − iω

, (11)

where the characteristic of Eq. (8) can be presented as

t ′ = 1

v′2 [r′v′ +
√

(R2 − r′2) v′2 + (r′v′)2]. (12)

The characteristic curve of Eq. (12) depends only on the
absolute value of R and does not depend on the direction
of R. The radius vector R determines the starting position of
an electron at the moment t ′ = 0.

Generally speaking, the presence of the surface changes
both the current and the field distributions. It is reasonable
to point out here that, though the electric field still remains
homogeneous inside of the MN [in accordance with Eq. (5)],
the distribution function f1 in any case depends on coordinate
due to the necessity to meet the boundary condition given by
Eq. (9).

Performing the Fourier transformation of Eq. (11), one can
calculate the density of a high-frequency current induced by
the electromagnetic wave of Eq. (4) inside the MN via the
expression

j(r,ω) = 2e

(
m

2πh̄

)3 ∫ ∫ ∫
vf1(r,v, ω) d3υ. (13)

Let us introduce the tensor of the complex conductivity
σ c

αβ(r,ω) using the relationship

jα(r,ω) =
3∑

β=1

σ c
αβ(r,ω) Eβ

in. (14)

Then in accordance with both Eqs. (11) and (13), the
components of this tensor can be presented in the form

σ c
αβ(r,ω) = 2e

(
m

2πh̄

)3 ∫ ∫ ∫
υα

[
− eυβ

∂f0

∂ε

×
(

1 − e−(ν−iω)t ′(r ′,υ ′)

ν − iω

)]
d3υ. (15)

Before beginning a detailed study of the role of the particle
surface and the size effects, which will be given below, it is
worth noting here the following. The surface effect on the
conducting phenomenon is described in Eq. (15) by means

of the characteristic t ′(r′,v′). It accounts for the restrictions
imposed on the electron movement by a nanoparticle surface.
As one can see from Eq. (12), the value of t ′ is of the order
of t ′ ∼ R/υF , where υF is the Fermi velocity. This implies
that the value reciprocal to t ′ will correspond to the vibration
frequency between the particle walls. Hence, the inequality
νt ′ � 1 indicates that the electron collision frequency inside
the volume of MN would significantly exceed the one for
an electron collision with the surface of MN. If described
inequality is satisfied, it is possible to direct t ′ → ∞, and the
exponent in Eq. (15) can be neglected. Then, we obtain a stan-
dard expression for the dielectric permeability, such as given
in Eq. (2). To ensure that, it is necessary to pass in Eq. (15) to
the integration over υ in the spherical coordinate system∫∫ ∞

−∞

∫
d3 υ →

∫ 2π

0
dϕ

∫ π

0
sin θ dθ

∫ ∞

0
υ2 dυ,

with the use of the formulas∫ ∞

0
υ4 δ

(
υ2 − υ2

F

)
dυ = υ3

F

2
, (16)

n = 8π

3

(
mυF

2πh̄

)3

, (17)

and to take into account that the energy derivative of f0 in
the zero approximation in the small ratio of kBT /εF can be
replaced by

∂f0

∂ε
≈ −δ(ε − εF ), (18)

as well as the fact that only the diagonal terms with
υα = υβ = υ are retained after integration over all angles.

At the end of this section, we would like to pay attention
to the next two important circumstances. (i) Though the
inner field Ein is spatially uniform, the distribution function
f1(r,v,t) and, consequently, the density of the current j(r,ω)
are dependent on the coordinates. This dependence is imposed
by the boundary conditions of Eq. (9). (ii) The density of
the current and the components of the conductivity tensor
have the physical sense only if they are averaged over the
particle volume. For instance, it is easy to ensure that the
energy absorbed by a single MN is determined either by an
averaged density of the current 〈j 〉 or by an averaged tensor of
the complex conductivity 〈σ c

αβ(r,ω)〉 [accounting for Eq. (14)].

III. CONDUCTIVITY OF SPHEROIDAL METALLIC
NANOPARTICLES

Let us average over coordinates the components of the
conductivity complex tensor represented by Eq. (15). The
necessity of such an averaging arises from the fact that
the power absorbed by a single MN is caused by the
conductivity averaged over the volume of MN. Then, in view
of Eq. (18), one gets the expression

〈
σ c

αβ(r,ω)
〉 = 4e2

m

(
m

2πh̄

)3 1

ν − iω

∫
d3r ′

V

×
∫

d3υ υαυβ δ
(
υ2 − υ2

F

)
[1 − e(ν−iω)t ′ ],

(19)
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where the angle brackets denote the averaging. First, we can
fulfill the integration in Eq. (19) over all electron coordinates.
In accordance with Ref. 39, one can find that

1

V

∫
d3r ′[1 − e−(ν−iω)t ′(r′,υ ′)] = 3

4
�(q), (20)

where the following notations have been used:

�(q) = 4

3
− 2

q
+ 4

q3
− 4

q2

(
1 + 1

q

)
e−q, (21)

q = 2R

υ ′ (ν − iω) ≡ q1 − iq2. (22)

Further, we will take into account only the diagonal compo-
nents of the conductivity tensor. Based on Eq. (20), we can
rewrite Eq. (19) as

〈
σ c

αα(r,ω)
〉 = 3e2m2

(2πh̄)3

1

ν − iω

∫
d3υ υ2

α δ
(
υ2 − υ2

F

)
�(q).

(23)

Let us restrict ourselves only to the single MN of spheroidal
shape. To calculate the residual integral, we pass to the
spherical coordinate system with a z axis directed along the
rotation axis of the spheroid (as we have done in the previous
section) and take into account that the components of an
electron velocity parallel (υ‖) and perpendicular (υ⊥) to this
axis are defined as

υ‖ = υz = υ cos θ, υ⊥ =
√

υ2
x + υ2

y = υ sin θ, (24)

respectively, where

υ2
(x

y)
= υ2 sin2 θ

(
cos2 ϕ

sin2 ϕ

)
.

After integration in Eq. (23) over the azimuthal angle ϕ and
over all electron velocities, in view of Eqs. (16) and (17), we
obtain for the parallel and perpendicular components of the
conductivity tensor the expressions

σ c
‖ ≡ 〈

σ c
zz(r,ω)

〉
= 9

4

ne2

m

1

ν − iω

∫ π/2

0
sin θ cos2 θ �(θ ) dθ |υ=υF

, (25)

and

σ c
⊥ ≡ 〈

σ c
xx(r,ω)

〉 = 〈
σ c

yy(r,ω)
〉

= 9

8

ne2

m

1

ν − iω

∫ π/2

0
sin3 θ �(θ ) dθ |υ=υF

. (26)

The subscript υ = υF means that the electron velocity in the
final expressions should be taken on the Fermi surface. The
� function in Eqs. (25) and (26) varies now with the angle
θ because q [see Eq. (22)] for a spheroidal particle becomes
dependent on the angle θ and can be determined as

q = 2

υF

ν − iω√
cos2 θ

R2
‖

+ sin2 θ

R2
⊥

≡ q(θ ), (27)

where R‖ and R⊥ are the semiaxes of the spheroid. Such a form
for q follows from the form of “deformed” electron velocity,
which enters into Eq. (22) and for a spheroid is

υ ′ = υR

√(
sin θ

R⊥

)2

+
(

cos θ

R‖

)2

≡ υ ′(θ ), (28)

where the velocity components υ‖ and υ⊥, presented by
Eq. (24), were used. The velocity υ ′ does not depend on the
particle radius R but depends only on the spheroid aspect ratio.
In the case of a spherical particle R‖ = R⊥ ≡ R, and υ ′ = υ.

There is a well-known common relation42 between the
tensor components of the complex dielectric permeability and
the components of a complex conductivity tensor:

〈εαβ(r,ω)〉 = δαβ + i
4π

ω

〈
σ c

αβ(r,ω)
〉
. (29)

If one separates the real and the imaginary parts in the
expressions for both the complex tensors of the dielectric
permeability and the conductivity, i.e., presents〈

εc
αβ(r,ω)

〉 = ε′
αβ(ω) + iε′′

αβ(ω), (30)

and 〈
σ c

αβ(r,ω)
〉 = σ ′

αβ(ω) + iσ ′′
αβ (ω), (31)

then in correspondence to Eq. (29), one obtains

ε′
αβ(ω) = δαβ(ω) − 4π

ω
σ ′′

αβ(ω) (32)

and

ε′′
αβ(ω) = 4π

ω
σ ′

αβ(ω). (33)

Finally, using Eqs. (25), (26), and (31), one gets for a
spheroidal particle

σ ′
(‖

⊥)(ω)

= 9

4

ne2

m
Re

[
1

ν − iω

∫ π/2

0

(
sin θ cos2 θ

1
2 sin3 θ

)
�(θ ) dθ

]
υ=υF

(34)

and

σ ′′
(‖

⊥)(ω)

= 9

4

ne2

m
Im

[
1

ν − iω

∫ π/2

0

(
sin θ cos2 θ

1
2 sin3 θ

)
�(θ ) dθ

]
υ=υF

.

(35)

The upper (lower) symbols in the parentheses on the left-
hand sides of Eqs. (34) and (35) correspond to the upper
(lower) symbols in the parentheses on the right-hand sides of
these equations. Formulas (34) and (35) are the fundamental
equations for calculating the dielectric function and therefore
for studying the optical properties of MNs.

For illustration, we present in Fig. 1 the frequency depen-
dence of an imaginary part of the dielectric permeability ratio
components for a spheroidal Au particle, which is obtained by
numerical evaluating the integrals in Eqs. (33) and (34). It is
worth noting that the radius R‖ is directed along the revolution
axis of the spheroid, and R⊥ is transverse to it. These spheroidal
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FIG. 1. (Color online) The dependence of the ratio ε ′′
⊥/ε ′′

‖ for
prolate (R⊥/R‖ = 0.1, upper curve) and oblate (R⊥/R‖ = 10, lower
curve) Au particles (with R = 50 Å) vs the frequency ratio ω/νs ,
where νs = υF /(2R).

radii can be expressed through the radius of a sphere (of an
equivalent volume) as

R = (R‖R2
⊥)1/3.

The calculations were carried out using such parameters for
Au: ν = 3.39 × 1013 at 0 ◦C (Ref. 39), n = 5.9 × 1022 cm−3,
υF = 1.39 × 108 cm/s (Ref. 44).

As one can see, the ratio ε′′
⊥/ε′′

‖ oscillates with increasing
frequency both for the prolate and the oblate Au nanoparticles.
These oscillations have a damping character for both prolate
and oblate particles, but they differ in the period of oscillations.
For a given prolate nanoparticle the oscillations occur around
the constant value ε′′

⊥/ε′′
‖ � 4/3, and for oblate ones they occur

in the vicinity of another constant, ε′′
⊥/ε′′

‖ � 1/2. The period
of oscillations depends only slightly on the particle volume;
however, the oscillation amplitude is more pronounced for
particles with smaller radii.

It is also worth noting that the intensity of the surface mode
is determined by the magnitude of the imaginary component
of the material dielectric constant. Materials with a small ε′′
have a large, narrow absorption peak, whereas materials with
a large ε′′ have a small, broader absorption peak.31

The ratio of the real parts of ε′
⊥/ε′

‖ does not oscillate with
frequency and what is more, at the frequency of ω � ωpl

exhibits the singularity. Thus, we demonstrate below the plots
for ε′

⊥(ω) and ε′
‖(ω) separately.

Figure 2 shows the real part of the dielectric permeability
components for Au nanoparticles as a function of normalized
frequency, obtained by using Eqs. (32) and (35) in numerical
calculations. The magnitude of ε′ reaches a minimum value at
ω → 0, and ε′ → 0 at ω → ωpl . Among the two components
of ε′, the frequency dependence is more pronounced for the
longitudinal one: ε′

‖ attains the smallest negative value at ω →
0 in the case of the prolate Au nanoparticle and the maximal
negative value for the oblate one. The absolute magnitude of
both components of ε′ is essentially enhanced as the radius of
the particle is increased (especially at ω → 0).

Below, we will consider several approaches that enable us
to derive the explicit analytical expressions for σ ′ and σ ′′ from
Eqs. (34) and (35).

0 5 10 15

1000

800

600

400

200

0

ω νs

R
e

ε
,R

e
ε

FIG. 2. (Color online) The dependence of ε ′
⊥,ε ′

‖ for both the
prolate (R⊥/R‖ = 0.1, solid lines) and the oblate (R⊥/R‖ = 10,
dashed lines) Au particles (with R = 50 Å) vs the frequency ratio
ω/νs . Thick curves are for parallel components, and thin curves are
for perpendicular components of ε ′.

IV. LIMIT CASES: SIZE EFFECTS

A. Frequency approach

The straightforward evaluations of the dielectric permeabil-
ity of a single MN or its conductance can be made when the
� function entering in Eq. (23) or in Eqs. (34) and (35) takes
the simplest form. Let us introduce the value

νs = υ ′

2R
, (36)

which will characterize the frequency of electron collisions
with the spherical MN surfaces and where R is the sphere
radius. This allow us to rewrite Eq. (22) as

q = ν

νs

− i
ω

νs

. (37)

(i) First, we consider, for example, the case |q| � 1. In
the frequency scale, this implies that both inequalities ν � νs

and ω � νs must be executed. Then, Eq. (21) reduces to the
form

�(q)|q�1 ≈ 4

3
− 2

q
+ 4

q3
− · · · . (38)

Accounting for Eqs. (38) and (22), we can calculate approxi-
mately the real and imaginary parts of the ratio:

Re

(
�(θ )

ν − iω

)
|q|�1

≈ 4

3

ν

ν2 + ω2
− υ ′(θ )

R

ν2 − ω2

(ν2 + ω2)2
+ · · · ,

(39)

Im

(
�(θ )

ν − iω

)
|q|�1

≈4

3

ω

ν2+ω2
− 2

υ ′(θ )

R

ν ω

(ν2 + ω2)2
+ · · · ,

(40)

which enter into Eqs. (34) and (35). Here the velocity υ ′(θ ) is
given by Eq. (28). The formula (39) at ν → 0 agrees with an
earlier estimation given in Ref. 45.

Substituting Eq. (39) into Eq. (34), and Eq. (40) into Eq. (35)
and using the values of the integrals I‖ and I⊥ given in the
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Appendix, one obtains for the real and imaginary parts of the
conductivity tensor components the expressions

σ ′
(‖
⊥)(ω) ≈ ne2

m

(
ν

ν2 + ω2
− 9

2
νs

ν2 − ω2

(ν2 + ω2)2
I(‖

⊥) + · · ·
)

,

(41)

σ ′′
(‖

⊥)(ω) ≈ ne2

m

(
ω

ν2 + ω2
− 9νs

ν ω

(ν2 + ω2)2
I(‖

⊥) + · · ·
)

,

(42)

provided that the conditions ν � νs , ω � νs , and υ = υF are
satisfied. To meet the requirement of ν � νs , e.g., for an Au
particle at 0 ◦C, it is necessary that its radius should be R �
400 Å. The first term in the parentheses in Eqs. (41) and (42)
results from the integration over the angle

∫ π/2

0

(
sin θ cos2 θ

1
2 sin3 θ

)
dθ = 1

3
. (43)

The second term in the parentheses in Eqs. (41) and (42)
contains the integrals I , which account for the particle
nonsphericity and do not depend on the frequency. The
simplest result for σ can be obtained for a spherical MN,
when the integrals I for different polarizations coincide with
each other and are equal to 1/3 [see Eq. (A5)].

As one can see, the first term in the parentheses in
Eqs. (41) and (42) describes the Drude-Sommerfeld results for
a spherical particle, and the second one gives the first correction
of the kinetic theory to the volume electron scattering,
allowing us to account for an electron scattering from the
surfaces of the nanoparticle as well. The calculations of the
frequency dependencies of the ratio ε′′

⊥/ε′′
‖ while employing

Eqs. (33) and (41) (and the conditions mentioned therein)
give results qualitatively similar to our previous numerical
calculations [using Eqs. (33) and (34)], depicted in Fig. 1,
though without any oscillations. But, quantitatively, the results
obtained from Eq. (34) are of one or even two orders of
magnitude lower (depending on the radius of MN) than
those following from the Drude-Sommerfeld formula or from
Eq. (41).

(ii) For the opposite limit case, when |q| � 1 (or ν � νs

and ω � νs), we can take advantage of the expansion

e−q � 1 − q + q2

2!
− q3

3!
+ q4

4!
− q5

5!
+ q6

6!
− · · · ,

and then from Eq. (21), we immediately obtain

�(q)||q|�1 ≈ 1
2q − 2

15q2 + 1
36q3 − · · · . (44)

In this case, we can find for the real and imaginary parts of the
above-mentioned ratio the relations

Re

(
�(θ )

ν − iω

)
|q|�1

≈ R

υ ′(θ )
− 8

15
ν

(
R

υ ′(θ )

)2

+ · · · , (45)

Im

(
�(θ )

ν − iω

)
|q|�1

≈ 8

15
ω

(
R

υ ′(θ )

)2

+ · · · . (46)

This permits us to get for the σ components the following
expressions:

σ ′
(‖

⊥) ≈ 9

4

ne2

m

(
R

υ
I<

(‖
⊥)|υ=υF

− 2

15

ν

ν2
s

J(‖
⊥) + · · ·

)
, (47)

σ ′′
(‖

⊥)(ω) ≈ 9

30

ne2

m

ω

ν2
s

(J(‖
⊥) + · · ·), (48)

provided that ν � νs , ω � νs , and υ = υF . In other words,
the first condition means that the radius of MN should obey
the condition R � υF /(2ν). The first term in the parentheses
of Eq. (47) is the result of the integration over angle θ with
υ ′(θ ) in the denominator [see Eqs. (A6) and (A7)], and the
second one can be given by

J(‖
⊥) = 1

R2

R2
‖R

2
⊥

R2
⊥ − R2

‖

[
±

(
1

1/2

)
∓

(
1

1
2 (R⊥/R‖)2

)

× R‖√
R2

⊥ − R2
‖

arctan

√
R2

⊥ − R2
‖

R‖

]
. (49)

The upper (lower) signs and upper (lower) symbols in the
parentheses on the right-hand side of Eq. (49) correspond to
those on the left-hand side of this equation. In the case of
prolate spheroidal particles (R‖ > R⊥), one should make in
Eq. (49) only the following replacement:

arctan

√
R2

⊥ − R2
‖

R‖
→ 1

2i
ln

∣∣∣∣∣∣
R‖ −

√
R2

‖ − R2
⊥

R‖ +
√

R2
‖ − R2

⊥

∣∣∣∣∣∣ , (50)

and in the case of a spherical symmetric MN, R‖ = R⊥ ≡ R,
and J‖ = J⊥ ≡ 1/3.

As one can see from Eq. (47), the real part of σ(‖
⊥) does not

depend on the frequency, but only on the particle geometry,
which is defined here by the parameters I< and J . For the
imaginary part of σ(‖

⊥), we have from Eq. (48) the linear
enhancement with the frequency. This implies that

ε′
(‖

⊥) ≈ 1 − 9

30

(
ωpl

νs

)2

J(‖
⊥) (51)

does not depend on the frequency, provided that the conditions
ω � νs and ν � νs are fulfilled.

B. Size approach

The cases of different relations between the particle sizes
and the conduction electron mean free path inside a particle
remain to be examined. Using Eq. (28), we can rewrite Eq. (22)
in somewhat another form:

q = q1(θ ) − iq2(θ ), (52)

with

q1(θ ) = 1√(
l

2R‖

)2
cos2 θ + (

l
2R⊥

)2
sin2 θ

, (53)
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where 2R‖ is the length of the MN along the z axis, which is
directed along the principal spheroid axis, 2R⊥ is the MN size
along the x or y directions,

l = υF

ν
(54)

has the sense of the length of an electron mean free path (for
Au at 0 ◦C, e.g., l � 410 Å), and

q2(θ ) = 1√(
νs⊥
ω

)2
sin2 θ + ( νs‖

ω

)2
cos2 θ

. (55)

Here

νs‖ = υF

2R‖
, νs⊥ = υF

2R⊥
(56)

are the frequencies of the electron collision with the particle
surfaces along and across the z axis of a spheroid, respectively.

Let us consider the possible relations between l and particle
sizes 2R‖ and 2R⊥.

(i) The conduction electron mean free path is much less than
the sizes of the particles along particular directions: l � 2R⊥,
l � 2R‖. As follows from Eq. (53), q1(θ )|υ=υF

� 1. In this
case, an electron is scattered predominately inside the volume
of MN. If, moreover, q2 → 0, i.e., νs,‖,νs,⊥ � ω, then from
Eq. (21), one gets

� � 4
3 . (57)

Substituting Eq. (57) into Eqs. (34) and (35) and using Eq. (43),
we obtain the Drude-Sommerfeld formulas for the real and
imaginary parts of σ , presented above by the first term in the
parentheses in Eqs. (41) and (42).

(ii) The mean free path of a conduction electron is much
greater than the particle sizes along particular directions:
l � 2R⊥, l � 2R‖. In this case, an electron scattering occurs
mainly from the inner surface of the MN. The electrons
oscillate between the walls of the particle with different
frequencies, including νs,‖, νs,⊥. In accordance with Eq. (53),
the inequality q1(θ ) � 1 holds only for q1. The parameter q2

remains arbitrary. Formally, we can put q1(θ ) → 0, and for the
real and imaginary parts of the � function one finds

Re �(q)|q1→0 = 4

3
+ 4

q2
2

(
cos q2 − 1

q2
sin q2

)
(58)

and

Im �(q)|q1→0 = − 2

q2
− 4

q3
2

+ 4

q2
2

(
1

q2
cos q2 + sin q2

)
.

(59)

Equations (58) and (59) allow us to fulfill the calculation of
the real and the imaginary parts of the ratio �/(ν − iω), as we
have done before. Then, we obtain

Re

[
�(q)

ν − iω

]
q1→0

= 1

ω

[
2

q2
− 4

q2
2

sin q2 + 4

q3
2

(1 − cos q2)

]
,

(60)

Im

[
�(q)

ν − iω

]
q1→0

= 4

ω

[
1

3
+ 1

q2
2

(
cos q2 − 1

q2
sin q2

)]
.

(61)

The parameter q2, defined by Eq. (55), is governed by
the frequency. Depending on the ratio between the incident
frequency and the frequencies νs,‖ and νs,⊥, the value of q2

can be greater or less than 1. This makes it difficult to perform
subsequent analytical calculations of the integrals involved
into Eqs. (34) and (35). Below, we examine some particular
cases for which the calculations of σ are the most simple. It
should be noted also that the corresponding expressions for
the components of ε can be easily obtained by substituting σ

into Eqs. (32) and (33).

1. Conductivity of a spherical MN

In the case of a spherical MN there are three characteristic
frequencies that are considered usually: the frequency of an
incident electromagnetic field ω, the collision frequency of
electrons in the particle volume ν, and the vibration frequency
between the particle walls νs (if the particle size is less than
the electron mean free path). When ν > νs , the mechanism
of an electron scattering in the bulk is dominated, and an
electron scattering from the particle surface gives only small
corrections of the order of νs/ν. But we are interested in the
case when the mechanism of the surface electron scattering
dominates, which corresponds to ν < νs .

For particles of a spherical shape, the electric conductivity
becomes a scalar quantity, and one can put R‖ = R⊥ ≡ R in
Eq. (27); then q and the � function in Eqs. (25) and (26) are
not dependent on the angle θ . Accounting for Eq. (43), this
makes it possible to obtain for σ the simple expression

σ c
sph = σ c

‖ = σ c
⊥ = 3

4

ne2

m

�(q)

ν − iω

∣∣∣∣
υ=υF

, (62)

with q = 2R(ν − iω)/υF . To calculate σ c
sph, one can use either

Eqs. (39) and (40) or Eqs. (45) and (46) or Eqs. (60) and (61)
for the different limit cases considered above. For example, we
restrict ourselves here only to the case when ν � νs . In this
limit case, to a first approximation, one can put q1 → 0. Then
Eqs. (60) and (61) with q2 = ω/νs can be used in Eq. (62). As
a result, one obtains for the real and imaginary parts of σ the
following expressions:

σ ′
sph � 3

8π
νs

ω2
pl

ω2

[
1 − 2νs

ω
sin

ω

νs

+ 2ν2
s

ω2

(
1 − cos

ω

νs

)]
,

(63)

σ ′′
sph � ω2

pl

4πω

[
1 + 3

(νs

ω

)2
(

cos
ω

νs

− νs

ω
sin

ω

νs

)]
,

(64)

provided that ν � νs , where νs = υF /(2R). The last expres-
sion in the Drude-Sommerfeld approximation looks like14

σ ′′
sph = ω

4π

ω2
pl

ν2 + ω2
. (65)

If one puts the oscillation terms in Eqs. (63) and (64)
equal to zero and uses Eqs. (32) and (33), then one obtains
the expression for the real part of the dielectric function,
which coincides with Eq. (1) at ν → 0, but for the imaginary
part of the dielectric function, one gets Eq. (2) only if the
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FIG. 3. (Color online) The real σ ′ (solid lines) and imaginary
σ ′′ (dashed lines) parts of the ratio of the electric conductivity to
the statical conductivity σ0 vs the frequency ratio for a spherical Au
particle with R = 200 Å. The thin lines correspond to the results
obtained using the kinetic method, and the thick lines correspond to
the Drude-Sommerfeld formulas.

replacement ν → 3νs/2 is done. This replacement is the same
one as presented by Eq. (3), which has been often used in a
phenomenological approximation.

The calculated results of the real and imaginary parts of an
electric conductivity across the frequency normalized to νs are
shown in Fig. 3 for a spherical Au nanoparticle, obtained with
the use of both the kinetic method and the Drude-Sommerfeld
formulas. The conductivity is measured on the scale of the
statical conductivity σ0 = ne2/(mν). For calculations of σ ,
Eqs. (34) and (35) have been used in the kinetic case, and
Eqs. (2) and (65) have been used in the Drude-Sommerfeld
case. For illustration, the numerical parameters for the Au
particle44 and ωpl = 1.37 × 1016s−1 were chosen. As can
be seen in Fig. 3 , the kinetic method appreciably changes
the frequency dependence of σsph at low frequencies, and at
high frequencies (ω � νs) it gives the same result for σsph

as that which follows from the Drude-Sommerfeld formula.
The difference between the kinetic and Drude-Sommerfeld
results is enhanced markedly as the particle radius is decreased.
The real part of σ is peaked at ω/νs → 0 in both cases,
whereas the imaginary part of σ is peaked at ω = νs in the
Drude-Sommerfeld case and at ω ≈ 4νs using the kinetic
method.

For an extremely low ω � νs or an extremely high ω � νs

frequency, one can find from Eqs. (63) and (64), after some
algebra, the next simple approximation for σ ′,

σ ′
sph = 3

16π
ω2

pl

{
R
υF

, ω � νs,
υF

Rω2 , ω � νs,
(66)

and for σ ′′,

σ ′′
sph = ω2

pl

4π

{
ω
2

(
R
υF

)2
, ω � νs,

1
ω
, ω � νs.

(67)

The results of Eqs. (66) and (67) at ω � νs correspond to
those presented above by first terms in the square brackets in
Eqs. (63) and (64), respectively.

5. 10 7 1. 10 6 1.5 10 6 2. 10 6 2.5 10 6 3. 10 6

550

500

450

Nanoparticle Radius cm

R
e

ε

FIG. 4. (Color online) The dependence of ε ′ for a spherical Au
particle vs the radius R at the frequencies of ω = 5.7 × 1014 s−1 (long-
dashed line), 6 × 1014 s−1 (solid line), and 6.3 × 1014 s−1 (short-
dashed line).

The calculations employing Eqs. (63) and (64) for an Au
particle with R = 200 Å give results similar qualitatively to
the ones above presented, but quantitatively, they are at the σ

maximum of approximately 30% higher.
In spite of the oscillation terms in square brackets in

Eqs. (63) and (64), the ratios of both σ ′
sph/σ0 and σ ′′

sph/σ0

do not oscillate with the frequency owing to the cutoff factors
before these brackets.

Now, let us discuss shortly the dependence of the dielectric
permeability on the size of MN. In Fig. 4 , we present the results
of our numerical calculations of ε′(R) using Eqs. (32) and (35)
at a fixed ω. For illustration, we choose such frequencies from
the frequency scale for which the above dependencies are the
most pronounced for an Au particle.

The real ε′ and the imaginary ε′′ parts of the dielectric
permeability oscillate when the particle radius is increased (see
Fig. 4 and Fig. 5). These oscillations have a damping character
and practically vanish for MNs with high radii. The real part
of ε tends to +1, and the imaginary part tends to 0 at ω → 0.
The real part has a first main minimum and the imaginary
part has a first main maximum at small values of R. Both the
minimum and the maximum of ε are slightly shifted toward
greater R with the frequency decreasing. In other words, this
means that the resonance energy peak shifts toward the red side
with increasing sizes of Au particles. The oscillation period in
accordance with Eqs. (63) and (64) is defined by

T = π
υF

Rω
(68)

and, as one can see, essentially depends on the product of Rω. It
becomes shorter at Rω � υF , and at Rω � υF it extends. Two
types of oscillations may occur: at fixed ω with varying R or at
fixed R with changing ω. For every fixed frequency there is a
constant of ε′ or ε′′ around which those quantities oscillate with
altering R. At high frequencies, the period of oscillations is
sharply decreased, and their amplitude is considerably lowered
proportionally to the factors (ωpl/ω)2 and ω2

pl/ω before the
square brackets in Eqs. (63) and (64), respectively.

If we assume that the dielectric function of the surrounding
media εm is close to unity, then for a spherical Au particle at
a plasmon frequency ω = ωpl/

√
1 + 2εm we get the closely
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FIG. 5. (Color online) The dependence of ε ′′ for a spherical Au
particle across the radius R at the frequencies of ω = 5 × 1014 s−1

(long-dashed line), 6 × 1014s−1 (solid line), and 7 × 1014 s−1 (short-
dashed line).

packed oscillations of ε′(R) within the amplitude interval
−2 ÷ 1. The behavior of σ ′(R) and σ ′′(R) at the frequencies
ω � νs and ω � νs can be seen from Eqs. (66) and (67) as
well.

2. Conductivity of an oblate MN

For oblate particles

l > 2R⊥ > 2R‖. (69)

We shall consider, for convenience, the frequency intervals
ω � νs,⊥ and ω � νs,‖. According to Eq. (55), the former
interval corresponds to q2|υ=υF

< 1, and the latter one corre-
sponds to q2|υ=υF

> 1. It is easy to show that Eqs. (60) and
(61) for these frequency intervals transform to

Re

[
�(q)

ν − iω

]
q1→0

≈ 1

ω

{
q2

2 , ω � νs,⊥,

2
q2

, ω � νs,‖,
(70)

Im

[
�(q)

ν − iω

]
q1→0

≈ 1

ω

{
q2

2
6 , ω � νs,⊥,

4
3 , ω � νs,‖.

(71)

Then, the integrals in Eqs. (34) and (35) can be calculated
exactly in the approximations of (70) and (71), and for an
arbitrary spheroid aspect ratio between R‖ and R⊥ we obtain
the following expressions for the components of an electric
conductivity:

σ ′
(‖

⊥)(ω) � 9

16π

ω2
pl

ω

{
Rω
υF

I(‖
⊥), ω � νs,⊥,

υF

Rω
I(‖

⊥), ω � νs,‖.
(72)

σ ′′
(‖

⊥)(ω) � 1

4π

ω2
pl

ω

{
3
2

(
Rω
υF

)2
J(‖

⊥), ω � νs,⊥,

1, ω � νs,‖.
(73)

In the case of ω � νs,⊥, Eq. (72) coincides with the first term
found previously in Eq. (47), and in the case of ω � νs,‖, it
coincides with the second term of Eq. (41) at ν = 0. Similarly,
Eq. (73) in the case of ω � νs,⊥ agrees with the first term
found previously in Eq. (48) with an accuracy of a numerical

coefficient, and in the case of ω � νs,‖ it coincides with the
first term of Eq. (42) at ν = 0.

The above expressions can be transformed to their simplest
forms for strongly deformed particles. Thus, for strongly oblate
MNs, when R⊥ � R‖, using Eqs. (A3) and (A9) from the
Appendix, it can be easily found that at low frequencies

σ ′
‖ = 9

32π
ω2

pl
R‖
υF

σ ′
⊥ = σ ′

‖
(

ln 2R⊥
R‖

− 1
2

)
}

, ω � νs,⊥, (74)

and at high frequencies

σ ′
‖ = 9

64π

(ωpl

ω

)2 υF

R‖

σ ′
⊥ = σ ′

‖/2

}
, ω � νs,‖. (75)

Similarly, for σ ′′ in the case of strongly oblate MNs at low
frequencies, one gets

σ ′′
‖ = 3

8π
ω

(ωplR‖
υF

)2

σ ′′
⊥ = 1

2σ ′′
‖
(

R⊥
R‖

arctan R⊥
R‖

− 1
)
}

, ω � νs,⊥, (76)

and at high frequencies one gets

σ ′′
⊥ ≡ σ ′′

‖ = ω2
pl

4πω
, ω � νs,‖. (77)

It remains to consider how the optical properties of
MNs evolve at νs,⊥ � ω � νs,‖ between the low- and high-
frequency intervals. This interval is just that for which the
parameter q2 can be greater or less than 1. In this case, only
the numerical evaluations of the integrals entered into Eqs. (34)
and (35) can be performed. The obtained results for the real
part of σ can be found in Ref. 45.

3. Conductivity of a prolate MN

For prolate particles

l > 2R‖ > 2R⊥. (78)

It is also worth noting that the approximations (70) and (71)
still remain valid for the case of inequalities (78) if the
transposition νs,⊥ ↔ νs,‖ is carried out in Eqs. (70) and (71).
As a result, the integrals in Eqs. (34) and (35) can be easily
calculated, and for prolate particles with an arbitrary aspect
ratio of R‖/R⊥, one obtains results similar to the ones given
by Eqs. (72) and (73), in which both replacements (50) and
(A8) have been made for J and the integrals I,I<. Below,
we write down only the results for strongly prolate particles
(R‖ � R⊥) at low and high frequencies. Using Eqs. (A4) and
(A10), it is easy to find that

σ ′
‖ = 9

64ω2
pl

R⊥
υF

σ ′
⊥ = σ ′

‖/2

}
, ω � νs,‖, (79)

σ ′
‖ = 9

256

(ωpl

ω

)2 υF

R⊥
σ ′

⊥ = 3σ ′
‖/2

}
, ω � νs,⊥. (80)
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For σ ′′, just as for σ ′, in the case of strongly prolate MNs,
one finds

σ ′′
⊥ = 3

16π
ω

(ωplR⊥
υF

)2

σ ′′
‖ = −2σ ′′

⊥
(
1 + ln R⊥

2R‖

)
}

, ω � νs,‖, (81)

and at high frequencies ω � νs,⊥, we have found σ ′′
‖ � σ ′′

⊥ =
ω2

pl/(4πω), which coincides exactly with Eq. (77) for oblate
particles.

Comparing Eqs. (79)–(81) for a strongly prolate particle to
the corresponding Eqs. (72)–(76) for a strongly oblate particle
shows that the character of the frequency dependence of the
corresponding components of the electric conductivity tensor
remains practically the same. The behavior of this dependence
resembles the asymptotic behavior of the Drude-Sommerfeld
frequency dependence for an electron scattering in the volume
of MN; this can be easily verified from the first summand
on the right-hand sides of Eqs. (41) and (42) by setting
ω � ν or ω � ν. The difference consists only in the fact
that for electron scattering in the volume, the high-frequency
conductivity close to the frequency ω ≈ ν goes smoothly to the
saturation. However, for the strongly asymmetric MNs there
exists an entire transitional region between the minimum and
the maximum transit rates where the frequency dependence of
σ appreciably differs from the volume case.

In the case of the frequency interval νs,‖ � ω � νs,⊥, the
numerical evaluations of the integrals involved in Eqs. (34)
and (35) can be performed, and the obtained results for σ have
been presented in Ref. 45.

V. RESULTS AND DISCUSSION

One of the most important cases takes place for the
frequencies ω � νs , with νs = υF /(2R) � ν. In terms of q

this corresponds to the situation when |q1| � 1 and |q2| � 1.
In this case, one may use expressions (58) and (59) at q1 → 0
to obtain the results for an asymptotically high value of q2. As
a result, we get for the real and imaginary parts of an electric
conductivity of a single spheroidal MN with an arbitrary aspect
ratio of R⊥/R‖ the following expressions:

σ ′
(‖

⊥)(ω) ≈ 1

4π

(
ωpl

ω

)2 (
ν + 9

4

υF

R
I(‖

⊥) + · · ·
)

, (82)

σ ′′
(‖

⊥)(ω) ≈ 1

4π

(
ωpl

ω

)2 (
ω − 9

4

υF

R
I(‖

⊥) + · · ·
)

, (83)

provided that ω � νs � ν. The parameters I‖ and I⊥ are given
in the Appendix by Eqs. (A1) and (A2).

For a MN of a spherical shape these expressions take the
simplest form

σ ′
(q1�1

q2�1)
(ω) � 3

8π

(
ωpl

ω

)2

νs + · · · , (84)

σ ′′
(q1�1

q2�1)
(ω) � 1

4π

(
ωpl

ω

)2 (
ω − 3

2
νs + · · ·

)
, (85)

provided that ω � νs � ν. The last formula demonstrates
simply that the electron interaction with the surface of a
spherical MN can shift the imaginary part of σ toward the
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FIG. 6. (Color online) The frequency dependence of the reduced
dielectric constant of Au particles with different R (Å): 50 (thick
lines) and 150 (thin lines). Solid lines are for a prolate particle
with R⊥/R‖ = 0.1, and dashed lines are for an oblate one with
R⊥/R‖ = 10.

red side of the frequency scale. The smaller is the radius of the
MN, the larger is the correction to the frequency shift.

Below, we will discuss the size dependence of the optical
properties of MNs in more detail and will illustrate some
results obtained in the sections above.

In Fig. 6 , the results of numerical calculations of the ratio
between the transversal and longitudinal components of the
dielectric permeability versus the frequency are given for Au
particles of different radii. The calculations were performed
with the use of Eqs. (32) and (35) and the same numerical
parameters as used above. At high frequencies (ω � νs), the
ratio of ε′

⊥/ε′
‖ → 1 for different radii of Au particles. This

result follows as well from Eqs. (32) and (73) at ω � νs for
particles with an oblate shape and from Eqs. (32) and (77)
for particles with a prolate shape. At low frequencies (ω �
νs), the particle size is strongly affected by the ratio of
Re(ε⊥)/Re(ε‖). As can be seen in Fig. 6, the curves for MNs
for prolate and oblate shapes merge into one as frequency
grows, but for particles with a greater radii they merge at
smaller frequencies.

The behavior of ε′ as a function of the ellipsoid aspect
ratio R⊥/R‖ at the frequency of a plasmon resonance in
Au nanoparticles, embedded in the dielectric media with
εm = 1, is plotted in Fig. 7. The numerical calculations when
employing Eqs. (32) and (35) were performed for two radii
of a nanoparticle and for two light polarizations. As one
can see in Fig. 7, the longitudinal component of ε′ in an
oblate MN depends more strongly on the ratio R⊥/R‖ than
the transverse one. It becomes especially pronounced for
Au nanoparticles (with R = 50 Å) with small oblateness
(e.g., R⊥/R‖ < 15) when keeping the laser frequency fixed at
ω = ωpl/

√
1 + 2εm: the oscillation magnitude of ε′

⊥ (around
the constant of ε′ = −2) becomes much larger than the ones
for ε′

‖. The amplitude of these oscillations is enhanced, and
the period is extended as the ellipsoid aspect ratio R⊥/R‖
increases. For MNs of greater radii, the number of oscillations
is decreased, and their period is extended (compare the thin
and thick curves in the Fig. 7 for Au particles with R = 50
and 150 Å, for example). Both components of ε′ no longer
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FIG. 7. (Color online) The dependence of the real part of the
dielectric constant of Au particles with different R (Å), 50 (thick
lines) and 150 (thin lines), on the ellipsoid aspect ratio at a frequency
of plasmon resonance ω = ωpl/

√
3 � 7.91 × 1015 s−1. Solid lines are

for the parallel component, and dashed lines are for the perpendicular
component.

oscillate at high oblateness (R⊥/R‖ > 80) of Au particles with
R = 50 Å.

When the size of the particle is large enough, the parallel
and perpendicular components of ε′ start to come together
(see Fig. 2 ). For instance, at the frequency ω ≈ 6 × 1014 s−1

it takes place for Au particles with R = 130 Å. At smaller
frequencies it occurs for greater radii.

The presented dependencies display mainly the behavior
of ε′ for an oblate nanoparticle (R⊥/R‖ > 1). In the case
of a prolate nanoparticle (0 < R⊥/R‖ < 1), the numerical
calculations employing Eqs. (32) and (35) for Au nanoparticles
with a small size (∼50 Å) at the frequency of the plasmon
resonance give the oscillations of the transversal component
of ε′, the amplitude of which is enhanced, and the period is
reduced as soon as the prolateness of the MN is increased. The
longitudinal component of ε′

‖ oscillates in the prolate MN as
well, but its amplitude is considerably smaller, and the period
is much larger than the proper ones for ε′

⊥.
The imaginary part of the dielectric function as a function

of the ellipsoid aspect ratio R⊥/R‖ is shown in Fig. 8 . The
numerical calculations were performed using Eqs. (33) and
(34) at the plasmon frequency for two radii of nanoparticle
and for two light polarizations. Since, for prolate MN, the
value of ε′′ practically does not depend on the spheroid aspect
ratio R⊥/R‖ (except for the case of a very high prolateness),
in Fig. 8 we present only the results for an oblate MN. In
contrast to the size behavior of ε′, described above, one can
see that the weak oscillations of ε′′ hold together with linear
increasing of ε′′ just at small values of the aspect ratio R⊥/R‖.
For Au particles, e.g., with R = 50 Å, the weak oscillations
of ε′′ hold until R⊥/R‖ < 150 and is more sensible for the
longitudinal component of ε′′ than for the transversal one.
Both components of ε′′ reach the same maximum at some
aspect ratios of R⊥/R‖, whose value depends on the radius of
the particle. In the example depicted in Fig. 8 (for Au particles
with R = 50 Å), the values of ε′′

‖ = ε′′
⊥ � 1.8 have peaks at

R⊥/R‖ > 140 for the parallel component and at R⊥/R‖ � 700
for the perpendicular component of ε′′. Another interesting

0 200 400 600 800 1000 1200 1400
0.0

0.5

1.0

1.5

R R

Im
ε

,

FIG. 8. (Color online) The dependence of the imaginary part of
the dielectric constant of Au particles with different R (Å), 50 (thick
lines) and 150 (thin lines), on the ellipsoid aspect ratio at the frequency
of a plasmon resonance ω � 7.91 × 1015 s−1. Solid lines are for
the parallel component, and dashed lines are for the perpendicular
component.

feature of the dependence of ε′′ on R⊥/R‖ is the intersection
of curves for the parallel and perpendicular components for
an oblate particle, as it takes place usually for particles with a
spherical shape.

Finally, we illustrate how one may estimate the lifetime of
surface plasmon excitation (or any others) in a MN using the
above-derived formulas for σ . As follows from our previous
calculations,21,39 the linewidth can be represented as

�β(ω) = 4πLασαβ(ω), (86)

where Lα is defined after Eq. (6) and σαβ is the real part of
the conductivity tensor, given by Eq. (23) for most general
situations or by Eq. (34) for the spheroidal MN. For other
particular cases, one may use for Re σ Eqs. (41), (47), (63),
(66), (72), (74), (75), (79), (80), and (82). In particular,
considering only the nanoparticles with a spherical shape
(L = 1/3) and restricting ourselves to the case ν � νs , we can
choose Eq. (63) for illustration. Substituting it into Eq. (86),
we obtain

�(ω) � υF

4R

(
ωpl

ω

)2 [
1−2νs

ω
sin

ω

νs

+ 2ν2
s

ω2

(
1 − cos

ω

νs

)]
.

(87)

Taking into account only the first term in (87), we recover the
well-known17,36,37 1/R dependence of �:

�0(ω,R) = 1

4

υF

R

(ωpl

ω

)2
. (88)

As seen from Eqs. (87) and (88), the lifetime (1/�) of an
excitation in the MN depends not only on the nanoparticle
radius but also on the frequency (at which a given excitement
is reasonable). For the frequency that corresponds to the
excitation of a surface plasmon in MN in a vacuum, ω =
ωpl/

√
3, the following relation can be obtained from Eq. (88)

in energy units:

�SP
0 (R) = 3

4
h̄

υF

R
. (89)
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The oscillating terms in Eq. (87) give rise to the oscillation
of � around �0 as a function of both the particle radius and
the frequency. They can be represented at the frequency of the
surface plasmon as follows:

�SP
osc(R) � 3

√
3

4

h̄

ωpl

(
υF

R

)2

×
[
− sin

2Rωpl√
3 υF

+
√

3 υF

2Rωpl

(
1 − cos

2Rωpl√
3 υF

)]
.

(90)

The amplitude and period of oscillations can be estimated by
the values

�max
osc � 3

√
3 h̄υ2

F

4ωplR2
, T =

√
3 πυF

Rωpl

, (91)

respectively.
It is important to note that in the kinetic method this

oscillatory behavior of � follows solely from the conditions of
electron scattering on the nanoparticle surface.

Figure 9 shows the full linewidth � = �SP
0 + �SP

osc, which is
obtained by numerically evaluating Eqs. (89) and (90) for Na
nanoparticles with the parameters44 ωpl = 9.18 × 1015 s−1 and
υF = 1.07 × 108 cm s−1. One can see that oscillating terms
represent an important correction to �SP

0 (R) at small particle
radii. Our result for Na nanoparticles only qualitatively agrees
with similar results obtained in Refs. 37 and 38 since we try to
apply the kinetic method to the range of R where the quantum
effects (e.g., the Landau damping) play an important role. But,
mostly, for the kinetics, the following inequality could be met:

R � 2πh̄

mυF

. (92)

In order to study the significance of the oscillatory behavior
in more general situations, it is necessary to perform the
calculations of Eq. (86) using the real parts of Eqs. (23) or (34).
This will be done separately.
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FIG. 9. (Color online) Linewidth �(R) of the surface plasmon
resonance as a function of radius for Na nanoparticles in units of
the Bohr radius aB � 0.53 Å. The smooth term �0(R) is given by
Eq. (89) (dashed line), and the solid line corresponds to the sum of
Eqs. (89) and (90).

There are several experimental data for a dielectric constant
of the powder of Ag and Al46 and for Ag nanoparticles.47 For
a single Au particle we have found only the experimental data
for an optical response.48 A direct comparison of theoretical
results with most of the available experimental measurements
of the optical properties of MNs is still a matter of debate
because inhomogeneities in nanoparticle size, shape, and
local environment hide the homogeneous width of the surface
plasmon resonance. There are very different data even for bulk
permittivity of Au,49,50 especially for its imaginary part.

VI. CONCLUSIONS

The kinetic equation method is used to study the peculiar-
ities of electron interactions with the surface of a spheroidal
metal nanoparticle when the electron scattering from the par-
ticle surface becomes a dominant effect. Special attention was
paid to studying the modification of the Drude-Sommerfeld
model applied to the optical properties of MN. The real and
imaginary parts of the dielectric permeability at the frequencies
above and below the characteristic frequency of a free-electron
passage between the walls of the particle were calculated for
a single oblate and a prolate MN whose dimensions are much
smaller than the wavelength of an electromagnetic wave.

It was established for spherical MNs that the kinetic method
appreciably changes the frequency dependence of electrical
conductivity at low frequencies, and at high frequencies (ω �
νs) it gives the same result as the one obtained from the Drude-
Sommerfeld formula. Quantitatively, the results obtained by
the kinetic method are of one or even two orders of magnitude
lower (depending on the radius of MN) than those following
from classical formulas. The difference between the results is
enhanced markedly as the particle radius decreases, and the
nanoparticle surface starts to play a more pronounced role.

The frequency dependencies of the components of the elec-
tric conductivity tensor σ were found, and their dependence on
the spheroidal aspect ratio was investigated. Simple analytical
expressions were found for this tensor in strongly oblate or
prolate MNs at low and high frequencies.

The electron interaction with the surface of a spherical MN
can shift the imaginary part of σ toward the red side of the
frequency scale. The smaller the radius of the MN is, the
greater the correction to the frequency shift is.

Two types of oscillations were established for small enough
MNs: at fixed ω with varying of R and at fixed R with changing
ω. These oscillations have a damping character and practically
vanish otherwise at high frequencies or for MNs with high
radii.

The ratio of Im(ε⊥)/Im(ε‖) oscillates with increasing
frequency for both the prolate and the oblate MNs. In contrast,
the ratio of the real parts Re(ε⊥)/Re(ε‖) does not oscillate with
frequency. Together with that, the real ε and the imaginary ε

parts of the dielectric permeability oscillate when the particle
radius is increased. It was found that the particle size strongly
effects the ratio Re(ε⊥)/Re(ε‖) at low frequencies (ω � νs).
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APPENDIX

Below we present the values for the integrals introduced in
the Sec. IV.

I‖ = 1

υ

∫ π/2

0
sin θ cos2 θ υ ′(θ ) dθ = R

8R‖

2R2
⊥ − R2

‖
R2

⊥ − R2
‖

− R

8R⊥

R3
‖

(R2
⊥ − R2

‖)3/2
ln

∣∣∣∣∣R⊥
R‖

+
√

R2
⊥

R2
‖

− 1

∣∣∣∣∣ . (A1)

I⊥ = 1

υ

∫ π/2

0

1

2
sin3 θ υ ′(θ ) dθ = 3R

16R‖
− R

16R‖

R2
⊥

R2
⊥ − R2

‖

+ R

4R⊥

R‖√
R2

⊥ − R2
‖

(
1 + R2

‖
4(R2

⊥ − R2
‖)

)

× ln

∣∣∣∣∣R⊥
R‖

+
√

R2
⊥

R2
‖

− 1

∣∣∣∣∣ . (A2)

For strongly oblate or prolate MNs, using the Eqs. (A1) and
(A2), it is easy to find that

I(‖
⊥),R⊥�R‖ � 1

4

R

R‖

{
1

1/2
, (A3)

I(‖
⊥),R⊥�R‖ � π

16

R

R⊥

{
1

3/2
, (A4)

respectively, and in the limit case of R⊥ = R‖ ≡ R, one
gets

lim
R‖→R⊥

I‖ = lim
R‖→R⊥

I⊥ = 1

3
. (A5)

We advance here as well another typical integral that one
meets when calculating σ .

I<
‖ = υ

∫ π/2

0

sin θ cos2 θ

υ ′(θ )
dθ = R‖R⊥

2R(R2
⊥ − R2

‖)

×
⎡
⎣R⊥ − R2

‖√
R2

⊥ − R2
‖

ln

∣∣∣∣∣R⊥
R‖

+
√

R2
⊥

R2
‖

− 1

∣∣∣∣∣
⎤
⎦ , (A6)

I<
⊥ = υ

∫ π/2

0

sin3 θ

2υ ′(θ )
dθ = − R‖R2

⊥
4R(R2

⊥ − R2
‖)

+R‖R⊥(2R2
⊥ − R2

‖)

4R(R2
⊥ − R2

‖)3/2
ln

∣∣∣∣∣R⊥
R‖

+
√

R2
⊥

R2
‖

− 1

∣∣∣∣∣ . (A7)

In the case of prolate particles (R‖ > R⊥), one should
perform in Eqs. (A1) and (A2) and in Eqs. (A6) and (A7)
the following replacement:

1

i
ln

∣∣∣∣∣R⊥
R‖

+ i

√
1 − R2

⊥
R2

‖

∣∣∣∣∣ → arcsin

√
1 − R2

⊥
R2

‖
. (A8)

For strongly oblate or prolate MNs (R⊥ � R‖), using
Eqs. (A6) and (A7), it is easy to obtain that

I<

(‖
⊥),R⊥�R‖

� 1

2

R‖
R

{
1

ln 2R⊥
R‖

− 1/2
, (A9)

I<

(‖
⊥),R⊥�R‖

� π

4

R⊥
R

{
1

1/2
, (A10)

respectively, and in the limit case of R⊥ = R‖ ≡ R, one finds
from Eqs. (A6) and (A7)

lim
R‖→R⊥

I<
‖ = lim

R‖→R⊥
I<
⊥ = 1

3
. (A11)
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