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Enhancement of nonlocal exchange near isolated band crossings in graphene
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The physics of nonlocal exchange interactions in graphene sheets is studied within a w-orbital tight-binding
model using a Hartree-Fock approximation and Coulomb interactions modified at short distances by lattice effects
and at large distances by dielectric screening. We use this study to comment on the strong nonlocality of exchange
effects in systems with isolated band crossings at energies close to the Fermi energy. We also discuss the role of
lattice scale details of the effective Coulomb interaction in determining whether or not broken-symmetry states
appear at strong interaction strengths, and in determining the character of those states when they do appear.
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I. INTRODUCTION

Graphene sheets are ideal sp2-hybridized pure carbon
networks, and have attracted attention in recent years because
of their appealing combination of theoretical simplicity and
exceptional physical properties.'™ Most electronic properties
of graphene that have been studied experimentally can be
successfully described in a noninteracting electron picture.*
Electron interaction effects are nevertheless clearly manifested
in perpendicular magnetic fields where they lead to quantum
Hall ferromagnetism® and to the fractional Hall effect,%®
when two”!? or more!! layers are stacked in a way that leads
to flat bands near the Dirac point, and when ribbons with
zigzag edges'” are formed. The strongest interaction effects
so far observed in single-layer graphene in the absence of
a magnetic field is the logarithmic velocity correction'3-1®
at momenta near the Dirac point, now apparent in photoe-
mission measurements!’” and cyclotron mass measurements
in suspended graphene.'® Recent Monte Carlo simulations of
zero-field graphene suggest the more interesting possibility of
a gap opening'® at the Dirac point for sufficiently strong in-
teractions, a property that would drastically modify electronic
properties. Spontaneous gaps have still not been detected in
single-layer samples, even when suspended’ to reduce disorder
and dielectric screening and, although their appearance cannot
be fully ruled out for cleaner suspended samples, which might
become available in the future, likely do not occur.

In this paper we use a w-band lattice-model Hartree-Fock
calculation to show explicitly that the logarithmic velocity
enhancement is related to nonlocal exchange interactions with
power-law tails. Our calculations provide a numerical estimate
of the cutoff length, which appears in the argument of the
logarithm in the velocity enhancement expression and cannot
be obtained from continuum model calculations. We also use
our calculation to study the role that lattice scale physics plays
in controlling whether or not gapped states can occur in single-
layer graphene. We show that the appearance of gapped states
is sensitive to the long range of the Coulomb interaction. By
solving self-consistent w-orbital Hartree-Fock equations, we
can assess the possibility of realizing topologically nontrivial
states like those discussed by Raghu et al.,** who study an
extended Hubbard model with next-neighbor interactions.

The paper is organized as follows. We start in Sec. II
by briefly explaining our implementation of Hartree-Fock
theory for a 7 -orbital lattice model. Here we define our model

1098-0121/2011/84(8)/085446(9)

085446-1

PACS number(s): 73.22.Pr, 71.20.Gj, 73.22.Gk, 03.65.Vf

Hamiltonian, comment on how we handle complications due
to the long range of the Coulomb interaction, and discuss
some other technical details of our calculations. In Sec. IIT we
carry out a detailed study of the power-law nonlocal exchange
interactions and the logarithmic velocity enhancements they
produce. In Sec. IV we present a mean-field phase diagram that
identifies a variety of distinct broken-symmetry solutions and
captures the dependence of the competition between them on
model parameters. Finally we close the paper in Sec. V with
a discussion of our findings and of the general importance
of highly nonlocal exchange interactions in semimetals or
semiconductors with isolated band crossings, or weakly
avoided crossings, close to the Fermi level.

II. x-ORBITAL HARTREE-FOCK APPROXIMATION

The simplest tight-binding model for a carbon lattice retains
one atomic 2p, orbital on each lattice site and couples them
with nearest-neighbor ppm hopping?' parameters. We use the
conventions of Ref. 22, choosing a coordinate system in which
the honeycomb’s Bravais lattice has primitive vectors
1 V3 )

i =a(,0), @ =al~-,— 1
a; =a(1,0), ap a(22 (1)
where a = 2.46 A is the lattice constant of graphene. The
reciprocal-lattice vectors are then

- 47'[ «/g ] - 47t
1= —(—, ——), by = ——(0,1). (2)
V3a\ 2 2 V3a
Because nearest-neighbor hopping connects the honeycomb’s
two triangular sublattices, the 2 x 2 tight-binding band Hamil-
tonian is purely off-diagonal:

0 yot (K)
Hy(k) = N , 3
where yy = —2.6eV is the hopping parameter and the on-site

energy has been set to zero. The factor

. ] k,
t(k) = etk)»a/«/g |:1 + zeflSkya/Zﬁ cos <Ta>i| @)

arises from the phase factors of the Bloch wave functions
on neighboring sites. We have neglected remote neighbor
hopping, which gives gives rise to electron-hole asymmetry,
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i.e., to k dependence of the sum of valence- and conduction-
band energies. The convention for Bloch basis state phase
factors that leads to this form of the Hamiltonian is

(r|kr) = D MRt —

Vi (r) =

1
R —
,_NK i T[)T]g,
)

where 1, is the spin part of the wave fucntion, 7; is the position
of sublattice / in the unit cell, and Nk is the number of unit
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cells in the system. The label A = (I,0) combines the lattice
site label / and the spin label o.
In this basis the Hartree-Fock Hamiltonian is

VHF = Z U [Z Crrw Ok >:| Cl]:)\Ck)L

ki Kk’
= ) UK - K cfen)chen. (6
kk'An

where (dropping the spin index for simplicity)

Ui = (kKA |VIKAK'L) = / dridra| Y, (e PV (I — 1)) Y (r)]?

= /drldr2|¢(rl - — T1)| V(ry — Do, — R — Tl’)| @)
K i
U (q) = (kAK')|V |K'AkA) = /drlerWix(rl)'/fk’A(rl)V(|rl — 12 D¥; (r) Y0 (r2)
1 L
=7 Z KR AT=Ry Ty (IR, + 7, — R — 1)), )
K l'/j/

We can simplify the two-body Coulomb integrals in Egs. (7)
and (8) by combining the momentum-space representation for
the Coulomb interaction [V” (@) = V(g) = 2me* /e q] with
the atomic orbital form factor f(q) = [dre™ Tp(r)|>. We
use the explicit form

(@) = [1 = (ro@)*1 /111 + (ro9)*1*} ©

obtained by Fourier transforming the radial charge distribution
of a hydrogenic 2 p atomic orbital:

p(r) = L (10)
r)= = ‘.
Jar i a,

The choice a, = a,/ V30 A reproduces the covalent bond ra-
dius of carbon a, = a/(2+/3). Calculations in bilayer graphene
suggest that a larger effective radius @y = 3ao/+/30 is a
better choice'® because it accounts crudely for sp, bonding
orbital polarization. The two-body Coulomb integrals are then
given by

’ 1 . ~
Ui =7 2 ¢ IAIGDE V(GI), (11)
G
, 1 . ~
U @=—-> ¢4 If(a=GDIP V(g —GD,  (12)
G

where G are the reciprocal-lattice vectors and A = Ng Ay is
the system area.

We will also find it useful to consider an alternate model
for interactions which assigns a value V. (r) to the interaction
strength between electrons, which depends only on the

distance between the lattice sites on which they reside. When
expressed in terms of Veff(r)

Uj ~ N2 D Verr(LY

K

), 13)

Ul ~ 7 Z i(K—K)LY Verr ([L]). (14)

K,,

For this real-space interaction model we use the simple form

Veard) = 1/ (e /a2 + ).

Here a, accounts approximately for the reduction of Coulomb
interaction strength at short distances due to o orbital polar-
ization and delocalization of the w-charge density on each
lattice site.?® [In this equation energies are in Hartree (¢?/ag)
units and lengths are in units of the Bohr radius ag.] In the
real-space model we choose the on-site interaction parameter
U separately from the longer range tail; U has been variously
estimated as having values between U ~ 2 and 6 eV,?* and
up to an effective value of U = 9.3 eV.?> For comparison, the
Coulomb interaction energy at the carbon radius length scale
is ~20 eV, and an estimate from the first ionization energy
and electron affinity of a cabon atom gives U = 9.6 eV;?° the
effective on-site interaction strength is expected to be greatly
reduced in the solid-state environment because of screening
by polarization of bound orbitals on nearby carbon atoms. For
larger distance interactions we have included a factor 1/¢, to
account for dielectric screening, as in the momentum space
version of the interaction model. The value chosen for €, can
be seen as an ad hoc correction for overestimates of exchange
interactions in Hartree-Fock theory. We study a range of values
for this interaction parameter model but we believe that a value

s)
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of €, ~ 4 is normally appropriate for graphene placed on a
dielectric substrate. Values chosen for €, and U control not
only the overall strength of the interaction term?’ but also
the relative strength of on-site and long-range parts of the
interaction. We will show later how this ratio can play a role
in selecting the broken-symmetry solutions that can appear in
these models.

There are two technical difficulties in these calculations,
one related to the nature of electron-electron interactions and
one related to the electronic structure of graphene. The long
range of the Coulomb interaction creates some numerical
difficulties, particularly in evaluating the energies of the
charge-density-wave (CDW) states discussed below. We have
found that accurate results can be obtained by choosing a
cutoff distance for the 1/r tail so that the coupled sites are
as nearly as possible equally distributed between sublattices.
The second challenge is related to the band crossing at the
Dirac point in graphene, at which the wave functions that
enter the construction of the exchange potential have a singular
dependence on wave vector. Accurate calculations require
dense k-point sampling near the Dirac point, which increases
the computational load rapidly in Hartree-Fock calculations
because of the nonlocal exchange interactions. In an effort
to achieve a satisfactory compromise between computational
load and accuracy we exploit the hexagonal symmetry inherent
in the problem. This allows us to limit our calculations to the
irreducible wedge with 1/12th of the Brillouin zone area,
even though the additional phase factors in the remainder
of the zone need still to be properly accounted for when
we calculate the exchange potential. We use denser adaptive
k-point sampling near the Dirac cone while keeping a coarser
grid in the remainder of the irreducible wedge as shown in
Fig. 1. In this way it is possible to achieve good accuracy
while maintaining the numerical load at a reasonable level.
The coarse k-point sampling region was typically kept to
16 x 16 density while near the Dirac point we have chosen
for most of our calculations a sampling density corresponding
to 512 x 512 points in the full Brillouin zone and up to
1024 x 1024 density.
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FIG. 1. (Color online) Choice of the irreducible wedge of the
primitive cell (left) and the adaptive sampling of the k points in
the vicinity of the Dirac point K used for most of our calculations.
The density of k points in the dense region shown in the figure
corresponds to a sampling density of 512 x 512 points.
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III. NONLOCAL EXCHANGE AND LOGARITHMIC
VELOCITY DIVERGENCE NEAR THE DIRAC POINT

Graphene’s Dirac-like low-energy Hamiltonian-?® pro-

vides an easily studied example of isolated band crossings near
the Fermi level of a solid. The band crossing at the two isolated
Fermi points introduce singularities in the band Hamiltonian
with interesting topological®® characteristics, and facilitate the
application of field-theoretic perturbative methods.'* As we
will discuss later, there are some close analogies between
interaction physics in graphene and in gapless*® and narrow
gap’! semiconductors. It has long been recognized that interac-
tion effects can become prominent in gapless, semimetal, and
narrow gap systems. For example, in a semimetal with a small
overlap between valence and conduction bands, interactions
can induce electron-hole pairing and turn the solid into an
excitonic insulator.*-* In finite gap semiconductors Wannier-
Mott excitons can form due to mutual attraction between a
hole and an electron. Nonlocal electron exchange interactions
play a relevant role in defining the band structure of narrow
band semiconductors.>} In gapless semiconductors exchange
induced corrections in the dispersion relation are large near the
crossing point and it has been argued that virtual generation
of excitons can lead to a dielectric anomaly.’*** A general
study of materials with Fermi points has revealed that for linear
band crossings, interactions always introduce a logarithmically
diverging velocity enhancement,'® whereas instabilities are
expected for quadratic crossings.'>3

The marginal Fermi-liquid behavior obtained in three
dimensions'? and in the graphene two-dimensional (2D) case'*
is a consequence of nonlocal exchange interactions,'>'® as
we discuss at length below. To demonstrate explicitly how
these velocity enhancements appear in our calculations we
examine the Fock term in Eq. (6) expressed in the sublattice

representation:
Vit ViPk)
Vx(k) = . 16
x(k) (V)?A(k) VI (16)

The physics is most clearly explained using the real-space
interaction version of our calculations, although the reciprocal-
space version is more numerically convenient. The diagonal
matrix elements are identical by symmetry and can be
expressed using the real-space sum of effective two-body
Coulomb repulsion in Eq. (14). Using the symmetry property
that (cl, ACKA) = (cl, gCp) = 1/2 for every value of k' in
neutral graphene, we obtain

AL
Vit =~ 30 S V(L) an
k',i, j
(L U
= “3N. 8 Ver (L7} ) = =5 (18)

ij
At half filling, particle-hole symmetry implies that the
sublattice-diagonal component of the density matrix is half of
the full 7-band density matrix, and therefore diagonal in lattice
vector. Only the on-site interaction contributes to V;‘A(k).
This contribution to the exchange energy is independent
of momentum and does not contribute to the quasiparticle
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velocity. For the off-diagonal term, on the other hand, we use
the relation p45(k’) = (ci,BckrA) = — f(k")/2| f(K)] to obtain

, 7 (K)
VAB k l(k k)L” V LAB
x 00 = 2N,2< 2 Z” (5D T
(19)
). (20

i AB
2NK Ze *H pan (L)

i

Verr (|L77

The second form for the right-hand side expresses the exchange
self-energy explicitly in terms of the sublattice off-diagonal
element of the real-space density matrix:

1 rLAB
— Y B, @1)
Nk 4=

PAB (L?jB) =
In momentum space the Dirac band Hamiltonian’s sublattice
off-diagonal density matrix is singular at the Dirac point
because the valence-band sublattice pseudospin state changes
at the Dirac point. In a 1D model this effect leads to a
discontinuity at the Dirac point, in two dimensions it leads
to momentum space vortices, and in three dimensions to
hedgehogs, as illustrated in Fig. 2. Because the function f (k)
vanishes at the Dirac point, the intersublattice phase jumps
along any line passing through it. When this singularity is
Fourier transformed to real space it leads to a slow power-law
decay, as illustrated in Fig. 3 for the case of graphene, causing
the electron exchange interaction to be strongly nonlocal.
The behavior of the real-space tails can be obtained most
simply from an analysis of the continuum model. We redefine
the wave vector k such that it represents the momentum
measured from the Dirac point K. A general three-dimensional
Hamiltonian with linear dispersion at an isolated band crossing
can be described by the Dirac-Weyl Hamiltonian

. —i¢
sinfe ) . @)

cos b

cosf

H(k) = hUFUk = hUFk (sin 9€i¢

where o = (0,,0y,0;) is the Pauli matrix vector, k =

[k* + k_% + kf, tanf = [k + k)z,/kz, and tan¢ = k,/k,. The

density matrix for the occupied states is then given by

~ (1 —cosf) —sinfe ¢
plk) = 2 ( sinfe'® (1 +cosf) ) * (23)
@) (b)
ID - Odd parity 2D - Vortex 3D - Hedgehog

FIG. 2. Illustration of sublattice psedospin dependence on mo-
mentum for the Dirac-like Hamiltonians. In one dimension (a) the
pseudospin changes direction at the Dirac point, in two dimensions
(b) it has a vortex, and in three dimensions (c) it has a monopole
hedgehog structure. In each case the band state sublattice pseudospin
changes direction upon crossing through the Dirac point.
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FIG. 3. (Color online) Absolute value of the sublattice off-
diagonal density matrix defined in Eq. (21) illustrating the overall
power-law decay r~2. Left panel: Gray scale map representation
where we can notice a regular anisotropy of the off-diagonal density
matrix, which follows the triangular Bravais lattice structure of
graphene. The density-matrix element falls off with a larger power
law along certain discrete directions. Right panel: Density matrix at
discrete lattice vectors along the directions r; and r, indicated in
the left panel. For direction r; we notice a periodic dip in the value
of pap(r) every three lattice constants. The density matrix for these
lattice vectors has a r=> decay law. The slow r~2 power-law decay
reflects the singular dependence of valence-band wave functions
on k at the Dirac points. The values of the fitting coefficients
are ¢; = 0.0037, ¢; = 0.0015, and d; = 0.0019 when distances are
measured in nm.

The 2D case is obtained by setting & = 7 /2 and the 1D case
by setting ¢ = 0,7. Forr = L in the x direction, we obtain
the following result for the contribution to the density matrix
from a valley centered at K:

A .
iK-r 0 ikr ~
r)>~e dk e k
pag (r) o pas(K)
ffk dk sgn (k) exp(ikr) 1D
oc § [ dk k Jy (kr) 2D
T2 d6 [ dksin®6 k2 Jy (krsin@) 3D
Cq
~ (24)

where d is the dimension of the system and J; (x) is a Bessel
function of the first kind. In graphene similar contributions are
made by the two valleys. The dominant contribution to this
integral at large r will come from the nonoscillatory kr < 1
region when J;(x) ~ x /2. Inserting this limit into Eq. (24) and
integrating up to k ~ 1/r we see that psp (r) ~ r~¢ at large
r, reminiscent of the dimensional dependence in the decay of
Friedel oscillations.® The off-diagonal density matrix in other
directions differs only by a phase factor.

The slow power-law decay behavior of the off-diagonal
density matrix in turn leads to a logarithmic divergence in
Vk V)?B (k) evaluated using Eq. (19) or Eq. (20). We can obtain
an approximate form for the exchange potentials in Eq. (20) by
changing the sum over discrete lattice sites to be a continuous
integral,

AB 1 —ikr
Vit~ oo / dr e p,0 (1) Ver (), (25)
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where €2 is the volume of the unit cell. Using polar coordinates
to represent both k and r we evaluate the radial derivative of
the exchange potential to obtain

AVAE (k 1 d i
x B 1O ek, ) Vi (1)

ok 20k
= %fdr reosd e % p 4 () Vegr (Ir)
LS| 1
>~ Chy ; drrrd_H(Xln ) (26)

where we integrated the angular variables first, identified
the lattice constant as the lower limit of the approximate
continuous position integral, and k~! as the upper limit to
avoid the oscillating regime. Note that the space dimension
drops out of the final result. Similar conclusions can be reached
starting from Eq. (19) and making a multipolar expansion of
the Coulomb interaction in momentum space.

N
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FIG. 4. (Color online) Upper panel: Tight-binding and Hartree-
Fock band structures near the Dirac point. The right panels blow up
the small rectangular regions shown in the left panels. We observe
that the momentum space Hartree-Fock calculation (HF2) follows
the enhancement to smaller momenta than the real-space truncated
interaction calculation (HF1). Lower panel: E(k)/k versus k close to
the Dirac point. The momentum space HF2 calculation used 1024 x
1024 k points in the primitive cell. The velocity enhancement saturates
in both calculations. The dashed straight line is the small « fit obtained
using Eq. (27) with p. = 30.
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In practical calculations both real-space and reciprocal-
space Hartree-Fock calculations for graphene are able to
follow the velocity enhancement only over a limited range of
momenta, as illustrated in Fig. 4. The real-space formulation
used in the present calculation relies on a truncation of
the electron interaction range at about six lattice constants,
as detailed in the Appendix. This prescription is able to
describe a large part of the velocity increase due to nonlocal
interactions, but saturates more quickly than the momentum
space calculation, which fails at small k£ values due to the
discreteness of the momentum sums used to construct the
exchange Hamiltonian.

In Hartree-Fock continuum model
exchange-enhanced velocity is given by

Uee c
UHFZUFI:1+TIH<:—CZ>:|, (27)

where vp = +/3ypa/(2h) is the band velocity. The loga-
rithmic enhancement term has the prefactor «,./4, where
Cpe = €2 /e hvp = (c/e,vp)a, is the effective fine-structure
constant, ¢ is the speed of light, and « is the ordinary vacuum
fine-structure constant. Our full Brillouin-zone calculation
allows us to obtain a numerical value for the dimensionless
ultraviolet cutoff parameter p. in Eq. (27). By fitting the
numerical results we find that p. = 30 £ 3.

calculations, the

IV. BROKEN-SYMMETRY SOLUTIONS PHASE DIAGRAM

Recent lattice model Monte Carlo studies of interaction
effects in graphene carried out by Drut and Lahde!® predicted
that they would be strong enough in suspended graphene sam-
ples to induce a CDW broken-symmetry state with different
electron densities on A and B sites and a gap emerges in the
single-particle spectrum. This broken symmetry in graphene
is analogous to those that supply mass to elementary particles
in particle physics. It now appears clear that these gaps do
not occur in experimental samples, possibly because of the
role of lattice scale physics that is not reliably modeled in
these simulations. Indeed the size of the gaps must be fixed by
ultraviolet physics because the two-dimensional Dirac model
with Coulomb interaction does not define a characteristic
energy scale. The anticipated broken symmetries do occur
in both lattice and continuum mean-field-theory models of
single-layer graphene, although the interaction strengths at
which they occur is likely underestimated by mean-field
theory. The calculations presented in this section demonstrate
that the appearance or absence of these states is sensitive
to lattice model detail, in particular to the value of the
on-site interaction strength U and the effective dielectric
constant €,.. Studies of interactions based on Hubbard models
predict antiferromagnetic insulating states that appear for
U > 2.23|yp| in Hartree-Fock mean-field theory*”-* and for
U > (4.5 £0.5) || in quantum Monte Carlo calculations.®
A gapped spin-liquid state appears for U ~ 3.5 |yy|,*’ before
the AF state is reached, in the latter case. In graphene, however,
any attempt to estimate the character of the ground state must
account for longer range interactions.?>#!42

For the analysis carried out in this section we have used the
real-space formulation of the effective Coulomb interactions
given in Egs. (13)—(15), which allows a more direct control
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FIG. 5. (Color online) Phase diagram showing where spin-
density-wave (SDW) and charge-density-wave (CDW) broken-
symmetry solutions appear in our model as a function of the in-
teraction parameters U and €,. Strong short-distance repulsion (large
U) favors SDW states, whereas weak short-distance interactions and
strong Coulomb interactions (small €, ) favor CDW states. Below the
the solid line in this figure the Hartree mean-field interaction energy
is lowered by forming a CDW state, which has different densities on
A and B sublattices. The CDW state boundary lies below this line
because the band energy favors uniform densities. The SDW state is
a simple antiferromagnet, as expected at large U on bipartite lattices.
The arrow in the figure shows the critical value U = 2.23|y;| beyond
which SDW solutions appear for the pure Hubbard model. The shaded
regions in the figure indicate the parameter values thought to be most
appropriate for graphene sheets that are suspended and for those that
are supported by a dielectric substrate, as discussed further in the
main text.

over the value of the on-site repulsion U and the Coulomb
interaction tail. We used a model with finite truncation of
the interaction range with a cutoff radius of about six lattice
constants. (Some considerations on optimal cutoff choices are
explained in the Appendix, see Figs. 6 and 7.) Figure 5 shows
the mean-field phase diagram produced by these calculations

FIG. 6. (Color online) Real-space truncation of the interaction
range in graphene as illustrated with two different cutoff values of
Liax ~ 2a and Ly, ~ Sa. As we change the value of the cutoff
radius L, there are oscillations in the relative number of carbon
lattice sites A and B enclosed within the cutoff distance.
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FIG. 7. (Color online) Longer ranged contributions to the Hartree
energy E l[,)'}g (Lmax) as defined in Eq. (A7), which shows a strong
cutoff distance L,x dependent oscillation that converges slowly to
the limiting value represented with the horizontal line whose behavior
is more clearly shown in the inset. We can notice that Ell‘)“,lg (Lmax) 18
rather close to the asymptotic limit for certain values of L .. A better
estimate of the asymptotic limit can be obtained from the behavior of
EaD’}'long (Lnax) defined in the text.

in which both spin-density-wave (SDW) and charge-density-
wave (CDW) broken symmetry states appear. The solid line
in the middle of the paramagnetic region of this figure follows
€. - U = 10.2838 eV. Along this line the Hartree mean field
corresponding to a charge-density state with different densities
on A and B sublattices vanishes. The ordered states that
appear above this line are spin-density-wave states, which
essentially reflect the physics expected for Hubbard models
on a square lattice. The ordered states that appear below
this line are charge-density-wave states. For large U and
small €, the charge-density-wave boundary is close to the
the €, - U = 10.2838-eV line, indicating that its location is
determined mainly by this simple competition between short-
range and long-range interactions. When this consideration
applies, CDW states cannot occur for U > 10.2838 eV since
¢, cannot take a value smaller than 1. A crude estimate
of the on-site repulsion from the carbon atomic radius is
e?/a, ~ 20 eV whereas the value of U that can be obtained
from the first ionization potential and electron affinity of
carbon is U ~ 9.6 eV.”® The effective electron interaction
strength of the m electrons will be further reduced when
we consider nonlocal polarization effects from neighboring
sites. Hence although screening effects from o bands can be
accounted for microscopically in simple interaction models
yielding a value of U ~ 9.3 eV,” the physical value of U
remains somewhat uncertain. In our phase diagram CDW
solutions, which are favored when the longer range part of
the interaction is strong but the short-range effective repulsion
is weak, are restricted to values of €, < 2.2 with small enough
U. We conclude from this sensitivity that it is not possible to
reliably predict the occurrence or absence of broken-symmetry
states on the basis of continuum model calculations alone.
The values of €, and U thought to be appropriate based on
considerations explained elsewhere>*?> are consistent with the
absence of broken-symmetry states in single-layer graphene
samples.
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V. DISCUSSION AND CONCLUSIONS

In the present work we have presented a detailed analysis
of mean-field Hartree-Fock interaction effects in a lattice
model of single-layer graphene. We first analyzed the velocity
renormalization of the band dispersion near the Dirac point
at the Hartree-Fock level. These calculations demonstrate ex-
plicitly that the velocity enhancement is produced by nonlocal
exchange interactions between different graphene sublattices
and provide a numerical estimate of a dimensionless ultraviolet
parameter, which cannot be estimated using Dirac continuum
model calculations. Similar velocity renormalizations occur
whenever a linear band crossing occurs at the Fermi level pro-
ducing Fermi points. In dimension d the velocity enhancement
is associated with a 7~ power-law decay in the real-space
density matrix. Large velocity enhancements will also occur
for similar reasons whenever band gaps are small, or show
semimetallic behavior when the character of occupied states
varies rapidly on the scale of the Brillouin zone, although in
this case they will always remain finite. This type of physics is
responsible for the strong nonlocality of exchange interaction
in gapless or small gap semiconductors® with weak avoided
crossing of the bands, in the surface states of topological
insulators* or in metallic armchair carbon nanotubes.** We
should bear in mind, however, that in 1D systems where
physics is governed by Luttinger liquid physics our mean-field
resolutions are expected to depart from results expected for a
standard Fermi liquid with infinite lifetime near the Fermi
level. Studies of long-range Coulomb interaction based on
bosonization* and renormalization*® techniques within the
Luttinger liquid framework have shown that 1D systems
behave as a peculiar class of Luttinger liquid for sufficiently
low energies where the one-loop logarithmic scaling of the
Fermi velocity is not the main effect. The validity of mean-field
theory treatments of interaction presented here will depend on
how strongly the interactions drive the system away from the
conventional Fermi-liquid behavior.

The velocity enhancements we explore in graphene are
partially related to the Fermi surface enhancement incorrectly
predicted by Hartree-Fock theory when it is applied to
metals.’® In that case the enhancement is always suppressed by
screening. In graphene, however, the density of states vanishes
at the Fermi level and screening is less effective.*”*8 A random-
phase-approximation theory that includes dynamic screening
also predicts logarithmic enhancement of the velocity, but with
a slightly modified logarithm prefactor.

Our mean-field study of broken-symmetry states is sum-
marized by the phase diagram as a function of Coulomb
interaction parameters in Fig. 5. We have shown that CDW
states are favored by weak on-site interactions and SDW
states by strong on-site interactions, but that neither instability
occurs in a broad range of interaction parameter space. The
most realistic values for the two parameters are still not
accurately known, but may be guessed from the character of
the broken-symmetry states, which do in fact occur in the
quantum Hall regime of graphene in which the kinetic energy
is quenched.*’ Our suggested values for these parameters, both
for suspended and unsuspended samples, are shown in Fig. 5.
According to the phase diagram we have obtained, suspended
samples of graphene without substrate dielectric screening
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(e, ~ 1) are likely reasonably close to a CDW instability.
This result is in rough agreement with the lattice Monte Carlo
calculations of Drut-Lahde'® who predict a band-gap opening
for graphene for a critical value of €, ~ 1. However, the latest
available transport measurements for suspended graphene’
find a finite resistivity of about 16 k€2 in agreement with early
predictions® for the minimum conductivity for graphene, and
there is no experimental evidence for an insulating CDW state.
This discrepancy between experiment and present theory could
signal in part the limitations of w-band only models that do
not include screening of the bare electron by carbon o-band
polarization. An increase in screening by a factor of ~ 2 at
intermediate length scales to account for degrees of freedom
not included in the 7 -band model would certainly be sufficient
to explain the absence of broken-symmetry states in suspended
samples. Recent inelastic x-ray-scattering experiments’' in
graphite find enhanced screening at high energies within
graphene sheets. These results motivate further efforts to
estimate high-energy screening in monolayer graphene.
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APPENDIX: REAL-SPACE TRUNCATION OF THE
COULOMB INTERACTION

We discuss below the optimum choice for the real-space
interaction cutoff. Even though the definition of effective
Coulomb integrals in real space has a physically transparent
meaning, one important drawback is that the long range of the
Coulomb repulsion makes sums over lattice sites of Egs. (13)
and (14) have slow convergence. A simpler method than the
more accurate Ewald sum>? consists of introducing a finite
spherical truncation of the electron interaction range
an extended Hubbard model where we incorporate farther
neighbor contributions in the Coulomb term. For many
purposes this method yields correct enough answers because
the effective reach of the Coulomb interaction shrinks when
the positive background charge is taken into account. Because
of the slower decay in real space of the direct Coulomb
term compared to the exchange potential the inaccuracy in
the electrostatic energy is usually the largest source of error
of this truncation method specially when there is no charge
neutrality within the interaction cutoff range in presence of
inhomogeneous density distributions. One way to minimize
this error is to choose the cutoff range such that the electrostatic
energy is minimized in the presence of a symmetric charge
imbalance in the A and B sublattices of graphene. In order
to evaluate the cutoff for the Coulomb interaction term that
minimizes the error we express the Hartree energy of a CDW
state,

Znn Vii,

Ey = l/drd AOn) (A1)

2 |—r’
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TABLE I. Optimum values of cutoff L,,,, and the corresponding
values of Elf,"{g(Lmax), which give the closest estimates to the asymp-

totic limit Elﬁrfg(oo) for each period of oscillation. For completeness
we also represent E);(Lmax) defined in the text. We denote with the
superscript 1 the results obtained with a, = a/(2+/3) in the definition
of the effective Coulomb integral in Eq. (15) and superscript 2 the

results we would obtain if we used a, = 0.

Lw S e oy
1.1547 —5.5346 —6.7019 —10.5026 —12.0711
1.7321 —7.9043 —11.0792 —13.2176 —16.5852
2.0817 —7.2731 —7.6482 —12.5287 —13.0159
2.8868 —8.2996 —9.7492 —13.6225 —15.1359
3.0551 —8.0970 —8.6223 —13.4115 —13.9862
3.4641 —8.8583 —9.3227 —14.1986 —14.6905
3.7859 —8.6589 —9.2623 —13.9943 —14.6260
4.7258 —8.9231 —8.7407 —14.2648 —14.0952
5.0000 —-9.0172 —9.0100 —14.3603 —14.3650
5.6862 —9.1180 —9.6429 —14.4631 —14.9990
6.4291 —9.3049 —9.8026 —14.6521 —15.1579
7.0946 —9.5278 —9.8566 —14.8769 —15.2111
7.3711 —9.4074 —9.5712 —14.7556 —14.9247
8.0829 —9.5431 —-9.6167 —14.8922 —14.9698
8.3267 —9.4921 —9.6134 —14.8409 —14.9662
8.7369 —9.6973 —9.9986 —15.0472 —15.3518
9.8150 —9.7037 —9.8903 —15.0536 —15.2428
10.0167 —9.6323 —9.6926 —14.9819 —15.0447
10.1489 —-9.6717 —9.7987 —15.0215 —15.1509
10.4403 —9.7986 —9.9958 —15.1488 —15.3481
10.6927 —-9.7210 —9.8310 —15.0709 —15.1831
11.6762 —9.7431 —9.8290 —15.0931 —15.1809
11.8462 —9.7469 —9.8273 —15.0970 —15.1791
12.2202 —9.8575 —10.0860 —15.2078 —15.4379
12.4231 —9.8141 —10.0185 —15.1643 —15.3703
12.5033 —9.8081 —9.9754 —15.1583 —15.3272
00 —10.2838 —15.6327
where we use the notation V;; = V¢4(d;;) for simplicity where

d;; is the distance between the lattice sites i and j (see Fig. 6).
Let us consider a charge-density transfer of n from lattice
B to lattice A such that the densities are ny = ng + én and
ng = ng — én. In that case we obtain

1
Ey = 3 Z Vij(ng 4 8n)(ng + én) (A2)

ieA,jeA
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1
+5 D Vilno —dn)(ng — én) (A3)
ieB,jeB
1
+ 5 D Vilno +on)(no — én) (A4)
ieA,jeB
1
+ 5 D Vij(no — 8n)(ng + 6n). (AS)

ieB,jeA

The linear terms in 6n above cancel each other and if we
neglect a constant shift in the origin the electrostatic energy
difference per lattice is

55 = & [y v, A6
pI =" |: +Z ij_zviji|v (A6)

jeA jeB

where d;; is the distance between lattice sites i and j, U =
V(d;;) and i is a fixed label belonging to sublattice A. We
denote the cutoff dependent direct energy corresponding to
the long ranged part of the Coulomb interaction as

E L= 3 Vy— 3 Vi,

JEA, Lnax J€B, Lmax

(A7)

which shows an oscillatory dependence on the cutoff distance
Lmax > d;j as represented in Fig. 7. This behavior poses some
caveats in extended Hubbard models with only one or two
neighbor Coulomb interactions when used for obtaining a
phase diagram of broken-symmetry states involving charge-
density modulations or comparing results between different
models. We can clearly observe that the above-mentioned
oscillations slowly converge to a constant for very large
Liyax- A better estimate for the asymptotic value in the

limit L.« — oo can be obtained from EaDl}’long(LmaX) =

Zlsz E];';g(LmaX,,-)/Nmax averaging the values obtained at
each discrete ith nearest-neighbor shell cutoff, where Npx
is the total number of nearest-neighbor shells corresponding
to the cutoff distance L,x. We can observe that for certain

specific values of L.« the quantity Ele;g(Lmax) is close to

E"(00). In Table I we represent the values of some of these

select cutoff distances, which are the ones that minimize the
difference in the number of A and B lattices and therefore
minimizes the deviation from charge neutrality for a CDW
state within the cutoff range. In our calculations we have used
a cutoff just above the value L,,x = 6.4291a listed in the table.
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