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Recently there has been considerable interest in the properties of carbon nanotori. Such nanotori can be
parametrized according to their radii, their chiralities, and the twists that occur upon joining opposite ends
of the nanotubes from which they are derived. In this paper, however, we demonstrate that many physically
distinct nanotori with wildly different parameters nevertheless share identical band structures, energy spectra, and
electrical conductivities. This occurs as a result of certain geometric symmetries known as modular symmetries,
which are direct consequences of the properties of the compactified graphene sheet. Using these symmetries,
we show that there is a dramatic reduction in the number of spectrally distinct carbon nanotori compared with
the number of physically distinct carbon nanotori. The existence of these modular symmetries also allows us to
demonstrate that many statements in the literature concerning the electronic properties of nanotori are incomplete
because they fail to respect the spectral equivalences that follow from these symmetries. We also find that as a
result of these modular symmetries, the fraction of spectrally distinct nanotori which are metallic is approximately
three times greater than would naively be expected on the basis of standard results in the literature. Finally, we
demonstrate that these modular symmetries also extend to cases in which our carbon nanotori enclose nonzero
magnetic fluxes.
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I. INTRODUCTION

Soon after the experimental discovery1 of carbon nan-
otubes, it was suggested2 that there might also exist carbon
nanotori—i.e., carbon nanotubes in which the ends of the
tube are identified and sewn together. Within a few years,
experimental evidence for such structures emerged,3,4 and
since then they have attracted a great deal of experimental5,6

and theoretical7–20 attention. There are a variety of reasons for
this intense interest. For example, certain species of carbon
nanotori exhibit unusual magnetic properties,7–10 including
persistent magnetic moments at nearly zero flux8 and colossal
paramagnetic moments.9 These objects can also display a
diverse variety of electric properties: Some nanotori are
inherently metallic, while others are semiconducting and still
others are insulators.

As we shall discuss, the most general nanotorus can
be parametrized by four integers (m,n,p,q). Together and
in various combinations, these describe the radius of the
underlying nanotube, the chirality of the underlying nanotube,
the length of the underlying nanotube, and the relative twist11,12

that might occur upon sewing opposite ends of the tube
together to form the torus. The important point, however,
is that nanotori with different (m,n,p,q) are fundamentally
physically distinct: They have different sizes, different shapes,
and different twisted “honeycomb” patterns of carbon atoms
laid out on their surfaces. Of course, there are certain
symmetries of the underlying graphene sheet which lead to
trivial equivalences amongst these nanotori. For example,
60◦ rotations of the underlying graphene sheet will produce
identical nanotori. Such nanotori are therefore not physically
distinct.

In this paper, however, we shall demonstrate that there are
additional symmetries that relate physically distinct nanotori
to each other, forcing such nanotori to exhibit identical energy
spectra and electrical properties. These so-called “modular”
symmetries therefore transcend the traditional hexagonal
lattice symmetries of the graphene sheet, and arise solely in the
process of compactifying the graphene sheet in order to form
the nanotorus. In some sense, the appearance of these modular
symmetries is entirely expected, for they result directly from
the geometry of the compactification. However, to the best
of our knowledge, the significance and consequences of these
symmetries have not been fully appreciated thus far in the
nanotorus literature.

As we shall demonstrate, these symmetries have a number
of profound effects. First, we shall see that use of these
symmetries allows us to partition the set of carbon nanotori into
distinct equivalence classes as far as their spectral properties
are concerned, and leads to a dramatic reduction in the numbers
of spectrally distinct carbon nanotori as compared with the
numbers of physically distinct nanotori. Moreover, as we
shall show, many of the standard rules of thumb advanced in
the literature in order to describe the conductivity properties
of these nanotori actually fail to respect these symmetries.
Such rules of thumb are therefore incomplete as descriptions
of the physics of these nanotori, and must be replaced by
statements which respect the full symmetry structure of the
compactified graphene sheet. Finally, we demonstrate that
these symmetries even extend to situations in which the carbon
nanotori enclose different types of magnetic flux. They thus
should have applicability for many of the fascinating magnetic
properties of carbon nanotori, including the possibility of
persistent currents.
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II. PRELIMINARIES: THE GRAPHENE SHEET,
THE CARBON NANOTUBE, AND THE CARBON

NANOTORUS

In order to explain the origins of these spectral symmetries,
we begin with a brief review which will also serve to highlight
our notation and conventions.

In general, the graphene sheet is nothing but a set of carbon
atoms arranged on an extended, two-dimensional hexagonal
lattice generated by two basis vectors �a1 and �a2. We shall
choose a Euclidean coordinate system such that �a1 = (1,0)
and �a2 = ( 1

2 ,− 1
2

√
3) in units of

√
3Rcc, where Rcc is the

fundamental carbon-carbon bond length. As always, the band
structure associated with a given lattice can be described in
terms of a dispersion relation E(�k) which relates an electron
wave vector �k to its energy E. For the graphene sheet, and in
the tight-binding (or Hückel) approximation in which the only
significant overlap integrals are those between the 2pz orbitals
associated with nearest-neighbor carbon atoms, this dispersion
relation is given by13–15

E(�k) = ±γ0 [3 + 2 cos[�k · (�a1 − �a2)]

+ 2 cos(�k · �a2) + 2 cos(�k · �a1)]1/2. (1)

Here γ0 ≈ 0.266 eV is the energy-transfer resonance integral
between two neighboring 2pz orbitals. A contour plot of this
dispersion relation, clearly indicating the band structure within
the first Brillouin zone, is shown in Fig. 1.

For the uncompactified graphene sheet, all electron wave
vectors �k are allowed. However, this situation changes when
we “roll up” one dimension of the graphene sheet to produce

FIG. 1. (Color online) Contour plot of the rescaled dispersion
relation E(�k)/γ0 of the infinite graphene sheet for �k within the first
Brillouin zone and expressed in units of R−1

cc /
√

3. The dotted lines
indicate the lowest-order Bragg “planes,” and the six points with
E = 0 at which these planes have pairwise intersections constitute
the corresponding Fermi “surface.”

a single-walled carbon nanotube, or equivalently when we
identify any two carbon atoms on the graphene sheet whose
positions differ by an arbitrary lattice vector �V1 = m�a1 +
n�a2 = (m + 1

2n,− 1
2

√
3n) with (m,n) ∈ Z. Imposing the Bloch

condition on the electron wave functions ψ(�r) in addition to
the new periodicity condition ψ(�r) = ψ(�r + �V1) then restricts
�k = (kx,ky) to the set of wave vectors satisfying the condition

kxL1 cos β + kyL1 sin β = 2π�1, �1 ∈ Z, (2)

where L2
1 ≡ | �V1|2 = m2 + mn + n2 and cos β ≡

(m + 1
2n)/L1. These allowed values of �k therefore form

parallel lines in the (kx,ky) plane, and the locations at which
these lines intersect the Bragg planes in Fig. 1 determine
whether the corresponding (m,n) nanotube is metallic,
semiconducting, or insulating. Nanotubes for which n = 0
(i.e., β = 0) or m = n (i.e., β = π/6) are dubbed “zigzag”
or “armchair,” respectively; nanotubes with other values of
(m,n) are generally referred to as “chiral.” In general, the
vector �T perpendicular to �V1 is the tube axis.

We now consider imposing two nonparallel identifications
on the graphene sheet, as illustrated in Fig. 2. In general,
we consider two arbitrary lattice identification vectors �V1 =
m�a1 + n�a2 and �V2 = p�a1 + q�a2; without loss of generality
we shall assume that −π/3 < β � π/3. We shall also assume
without loss of generality that the quantity Nhex ≡ np − mq

is positive, or equivalently that the relative angle θ from �V1

to �V2 lies in the range 0 < θ < π/2, as illustrated in Fig. 2.
Such identifications together result in a so-called (m,n,p,q)
nanotorus which may be viewed as a (m,n) nanotube in
which opposite ends are joined to each other, potentially
with a relative twist angle θ . This description is especially
appropriate if L2

2 ≡ | �V2|2 = p2 + pq + q2 � L2
1. Note that

Nhex describes the number of hexagonal cells which tile the
surface of the resulting doughnut, and is equal to precisely half
the number of carbon atoms in the nanotorus. Imposing the
double-periodicity condition ψ(�r) = ψ(�r + �V1) = ψ(�r + �V2)
on the electron wave function ψ(�r) in conjunction with the
Bloch condition then leads to the constraint in Eq. (2), as well
as the additional constraint

kxL2 cos δ + kyL2 sin δ = 2π�2, �2 ∈ Z, (3)

T

V1

V2

a2

a1β
θ

x

y

FIG. 2. (Color online) Coordinate system (x,y), lattice vectors
�a1,2, compactification vectors �V1,2, and tube axis vector �T on the
graphene sheet.
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where δ ≡ θ + β. Solving Eqs. (2) and (3) simultaneously then
yields

kx = 2π

L1L2 sin θ
[�1L2 sin δ − �2L1 sin β],

(4)

ky = 2π

L1L2 sin θ
[−�1L2 cos δ + �2L1 cos β],

or equivalently

kx = 2π

Nhex
[−�1q + �2n] ,

(5)

ky = 2π√
3Nhex

[−�1(2p + q) + �2(2m + n)] .

Thus, we see that the allowed electron wave vectors now form
a two-dimensional grid of points in the (kx,ky) plane. Note
that there are always exactly Nhex allowed wave vectors lying
inside the fundamental region bounded by the Bragg planes in
Fig. 1, where points lying on a single Bragg plane itself are
counted as half and where points lying at the intersections of
two Bragg planes are counted as a third.

Whether such nanotori are metallic, semiconducting, or
insulating depends on whether these points hit or come
particularly close to the intersections of the Bragg planes in
Fig. 1. It is found that nanotori in which both m − n and
p − q are multiples of three are metallic, with solutions to
Eqs. (4) and (5) that lie precisely on the Fermi surface. For
practical applications, it proves useful to focus on only those
nanotori with L2 � L1 � Rcc, as this condition allows one to
bend the nanotube into a nanotorus without excessive strain or
deformation of the underlying graphene sheet (the effects of
which would otherwise distort the dispersion relation in Fig. 1,
and hence the band structure of the torus). Within this limit, it is
then conventional to regard nanotori with m − n = 0 (mod 3)
but p − q 	= 0 (mod 3) as semiconducting, since the allowed
wave vectors come “close” to the Fermi surface in this limit.
All other nanotori are then considered insulating.

III. MODULAR SYMMETRIES AND SPECTRAL
EQUIVALENCES OF THE CARBON NANOTORUS

All of the above results are completely standard, and are
well known in the carbon-nanotorus literature. In particular,
tori with different values of (m,n,p,q) are physically distinct:
They have entirely different arrangements of hexagons tiling
their surfaces, with different values of the physical radii
L1,2, chiral angle β, and twist angle θ . We shall take this
to be our definition of “physically distinct.” There are, of
course, certain trivial identifications which relate different
nanotori to each other: For example, the (m,n,p,q) torus and
the (m + n,−m,p + q,−p) torus are actually identical, since
they correspond to ( �V1, �V2) pairs which are related to each
other by a uniform 60◦ rotation. Such trivial identifications
reflect the underlying hexagonal lattice symmetries of the
graphene sheet from which these nanotori are constructed,
and result in identical carbon nanotori with identical patterns
of carbon atoms on their surfaces. Such nanotori are therefore
not physically distinct.

By contrast, an important question is whether there exist
physically distinct nanotori (i.e., tori which are not related

by symmetries of the hexagonal lattice) which nevertheless
yield identical grids of allowed wave vectors (kx,ky). If
so, we will have found cases of physically distinct tori
with different values of (L1,L2,θ,β) which are nevertheless
spectrally identical. In other words, such tori will have identical
energy spectra and electrical conducting properties.

At first sight, it might appear that no such spectral
equivalences exist for carbon nanotori. After all, the results in
Eq. (4) for carbon nanotori may initially appear to be nothing
more than a two-dimensional generalization of the results in
Eq. (2) for carbon nanotubes, and no such spectral equivalences
exist for carbon nanotubes. However, it is important to realize
that this is not true for carbon nanotori. In particular, it turns
out that the set of allowed values of (kx,ky) in Eq. (5) is actually
invariant under two additional symmetry transformations,
which we shall denote S and T :

S :

⎧⎪⎨
⎪⎩

m → −p

n → −q

p → m

q → n,

T :

⎧⎪⎨
⎪⎩

m → m

n → n

p → p + m

q → q + n.

(6)

Under these transformations, it is straightforward to demon-
strate that Nhex ≡ np − mq is invariant, while the physical
parameters L1, L2, θ , and β transform in the following manner:

S :

⎧⎪⎨
⎪⎩

L1 → L2

L2 → L1

θ → π − θ

β → β + θ − π,

(7)

T :

⎧⎪⎪⎨
⎪⎪⎩

L1 → L1

L2 →
√

L1
1 + L2

2 + 2L1L2 cos θ

cot θ → cot θ + (L1/L2) csc θ

β → β.

It is important to stress that the individual equations in Eqs. (4)
and (5) are not invariant under S or T . Rather, what is invariant
is the set of values of (kx,ky) to which these equations lead.
Moreover, since these sets of solutions for (kx,ky) are invariant
under S and T individually, they are also invariant under any
sequence of S and T transformations. For example, under the
ST −1ST (T S)2 transformation we find (m,n,p,q) → (3m −
2p,3n − 2q,2m − p,2n − q), and this too is a symmetry of
the solutions to Eq. (5).

It then follows from these observations that any two tori
whose defining vectors �V1 and �V2 differ through S and T

transformations share the same electronic spectra but are
intrinsically different from each other—i.e., that they are
isospectral but physically distinct. That they are isospectral
follows from the fact that the same set of (kx,ky) solutions are
selected in each case. By contrast, that they are physically dis-
tinct follows from the fact that the fundamental identifications
between carbon atoms on the graphene sheet are altered by
S and T transformations in a manner that transcends trivial
hexagonal lattice symmetries. This is perhaps easiest to see
in the case of the T transformation, which corresponds to the
action ( �V1, �V2) → ( �V1, �V1 + �V2). This changes not only L2 but
θ , and thus produces a new torus which has a greater “twist”
when the ends of the nanotube are joined.
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It may be less obvious that the S transformation also
connects physically distinct tori. Indeed, this transformation
corresponds to the action ( �V1, �V2) → (− �V2, �V1), and at first
glance it might appear that this is merely a trivial relabeling of
the two independent periodicities, along with a reflection (sign
flip). However, we must remember that the S transformation
also changes the associated θ and β angles in nontrivial ways.
Alternatively, we can also appreciate the nontrivial nature of
S by considering the combination

T ′ ≡ ST −1S−1 = T ST , (8)

which corresponds to the action ( �V1, �V2) → ( �V1 + �V2, �V2).
[The second equality in Eq. (8) follows as a result of the
identity (ST )3 = −1, or equivalently (T −1T ′)3 = −1.] Note
that T ′ is in some sense “dual” to T : Each performs a full
twist around a different cycle of the torus. In other words, as
illustrated in Fig. 3, while T corresponds to cutting through
one side of the torus and reattaching the two edges along
with a twist, T ′ corresponds to cutting the torus in half as
a bagel and then twisting each half relative the other before
reattaching. Thus, T ′ results in a physically distinct torus, just
as T does, and furthermore these resulting tori are not related
to each other through hexagonal lattice symmetries. It then
follows from Eq. (8) that S also cannot correspond to a lattice
symmetry—i.e., S must connect physically distinct tori as well.
Indeed, S and T ′ are interchangeable in the sense that the two
generators of the modular group can be considered to be either
{S,T } or {T ,T ′}.

Note that if we define the complex quantity τ ≡ (L2/L1)eiθ ,
then the S and T transformations correspond to τ → −1/τ

and τ → τ + 1, respectively. Together, these transformations
generate the so-called “modular group,” which is one of the
primordial symmetries associated with toroidal compactifi-
cations. In general, any transformation which takes the form
τ → (aτ + b)/(cτ + d), where a,b,c,d ∈ Z and ad − bc = 1
is a modular transformation. What we have shown, then, is
that any two carbon nanotori whose defining parameters are
related by a modular transformation are spectrally identical
even though they are physically distinct. In other words,
any transformation which can be generated through repeated

(b)(a)

FIG. 3. (Color online) Sketch of (a) the T transformation, and (b)
the T ′ transformation, as actions on the carbon nanotorus. In each
case, one should imagine affixing the carbon atoms to the surface of
the torus, then cutting the torus along the dashed (red) line (thereby
breaking those carbon/carbon bonds which cross this line), twisting
one half of the torus by a full 2π rotation relative to the other half,
and then attaching the newly adjacent bonds to reconstruct a new
nanotorus. The original and final nanotori will be related by the T or
T ′ modular transformations respectively, while much more complex
spectral equivalences can be generated through combinations of these
two fundamental operations.

actions of the S and T generators leads to a spectral equivalence
between physically distinct tori.

It is important to emphasize that the appearance of these
modular symmetries is not a total surprise. Modular symme-
tries often arise in the presence of toroidal compactifications,
and are a direct consequence of the underlying geometry of the
carbon nanotorus. Indeed, the zone folding of a macroscopic
lattice necessarily introduces periodic equivalences of the
sort discussed here, and in the case of two dimensions with
nonparallel identifications, such periodicities generically lead
to modular symmetries. In other words, the underlying toroidal
graph is not altered by modular symmetries, and thus the
adjacencies of the graph (and the isospectrality which results)
are preserved intact. However, when applied to the case of
carbon nanotori, these symmetries are physical, in the sense
that the nanotori they relate are isospectral but physically
distinct. As we shall see, this is particularly significant,
allowing these symmetries to have profound effects on the
physics of these nanotorus systems and in particular on the
range of behaviors they may exhibit.

In a sense, these modular symmetries can be viewed as
a generalization of a similar set of symmetries that emerge
for Möbius graphs. To see this, let us imagine taking a
long strip of hexagons and gluing opposite ends of this strip
together with an arbitrary number of half-twists. At first glance,
one might suspect that the resulting spectrum should depend
on the actual number of half-twists. However, it turns out
that the resulting spectrum depends only on whether this
number is even or odd.21 This Möbius case is, of course, a
relatively trivial example of this phenomenon, since it deals
with only a single possible kind of twist corresponding to the
single periodicity that defines the Möbius strip. Indeed, for
the case of carbon nanotori, our point is that there exists a
whole group of transformations—the modular group—which
is built upon the actions of two noncommuting underlying
generators (S and T ) which can be combined and performed
in a variety of inequivalent ways. This leads to “sewing” and
“gluing” configurations on the torus which are much more
complex than on the Möbius strip, and which require greater
mathematical machinery to study—and this in turn leads to
distinctions between the notions of “physically distinct” and
“spectrally distinct” which are even more pronounced than
in the Möbius case. However, even the relatively simple
Möbius case illustrates one of our basic themes: There can
be lots of physically distinct twisted hexagon strips, yet very
few of them are spectrally distinct. It is the preservation
of the underlying graph in each case which makes this
possible.

As a result of these modular symmetries, we can henceforth
establish an unambiguous convention for uniquely describing
the spectral properties of a given carbon nanotorus: We
calculate its complex parameter τ as defined above, and then
use a sequence of S and T modular transformations as needed
in order to bring τ into a special region of the complex τ -plane
known as the “fundamental domain” F defined by

F ≡ {
τ : − 1

2 < τ1 � 1
2 ,τ2 > 0,|τ | � 1

}
, (9)

where τ1 ≡ Re τ and τ2 ≡ Im τ . Note that the condition
Nhex ≡ np − mq > 0 already ensures that τ2 > 0. We can then
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use the underlying symmetries of the hexagonal graphene
lattice in order to bring the resulting angle β into the range
0 � β < π/3. Note that this convention is tantamount to
describing the spectrum of a given carbon nanotorus in terms
of that spectrally equivalent nanotorus which is as close
to being rectangular as possible. Following this procedure
therefore provides an unambiguous test of whether any two
physically distinct carbon nanotori in fact have the same
spectral properties.

IV. PHYSICAL IMPLICATIONS

The existence of these modular symmetries and the spectral
equivalences they induce has profound implications for the
physics of carbon nanotori. Indeed, as we shall see, the use of
these modular symmetries will sharpen our ability to classify
nanotori on the basis of those physical properties (such as
their metallicities, etc.) which ultimately stem from their band
structures. Furthermore, use of these modular symmetries can
even provide statistical insights into the properties of randomly
produced carbon nanotori—insights which may ultimately
have practical consequences for the manufacture of such
objects in environments in which their resulting properties
often cannot be controlled or engineered in advance.

As discussed above, the first and most direct implication
of these modular symmetries is that there exist physically
distinct nanotori—often with markedly different radii and
chiral angles—which nevertheless possess identical energy
spectra and conductivity properties. As an example of this
phenomenon, let us consider the (3,2,24,10), (7,3,−22,−12),
and (8,6,−25,−21) carbon nanotori. Clearly, we see that
these nanotori are physically distinct and are characterized
by different sets of cycle lengths L1,2, different chiral angles
β, and different twist angles θ . As a result, these three tori
have entirely different patterns of carbon atoms tiling their
surfaces. Yet the latter two nanotori are in fact related to each
another by S and T transformations, and consequently they
each yield the same spectrum of allowed �k vectors shown in
Fig. 4. Similarly the first nanotorus is related to the second
two through not only S and T transformations, but also trivial
60◦ rotations of the underlying graphene sheet. Thus, these
tori all share identical spectra, and according to the convention
specified above, we can describe this spectrum uniquely as
having Nhex = 18, τ = (2 + 9

√
3i)/13, and tan β = √

3/7.
Second, as a corollary to this observation, we also learn that

the usual notions of “zigzag” and “armchair”—notions which
are critical for describing the chirality and metallicity of carbon
nanotubes—no longer hold as special indicators of the spectral
properties of corresponding carbon nanotori. In other words,
nanotori built from zigzag or armchair nanotubes might have
spectral properties which are identical to those of nanotori
built from nonzigzag or nonarmchair nanotubes; moreover,
these spectral properties might or might not correspond to the
special zigzag or armchair angles β = 0,π/6. As an example,
the (6,0,−17,−6) nanotorus is built from a zigzag nanotube
while the (9,9,−40,−44) nanotorus is built from an armchair
nanotube and the (3,15,13,53) and (4,8,21,33) nanotori are
built from chiral nanotubes with different chiralities. Yet all
four nanotori have identical spectral properties which are
the same as those of a chiral nanotorus with Nhex = 36,

FIG. 4. (Color online) A plot of the energy spectrum common
to the (3,2,24,10), (7,3, −22, −12), and (8,6, −25, −21) carbon
nanotori, with allowed wave vectors indicated by (yellow) dots
superimposed over the energy contours in Fig. 1. Note that these
nanotori are not metallic, as none of the allowed wave vectors coincide
with any of the six points which constitute the Fermi “surface.”

τ = 12(1 + 3
2

√
3i)/31, and tan β = 5

√
3/7 (or β ≈ 51.05◦).

Indeed, using the mathematical results of Ref. 16, we can show
that any carbon nanotorus is spectrally equivalent to one built
from a zigzag carbon nanotube.

Conversely, a carbon nanotorus can have a spectrum which
exhibits a zigzag or armchair property that is lacking in
the original nanotube from which it is constructed. As an
example, the (9,0,−25,−4) nanotorus is built from a zigzag
nanotube and the (4,7,−12,−30) nanotorus is built from a
chiral nanotube. Yet both nanotori have the spectral properties
of an armchair nanotorus, with Nhex = 36, τ = 3

√
3i/2, and

β = π/6. Likewise, the (9,9,−27,−31) nanotorus is built
from an armchair nanotube and the (3,6,−11,−34) nanotorus
is built from a chiral nanotube. Yet both nanotori have the
spectral properties of a zigzag nanotorus, with Nhex = 36,
τ = (3 + 9

√
3i)/8, and β = 0.

Third, it turns out that not every possible spectral signature
(Nhex,τ,β) can be realized, even in principle. Instead, these
three quantities experience internal constraints and corre-
lations which ultimately reflect the fixed hexagonal lattice
structure of the underlying graphene sheet and which require
that any allowed spectral signature (Nhex,τ,β) originate from
four real integers (m,n,p,q). These correlations amongst
(Nhex,τ,β) can take a variety of different forms. For ex-
ample, for odd values of Nhex, it turns out that there exist
no self-consistent spectral signatures with purely imaginary
values of τ . Similarly, for Nhex = 24, there are solutions
with Re τ ∈ {±1/2,±1/3,±1/4,±1/7}, but no other inverse
integers; likewise, all of these except for Re τ = 1/7 have
β = 0. In fact, these internal constraints amongst the four real
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parameters embodied in (Nhex,τ,β) are sufficiently strong that
they effectively eliminate one real degree of freedom from
within this parametrization. In other words, although four real
degrees of freedom are required in order to parametrize a
given physically distinct nanotorus, only three real degrees of
freedom are required in order to uniquely describe its spectral
properties.16

It is easy to understand why such constraints arise.
Ordinarily, as a question of topology, tori can exist with all
shapes and volumes, for there are literally an infinite number
of ways in which we can construct a torus by rolling up an
unmarked sheet of paper. However, in the case of carbon
nanotori, our original “sheet of paper” is not unmarked: It
is actually a graphene sheet of carbon atoms which has its own
hexagonal lattice structure. The existence of such a lattice
structure has a number of critical consequences: It forces
our toroidal defining vectors �V1 to �V2 to be lattice vectors;
it restricts the resulting possible combinations of Nhex and τ to
those values consistent with the periodicity of the lattice; and it
breaks the rotational symmetry of our original uncompactified
two-dimensional sheet and necessitates the introduction of a
new measurable parameter, the angle β defined in Fig. 2, which
describes the orientation of the torus relative to the underlying
lattice. Conversely, the presence of the hexagonal lattice gives
a clear meaning to the twist angle θ . This quantity would
have had no meaning when rolling up an unmarked sheet of
paper.

Fourth, it is clear that the existence of spectral equivalences
between different nanotori implies that the number of spec-
trally distinct nanotori in any set will necessarily be smaller
than the number of physically distinct nanotori in that set.
However, it turns out that the magnitude of this truncation
can easily become quite staggering. As an example, let us
consider the set of physically distinct (m,n,p,q) nanotori
with fixed Nhex = np − mq = 18 which can be formed from
integers in the range |m|,|n|,|p|,|q| � 
 for some cutoff

. For concreteness, we shall take 
 = 100. In order to
count only physically distinct nanotori, we shall require that
(m,n) be chosen such that −π/3 < β � π/3. We shall also
require, as a rough measure of their physical consistency
in three-dimensional space, that each such nanotorus have
an outer circumference L2 which is at least triple its inner
cross-sectional circumference L1; note that other similar
mathematical conditions may alternatively be imposed, but the
qualitative results to follow are essentially unchanged. Given
these constraints, we then find through direct enumeration that
there are exactly 12 205 physically distinct carbon nanotori
which have Nhex = 18. Yet, as a result of these spectral
equivalences, it turns out that these 12 205 physically distinct
carbon nanotori give rise to only 14 distinct energy spectra.
These distinct energy spectra are listed in Table I, along with
a representative carbon nanotorus in each class.

This is clearly a major truncation. Even with the relatively
small value Nhex = 18 and relatively small cutoff 
 = 100,
each spectral signature listed in Table I is shared by literally
hundreds or thousands of physically distinct carbon nanotori.

Fifth, it is also worth noting that this truncation does not
treat metallic and nonmetallic nanotori equally. In general, a
given (m,n,p,q) carbon nanotorus will be metallic if at least
one of its allowed wave vectors �k lies on the Fermi surface,

TABLE I. For Nhex = 18 and 
 = 100, there are 12 205 physi-
cally distinct carbon nanotori (m,n,p,q) with L2 > 3L1. However,
these exhibit only 14 spectrally distinct energy spectra and band
structures, and only four of these correspond to metals. These 14
spectrally distinct values of τ ≡ τ1 + iτ2 = |τ |eiθ and β are listed
below, along with a sample (m,n,p,q) nanotorus in each class.

τ1 τ2 tan β Metal? Sample (m,n,p,q)

0
√

3 0 yes (12,15,42,51)
0 3

√
3

√
3/3 yes (10,13, −34, −46)

0 9
√

3 0 no (10,8, −39, −33)
0 9

√
3

√
3/27 no (19,17, −66, −60)

1/3
√

3 0 no (10, −6, −33,18)
−1/3

√
3 0 no (10, −4,33, −15)

1/4 3
√

3/4
√

3/3 yes (10,16, −32, −53)
−1/4 3

√
3/4

√
3/3 yes (10,1, −32, −5)

1/4 9
√

3/4 0 no (10, −1,32, −5)
−1/4 9

√
3/4 0 no (10,18, −34, −63)

3/7 9
√

3/7
√

3/2 no (10,14,32,43)
−3/7 9

√
3/7

√
3/5 no (10,12,34,39)

2/13 9
√

3/13
√

3/7 no (10,11, −32, −37)
−2/13 9

√
3/13 3

√
3/5 no (10,14, −33, −48)

or in this case on one of the six points at which two Bragg
planes intersect. As is well known, this occurs only when the
differences m − n and p − q are each a multiple of three.
This implies that in any large set of physically distinct carbon
nanotori, approximately one-ninth of the nanotori should be
metallic. However, we see from Table I that four out of the
fourteen possible distinct spectral signatures are metallic. This
is almost triple what would have been expected, implying that
the fraction of spectrally distinct nanotori which are metallic is
nearly triple the fraction of physically distinct nanotori which
are metallic. In other words, the truncation from the four-
parameter space of physically distinct nanotori to the three-
parameter space of spectrally distinct nanotori is remarkably
sensitive to the metallicity of the nanotori in question.

One might argue that both of these effects—the huge
truncation in the number of distinct spectral signatures and the
relative abundance of those which are metallic—merely reflect
the fact that we restricted our integers (m,n,p,q) to lie within
a fixed range bounded by ±
, or that we took a relatively
small value of Nhex. However, it is easy to demonstrate that
the second of these effects is relatively insensitive to the
choice of 
, and that the first of these effects only becomes
even more dramatic as 
 is increased. For example, if we
restrict our attention to carbon nanotori with Nhex = 36, we
find that the number of physically distinct nanotori and the
number of spectrally distinct nanotori both rise as a function
of 
. However, we see from Fig. 5 (left-hand panel) that the
number of physically distinct nanotori with fixed Nhex grows
as 
2, as expected, while the number of spectrally distinct
nanotori quickly hits a plateau (right-hand panel) which
remains flat for an increasingly long interval in 
 before a
new, hitherto-unrealizable spectral signature becomes possible
and a new plateau develops. [This growth in the number of
physically distinct nanotori as a function of 
 can easily be
deduced from the observation that the number of quadruplets
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FIG. 5. Dramatic reduction in the number of spectrally distinct carbon nanotori (right-hand panel) compared with the number of physically
distinct carbon nanotori (left-hand panel). This illustrates the ubiquity and power of spectral equivalences amongst arbitrary sets of allowed
nanotori. Also shown (right-hand panel) is the number of spectrally distinct nanotori which are metallic, indicating that metallic properties
appear approximately three times more frequently amongst spectrally distinct nanotori than amongst physically distinct nanotori.

of integers (m,n,p,q) grows as 
4, while the corresponding
number of attainable values of Nhex = np − mp grows as 
2.]
As a result, the number of physically distinct nanotori quickly
outpaces the number of spectrally distinct nanotori. Moreover,
we see from Fig. 5 that the number of distinct metallic spectral
signatures remains roughly one-third (and not one-ninth) the
total number of distinct spectral signatures.

We may also consider how these results vary with the choice
of Nhex. This is shown in Fig. 6, where, as functions of Nhex and
for 
 = 100, we have plotted the number of spectrally distinct
carbon nanotori as well as the number of those spectrally
distinct carbon nanotori which are metallic. It is clear from
these results that the numbers of spectrally distinct nanotori
remain relatively small, even though they rise with Nhex, as
expected.

It is also easy to understand the jagged, oscillating nature
of the results in Fig. 6. Nanotori must have Nhex ∈ 3Z in order
to be metallic, while they must have Nhex ∈ 2Z if they are
rectangular, with θ = π/2. Thus, one difference between tori
with Nhex ∈ 6Z and those with Nhex 	∈ 6Z is the existence
of additional nonrectangular carbon nanotori with θ 	= π/2.
However, it must also be borne in mind that a random selection
of four integers (m,n,p,q) is 5/3 times more likely to result
in an even value for Nhex = np − mq than an odd one. As we
see from Fig. 6, the combined effect from these two features
is fairly significant.

Finally, another important implication of these spectral
equivalences between physically distinct carbon nanotori
concerns the traditional rules of thumb which allow us to
determine whether a given carbon nanotorus is metallic, semi-
conducting, or insulating. Throughout the existing literature
on this topic, one finds what we shall call the “rule of three”:
A given (m,n,p,q) carbon nanotorus with L2 � L1 � 1 will
be metallic if both m − n and p − q are multiples of three,

semiconducting if m − n is multiple of three while p − q is
not, and insulating in all other cases. It is, of course, easy
to verify that this characterization of a metallic nanotorus
is modular invariant. Specifically, if a given nanotorus has
(m,n,p,q) parameters which are metallic according to the
rule of three, then all other nanotori to which it is spectrally
equivalent will also have parameters which are metallic
according to the rule of three. In other words, if m − n and

FIG. 6. The numbers of spectrally distinct carbon nanotori (upper
curve) and metallic spectrally distinct carbon nanotori (lower curve),
plotted as functions of Nhex ∈ 3Z for 
 = 100. Both numbers remain
relatively small. The “oscillating” nature of these plots reflects in part
the importance of the twist angle θ , since only nonrectangular tori
can exist when Nhex is odd.
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p − q are both multiples of three, modular transformations of
these parameters will not disturb this property.

By contrast, the rule-of-three definition of semiconductors
is not modular invariant—even when we preserve the condition
that L2 � L1. As a graphic illustration of this point, consider
the (3,0,20,21) torus. Note that indeed L2 � L1 for this torus.
According to the standard rule of three, such a torus can be
identified as a semiconductor because m − n is a multiple of
three. By contrast, let us now consider the (23,21,2320,2121)
nanotorus. This torus also clearly has L2 � L1. However,
because m − n is not a multiple of three, we would expect
this nanotorus to be an insulator. Indeed, the rule of three tells
us to expect this even though our first impression might be
that the second nanotorus has larger radii in both directions,
and therefore might have energy levels which are more closely
spaced.

However, even though these tori have very different
physical parameters, it turns out that they are related through
modular transformations and therefore have identical energy
spectra. They therefore also have identical metallicity proper-
ties. This provides a graphic illustration that as a mathematical
statement, the standard “rule of three” fails to characterize
the conductivity properties of such nanotori because it is
inconsistent with the modular transformations which reflect
the additional symmetries of the compactified graphene sheet.
In other words, the standard definition for a semiconducting
carbon nanotorus fails to be modular invariant, and thus cannot
be complete as a description of the underlying conductivity
properties of the nanotorus. This is yet another consequence
of the fact that modular invariance in this context is an actual
physical symmetry relating the spectra of physically distinct
nanostructures.

We close this section with an important comment. Through-
out this section, our goal has been to illustrate various
mathematical ramifications of the modular symmetries which
govern the spectra of different carbon nanotori. The specific
examples we have provided throughout this section were
therefore chosen for their mathematical simplicity as opposed
to their phenomenological practicality. For example, we
restricted our attention in this section to nanotori with relatively
small values of Nhex, while realistic carbon nantoroi can
be expected to have Nhex ≈ O(102–103). Likewise, realistic
carbon nanotori will generally be quite long and thin, with
quantities such as L2 sin θ exceeding L1 by an order of
magnitude or more. However, all of the conclusions we have
drawn in this section continue to hold even when more
realistic tori are considered. As an example, let us restrict
our attention to carbon nanotori with Nhex = 600 for which
L2 sin θ � 10L1. The latter condition guarantees that our
nanotorus remains relatively long and thin even if there are
multiple windings of the hexagonal carbon lattice around the
tube axis of the torus. Taking 
 = 400, we find there are 15 027
physically distinct nanotori which satisfy these conditions,
but only 52 of these are spectrally distinct. Furthermore, of
these 52 spectral equivalence classes, 14 correspond to metals.
We see, then, that even for realistic nanotori, our modular
symmetries continue to lead to large classes of spectrally
equivalent nanotori and a relative overabundance of classes
which are metallic. Indeed, in the limit 
 → ∞, it is straight-
forward to show that the number of physically distinct carbon

nanotori in each spectral equivalence class also grows to
infinity.

V. MODULAR INVARIANCE AND MAGNETIC FLUXES

With an eye toward potential implications of modular
symmetries for the magnetic phenomena associated with
twisted carbon nanotori,12,17 we now consider the introduction
of magnetic fluxes. For full generality, we consider the
possibility of two distinct fluxes: one which travels all the way
around (and through) the length of the nanotube which forms
the torus; and another, namely, the usual Aharonov-Bohm flux,
which pierces the plane of the nanotorus, coming up through
the doughnut hole. We shall denote these fluxes φ1 and φT ,
respectively, as their associated vector potentials �A1 and �AT

lie parallel to the vectors �V1 and �T in Fig. 2, respectively.
As is typical for such systems, we then find that we can
incorporate the effects of these fluxes by keeping our previous
band-structure energy function E(�k) in Eq. (1) unchanged,
and simply modifying our constraint equations for (kx,ky) in
Eqs. (2) and (4) so that the integers �i are shifted according to

�i → �i + φi

φ0
, (10)

where φ0 is the flux quantum and where

φ2 ≡ φT + τ1φ1. (11)

Note that it is the possible existence of a non-trivial twist angle
θ which is responsible for the distinction between φ2 and φT .
We then find that the resulting system continues to exhibit
a spectral equivalence under the modular transformations in
Eqs. (6) and (7) as long as we allow (φ1,φT ) to remain invariant
under the T transformation and to mix with each other under
the S transformation:

S :

(
φ1

φT

)
→

(
φ′

1
φ′

T

)
≡

( −τ1 −1
τ 2

2 /|τ |2 −τ1/|τ |2
) (

φ1

φT .

)
(12)

Thus, a carbon nanotorus parametrized by (m,n,p,q,φ1,φT )
will have the same spectral properties as one parametrized by
(m′,n′,p′,q ′,φ′

1,φ
′
T ), where these two sets of parameters are

related through the modular transformations discussed above.

VI. DISCUSSION

In this paper, we have highlighted and investigated the
implications of a geometric symmetry—modular invariance—
which emerges upon the compactification of a graphene sheet
to form a carbon nanotorus. Although not traditionally con-
sidered in the carbon-nanotorus literature, modular invariance
plays a critical role in describing the spectral properties of
these nanotori and leads to spectral equivalences between
physically distinct nanotori. As we have shown, this has
profound implications for the classification of carbon nanotori,
indicating that large numbers of seemingly unrelated nanotori
are in fact completely identical in terms of their spectral
properties. Along the way, we also showed that the traditional
“rule-of-three” classification rubric is incomplete, as it is
based on quantities which are do not respect these spectral
equivalences. We also found that the fraction of spectrally
distinct carbon nanotori which are metals is approximately
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three times greater than would naively be expected on the basis
of standard results in the literature. Finally, we also showed
that these spectral equivalences can easily be extended to cases
in which nontrivial magnetic fluxes are present.

The existence of these spectral symmetries also provides
a deeper theoretical underpinning to certain results which
already exist in the literature. For example, it is well known
that many carbon nanotori exhibit persistent currents in the
presence of a nonzero magnetic flux φ. As functions of
φ/φ0, these currents typically follow complicated “sawtooth”
patterns which have a natural periodicity under shifts φ →
φ + φ0. It has also separately been observed (see, e.g.,
Ref. 17) that any such sawtooth pattern is preserved but shifted
horizontally upon the introduction of a nanotorus twist in
which �V2 → �V ′

2 ≡ �V2 + f �V1, where f is chosen such that
�V ′

2 is also a lattice vector. Indeed, when f ∈ Z, the magnitude
of this horizontal shift exactly matches the periodicity of the
sawtooth pattern and the net result is unchanged.

Remarkably, this coincidence is now easy to understand
from the point of view of modular transformations: When
f ∈ Z, the mapping from �V2 → �V ′

2 is nothing but the T

modular transformation, and as we have shown, modular
transformations preserve the electrical properties of the torus,
including its persistent currents. We thus see that the peri-
odicity of the sawtooth pattern for persistent currents under
shifts φ → φ + φ0—a periodicity which can be understood
on elementary grounds having nothing to do with modular
transformations—can now also be interpreted as a spectral
equivalence under the T modular transformation. Moreover,
we now see that this is merely the tip of the iceberg, and
that these sorts of spectral equivalences actually have a richer
structure and context that not only corresponds to the entire
modular group but also transcends the specific example of
persistent currents.

As we have discussed above, the traditional “rule of three”
is not formulated in a modular-invariant way and is therefore
incomplete as a description of the electronic properties of
carbon nanotori. However, the full implications of these
modular symmetries are significantly broader than just the
rule of three: No theoretical result concerning the electronic
properties of carbon nanotori can be correct unless it respects
these modular symmetries. In other words, no calculation
of any electronic property of a given carbon nanotorus in
terms of its fundamental defining parameters (m,n,p,q) can
be correct unless it yields a result which is invariant under
the modular transformations in Eq. (6). In this respect,
modular invariance functions for carbon nanotori in much the
same way as gauge invariance functions for electromagnetic
systems: no theoretical result can be correct unless it can
be phrased in terms of quantities which are invariant under
the symmetry in question. Of course, at a mathematical
level, both modular invariance and gauge invariance rest
on relatively simple algebraic identities. However, they both
provide powerful organizing principles, and have significant
physical manifestations and implications for the symmetry
structures of the systems in which they appear.

Needless to say, several additional comments are in order.
First, it should be noted that in this paper we have focused
on what might called the “ideal” nanotorus. In particular,

we have not accounted for the fact that the actual physical
construction of such a torus in three-dimensional space
requires that we introduce both an intrinsic and extrinsic
curvature onto our otherwise flat graphene sheet. In this sense,
the construction of a carbon nanotorus is different from that
of a carbon nanotube (in which only the extrinsic curvature is
nonvanishing). The introduction of intrinsic curvature requires
that we subject our underlying graphene sheet to considerable
strain, deforming not only the positions of carbon atoms
but also their relative spacings. These effects have been
addressed by a number of authors, using a variety of different
techniques.18

That said, these spectral equivalences should continue to
hold, even in the presence of such deformations. There are
several reasons for this. First, in the limit L1,L2 � Rcc, all
effects due to these deformations will be suppressed. However,
this is precisely the limit in which nanotori can be constructed
from purely hexagonal graphene sheets without the introduc-
tion of curvature-inducing pentagonal or heptagonal carbon
rings. Second, it can be shown that even when such strain is
present, maximum toroidal stability occurs when this strain
is uniformly distributed along the nanotorus,19 and this is
precisely the situation in which the techniques of Ref. 14
can be used in order to mathematically rewrite the effects
of such strain as arising due to a fictitious magnetic flux.
As we have seen, the spectral equivalences we have found
continue to exist even when such fluxes are introduced. But
most importantly, while any deformations of the underlying
graphene sheet can be expected to have effects on the
corresponding band-structure energy function E(�k) shown in
Fig. 1, such deformations will not disturb the symmetries
inherent in the constraint equations for �k = (kx,ky) derived in
Eqs. (2) and (3). Indeed, these equations reflect nothing more
than the effects of toroidal compactification, and their structure
leads directly to the modular symmetries inherent in Eqs. (4)
and (5). Thus, since these spectral equivalences ultimately
stem from these symmetry properties, we are assured that
any two tori related by modular transformations will sample
the same set of wave vectors �k. Such tori will therefore
continue to be spectrally identical regardless of the function
E(�k), provided the deformations to E(�k) for the two tori are
themselves identical. Moreover, as we have argued above, even
in cases where these deformations are not identical, they can
at most differ by terms which are suppressed by factors of the
presumably large nanotori radii. Such differences can therefore
be safely neglected.

A similar conclusion also holds for thermal effects. It
might seem, at first glance, that thermal effects could also
destroy the spectral equivalences, since they too can have
a dramatic effect on the band structure of the underlying
graphene sheet.20 However, as noted above, these spectral
equivalences are a consequence of the geometric symmetries
that arise upon compactifying this sheet; they are largely
independent of the symmetries of the sheet itself. Indeed, these
modular symmetries exist for any choices of identification
vectors �V1 and �V2, even if those vectors are altered by other
effects. Therefore, as long as the temperature is sufficiently
low that the electron coherence length exceeds both the inner
and outer toroidal circumferences, the spectral equivalences
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we have been discussing should remain intact up to terms
suppressed by the large nanotori radii.

These comments notwithstanding, it still remains true that
not all such nanotori are equally likely to appear in nature.
In particular, those nanotori whose constructions implicitly
involve large numbers of twists are likely to be rather difficult
to construct or stablize, as the carbon atoms that constitute the
underlying graphene sheet are likely to experience significant
strain, leading to major deformations of the underlying carbon
bond lengths and angles away from their ideal values. This
is especially relevant, given that our statistical discussions in
Sec. IV implicitly assume that each of the relevant (m,n,p,q)
nanotori can appear with equal probability.

At a mathematical level, it is difficult to draw a firm
boundary between those carbon nanotori which are realizable
in nature as bona fide molecules and those which are not.
However, in this paper we have restricted ourselves to
statistical examinations of only those nanotori which already
obey certain critical constraints. For example, we have limited
ourselves to nanotori in which L1 and L2 are both significantly
bigger than the carbon-carbon bond length Rcc. Thus each twist
experienced for the whole nanotorus has only a minor effect on
the bond lengths and angles corresponding to each individual
carbon atom. In addition, we have further limited ourselves
to nanotori which also satisfy L2 � L1 sin θ . This ensures
that each such nanotorus can be realized in three-dimensional
space, without the unphysical self-overlapping that would arise
if this condition were not met. Together, these conditions
help to ensure that the strains induced by these modular
transformations are not too severe.

Needless to say, there are many implications of these spec-
tral equivalences which we have not yet explored. It would be
interesting, for example, to consider the implications of these
symmetries for the existence or absence of persistent currents
as well as the existence or absence of colossal magnetic
moments. This work is currently in progress. It would also
be interesting to understand these modular transformations
in terms of fictitious fluxes, using analogs of the techniques
presented in Ref. 14.

In closing, we would like to make two final remarks, one
of primarily mathematical interest and one of more practical
applicability.

First, as we have seen, modular invariance is the symmetry
which underlies most of the results we have presented in this

paper. At a mathematical level, modular invariance is normally
just a relabelling symmetry in the sense that two sets of
torus parameters related by a modular transformation normally
correspond to the same physical torus. This is certainly the
case in string theory, and in most other situations in theoretical
high-energy physics in which modular transformations have
played a significant role (see, e.g., Ref. 22).

However, the case of carbon nanotori is quite different.
Here, modular transformations relate parameters correspond-
ing to carbon nanotori which are physically distinct. As we
have discussed, this is because we are not merely rolling
up an unmarked sheet of paper when we subject it to two
nonparallel identifications; we are rolling up a graphene sheet
which already has a hexagonal carbon lattice imprinted on
it. Viewed from this perspective, it is therefore somewhat
remarkable that modular transformations continue to play
a role, indicating when two distinct nanotori will have the
same spectral properties. Indeed, in the case of carbon
nanotori, we see that modular invariance is thus promoted
from a mere relabeling symmetry to something far deeper:
Modular invariance becomes an outright physical symmetry
between physically distinct entities. We know of no other
physical situation in which modular invariance plays such a
role.

Second, it is also exciting at a practical level that physically
distinct carbon nanotori can have identical energy spectra
and electrical properties. Since these nanotori are physically
distinct, some are likely to be far more complicated to construct
in the laboratory than others. Nevertheless, these spectral
equivalences suggest that it may not be necessary to fabricate a
very complex nanotorus (or generate sizable magnetic fluxes)
in order to obtain a desired spectral property; there are likely
to be far simpler nanotori and/or fluxes which can perform the
same function. This could have significant implications for the
production and use of such nanomaterials.
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