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We study secondary electron emission from metallic surfaces due to Auger de-excitation of diatomic metastable
molecules. Our approach is based on an effective model for the two active electrons involved in the process—a
molecular electron described by a linear combination of atomic orbitals when itis bound and a two-center Coulomb
wave when it is not and a metal electron described by the eigenfunctions of a step potential—and employs Keldysh
Green’s functions. Solving the Dyson equation for the retarded Green’s function by exponential resummation
we are able to treat time-nonlocal self-energies and to avoid the wide-band approximation. Results are presented
for the de-excitation of N2(* ;) on aluminum and tungsten and discussed in view of previous experimental and
theoretical investigations. We find quantitative agreement with experimental data for tungsten indicating that
the effective model captures the physics of the process quite well. For aluminum we predict secondary electron
emission due to Auger de-excitation to be one to two orders of magnitude smaller than the one found for resonant

charge transfer and subsequent autodetachment.
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I. INTRODUCTION

De-excitation of metastable atoms and molecules with
simultaneous release of an electron is a surface scattering
process of great technological importance. De-excitation of
atoms is used as a surface-sensitive electron spectroscopy'™
and de-excitation of molecules is an important process in
molecular low-temperature gas discharges. It is one of the main
wall-based secondary electron emission channels controlling,
together with wall recombination and various volume-based
charge production and destruction channels, the overall charge
balance in the discharge.’ In the de-excitation process both
the target and the projectile are composite objects. A great
variety of reaction channels is thus conceivable making the
investigation of this scattering process a challenging task,
particularly for molecules.

Stracke et al.® experimentally investigated the de-excitation
of metastable nitrogen N2(3E;r ) molecules on a tungsten
surface and proposed two main reaction channels. First, the
Auger de-excitation (also referred to as Penning de-excitation),

N2(CS) + e — Na('E) +ey, (1)

where ¢, and ey denote an electron inside the metal and a
free electron, respectively, and second, the formation of the
N; (°T1,) shape resonance with subsequent autodetachment,

N:(CEF) +ew = Ny (ML) = Nao('SH) +ep. @

Stracke et al.® concluded that out of these two competing
processes reaction (2) should be more efficient, as it is a
combination of two single-electron charge-transfer transitions,
whereas (1) represents a less probable two-electron transition.
Using thermal molecules they measured the energy spectrum
of the released electron and estimated the overall secondary
electron emission coefficient y,, that is, the probability for
releasing an electron by a single metastable molecule de-
excitation at the surface, to be about 1073 to 1072, The
experimental estimate for y, does not discriminate between
the two reaction channels. It rather includes both channels.
Indeed, Stracke et al.® mention that in the spectrum of the
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emitted electron they also observe a weak signal due to Auger
de-excitation. It is one order of magnitude weaker than the
signal due to charge transfer.

Based on the assumption that the charge-transfer channel
(2) is the dominant one Lorente et al.” theoretically investi-
gated the de-excitation of N> Z,j’ ) molecules on an aluminum
surface. The resonance-driven secondary electron emission
coefficient resulting from their calculated electron emission
spectrum is about 10~ which is one order of magnitude larger
than the value Stracke et al.® give for tungsten. The Penning
channel (1) was not considered by Lorente and coworkers.” Its
strength for an aluminum surface is thus unknown.

In the present work we adopt a point of view complementary
to that of Lorente ef al.,” investigating Penning de-excitation
while neglecting any contribution due to resonant charge
transfer. In particular for tungsten the efficiency of the Penning
process may be comparable to the efficiency of the charge-
transfer process, because the molecular orbital hosting the hole
in the electronic configuration of N(®X ) is roughly 2.5 eV
below the bottom of the conduction band of tungsten.®® To
bring this orbital in resonance with conduction band states of
the metal requires therefore a large image shift and broadening
due to the interaction with the metal. Rough estimates of these
two effects based on what is known about them for alkali
atoms interacting with surfaces'® imply that the resonance
condition can only be met for vibrationally excited No(PZ )
states. Thus, at least for N,( 2; ) in its vibrational ground
state, Penning de-excitation and charge transfer are eye-to-eye
competitors. For aluminum the electronic band structure is
much more favorable for the charge-transfer scenario.'! Here,
the bottom of the conduction band is only 1 eV above the
molecular orbital in question. This energy difference may
be bridged by the combined action of image shift and level
broadening.

In order to theoretically analyze the Auger de-excitation
of diatomic molecules on metallic surfaces we adopt an
effective two-electron model, where one electron resides in
the conduction band of the metal and the other in the excited
state of the molecule. The metal is modeled as a half space
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containing a free electron gas characterized by a work function
and a conduction band depth, while the molecule is modeled in
terms of a two-level system with energy spacing corresponding
to the excitation energy of the metastable state. Focusing
on the situation where the emitted electron (Auger electron)
originates from the molecule we describe it by a two-center
Coulomb wave. The coupling between the molecule and
the metal is through the Coulomb interaction between a
metal electron and the electron in the excited state of the
molecule. Image interactions are neglected (except for the
emitted electron, where we include it in terms of a surface
transmission function) because they give rise to a hybridization
of metallic and molecular single-electron states'® which we
prefer to discuss in connection with direct charge transfer.

Although our model for Auger de-excitation is somewhat
crude, it contains the most relevant degrees of freedom in
a reasonable approximation and can be parameterized by
energies which are relatively easy to obtain. In particular the
latter aspect is rather important for us, because our interest
in Auger de-excitation and related processes stems from their
relevance for bounded low-temperature gas discharges. It is
well known that electrons can be released from plasma walls by
de-excitation of metastable species but for most wall materials
and projectiles the secondary electron emission coefficient is
unknown. A flexible, easy-to-use microscopic model for its
calculation is thus needed.

Following the lead of Makoshi and coworkers, who
investigated the de-excitation of metastable atoms, we employ
in the following the Keldysh technique'*~!” to calculate within
the trajectory approximation'® the secondary electron emission
coefficient and the spectrum of the emitted electron for a
diatomic metastable molecule hitting a metallic surface. A
description of this type of surface collision with Green’s
functions'>!3:19-22 js mathematically more demanding than us-
ing rate equations.'®?*-2 Green’s functions are however rather
flexible in handling the nonadiabaticity of the projectile’s
motion,'>!3 the Coulomb correlations on the projectile,'*!
and the collective electronic excitations of the surface.?? In
addition, image shifts and level broadening due to image
interactions as well as vibrations of the molecule may also
be included in a theoretical description based on Green’s
functions.

In contrast to Makoshi’s work,'>!3 our approach is not
restricted to time-local Auger self-energies and thus to the
wide-band approximation. To overcome this limitation we
solve the Dyson equation for the retarded Green’s function
by exponential resummation.”® Our approach is also not
restricted to phenomenological Auger matrix elements. We
work with the full matrix element, exploiting only the locality
of the bound molecular states and the large distance of the
molecule’s turning point from the surface. Although the final
equations for the secondary electron emission coefficient and
the spectrum of the Auger electron are highly complex they can
be numerically evaluated within an interpolative grid-based
Monte Carlo integration scheme.

We specifically apply our approach to Auger de-excitation
of N,( ¥.5) on an aluminum or a tungsten surface. The
metastable molecule is assumed to be in its vibrational
ground state and the molecule’s turning point is obtained
from the surface potential applicable to N»(*Z;") on metallic
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surfaces. For an aluminum surface we find the secondary
electron emission coefficient due to Auger de-excitation (1)
to be one to two orders of magnitude smaller than the one
deduced from Lorente ef al.’s’ theoretical study of the direct
charge-transfer channel (2) and for tungsten we find good
quantitative agreement with an experimental estimate based
on the measurements of Stracke et al.®

The paper is structured in the following manner. In the
next section we give more details about the effective model
on which our analysis of Auger de-excitation is based. In
Sec. III we employ the Keldysh technique to extract physical
quantities from the model. Thereafter we describe in Sec. IV
the numerical scheme we employed for the calculation of
the secondary electron emission coefficient and the energy
spectrum of the Auger electron. Results are presented in
Sec. V. We conclude the paper in Sec. VI and complement it by
two appendices. Appendix A contains the explicit form of the
wave functions we used in our calculations and Appendix B
fixes the notations of the Keldysh formalism.

II. MODEL

We investigate the de-excitation of a metastable nitrogen
molecule impacting a metallic surface with simultaneous
release of an electron. The model we employ is an effective one
that concentrates on the most important degrees of freedom and
enables us to describe the system by a few parameters which
are accessible through experiments or theoretical calculations.
The primary goal will be to calculate the secondary electron
emission coefficient y,.

Focusing on the essentials of the process, we introduce from
the start some simplifications and restrictions. First, we assume
the metal surface to be planar, ideal, uncharged, and to stretch
over the entire half space z < 0. Furthermore, we consider
only the dominant metastable state N,(*Z ). In addition, we
employ the trajectory approximation;> that is, we decouple
the translational motion of the molecule from the dynamics
of the system and externally supply its trajectory. Finally,
the molecule is assumed to impact the surface under normal
incidence with constant velocity v and constant angle ¢ of its
axis to the surface. Because of the translational symmetry of
the solid surface in the x-y plane, it is then sufficient to consider
only rotations of the molecule axis about one particular axis
in this plane, for instance, the y axis (see Fig. 1).

We now cast the model assumptions into mathematical
form, starting with the trajectory. Assuming the molecule to
start moving at fp = —oo and to hit the surface at r = O the
trajectory of its center of mass is

R(t) = zr(1) . = (lt| + z0) & , 3)

where 7y denotes the turning point. The center-of-mass motion
is classical. Hence, the turning point zo can be determined by
considering the motion of the molecule in the molecule-surface
interaction potential V(z) for given initial kinetic energy €xin-
Using a Morse-type potential, energy conservation gives for
the position of the turning point

] .
zo=zg——1n(1+,/1+@> @)
a d
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FIG. 1. Schematic illustration of the collision geometry.

with material parameters d, a, and 2.2 For metals

d=0738eV, a=640pm~!, z,=245pm. (5)

According to the authors of Ref. 29 these values are not very
specific to the particular metal.

To set up, for a given trajectory, a Hamiltonian for a nitrogen
molecule de-exciting at a metal surface we follow Cazalilla
etal.”” and distinguish between indirect de-excitation (Penning
process, solid lines in Fig. 2), in which the electron is emitted
from the molecule, and direct de-excitation (exchange process,
dashed lines in Fig. 2), in which the electron is emitted from
the surface. It must be stressed that although the asymptotic
form of the wave function of the emitted electron is in both
cases a plane wave, in the region relevant for the calculation of
the matrix element, the Auger wave function for the Penning
process resembles a single-electron continuum wave function
of the nitrogen molecule whereas the Auger wave function
for the exchange process is basically a continuum state of
the solid with positive energy. In the following we will only
consider the Penning process because our calculations showed
that its matrix element is much larger than the matrix element
associated with the exchange process, a consequence of the
orthogonality of the bound molecular wave functions.

We construct the Hamiltonian by combining three different
kinds of single-electron states to a single-electron basis: the
single-electron states of the conduction band of the solid
surface, which we approximate by the states corresponding
to an electron trapped by a step potential of depth ®.,%
the free single-electron states associated with the molecule’s
continuum for which we use a two-center Coulomb wave,0-32
and effective single-electron states for the bound states of
the molecule. To keep the description of the molecule as
simple as possible we approximate the latter by a degenerate
two-level system keeping, within the LCAO representation of
the nitrogen molecule, > only the 27, and the 27, molecular
orbitals (MOs) which are the two MOs whose occupancies
change during the de-excitation process. To construct the two
MOs we use moreover hydrogen-like wave functions with
effective charges to mimic the Roothaan-Hartree-Fock wave
functions of atomic nitrogen.>* In the molecule’s ground state
NZ(IE;—) the 27, MO is fully occupied and the 27, MO is

empty while in the excited state No(* £;1) the 277, MO contains

PHYSICAL REVIEW B 84, 085443 (2011)

E
gmaz
v9 57
PRad \
-
vacuum level -7
A T )
’
7’
7’
7’
Dy .,
7’
l 7’
4
R 7
’
€k
min
oo F
. AE{
— =£1(2myg)
1
1
1
! I
1
1 Ae,
1
1
1
\ - !
Vo Y . v
0(2my)

FIG. 2. Energy scheme of the simplified model showing Penning
de-excitation (solid lines) and its exchange process (dashed lines).
Also indicated are the classical energy cutofts s‘;“i" and &z which
can be calculated from the energy balance &, + & = ¢y + ¢; that
holds in the adiabatic limit.

a hole and the 2r, MO is singly occupied. Both of these levels
can carry four electrons and are degenerate in the electron spin
s = :I:% and the magnetic quantum number m = =£1. Since the
process we consider does not involve any spin flip, we ignore
the spin. We can thus label the ground state of the two-level
system and its excited state by Om and 1m, respectively, and
denote the corresponding energies by &g and ¢;. The states of
the metal and the free states are labeled by k and g, respectively.
The mathematical expressions for the wave functions of the
single-electron states are given in Appendix A.

The description of the electronic structure of the molecule-
surface system is completed by aligning the single-electron
states against each other and against the vacuum level by
use of the metal’s work function @y, the metal’s conduction
band depth @, the molecule’s ionization energy Ag;, and the
excitation energy of the molecule A¢,. The metal states are of
course occupied up to the Fermi level er. Our model is thus
characterized by a few energy parameters, an effective charge,
and a bond length (which enters the molecular wave functions
of the diatomic molecule).

The electronic structure of the simplified model is sketched
in Fig. 2, together with the transitions of the Penning de-
excitation and its associated exchange process. Due to the
symmetries of the molecular ground state (! Z;) and the

molecular excited state (3 =), the sum of the magnetic
quantum numbers does not change. Hence, the excited electron
in the 27, MO and the hole in the 271, MO have the same
magnetic quantum number m. The transitions are driven by
the Coulomb interaction between the electron in the 27, MO
and an electron in the Fermi sea of the metal (see, for instance,
Refs. 24-27). The three electrons in the 2, MO act only as
spectators and can thus be neglected. Assuming moreover the
Fermi surface of the metal to be rigid, the de-excitation of
N>(Z]) is basically a two-body scattering process, whose
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Hamiltonian, written in the single-electron basis described in
the previous paragraph, is given by

H = Hy+ H(1), (6a)

Z&ac +Zs c~c~

+ Z 20 COm Com + Z € Clm Cim» (6b)

Hy(1) = Z Vi) ey ey, + He,  (60)
I;,Zj,m
where H, represents the Hamiltonian of the noninteracting
system, and H,(¢) contains the Penning de-excitation.

The Auger matrix element V. contains the time-
dependence of the Hamiltonian, and thus carries the intrinsic
nonequilibrium character of the system. In terms of the
single-electron states given in Appendix A, it can be written
as

Vi = [af [ai g, Gune; @)
XVC(|7—7'|)‘I’§;( SO, (7, (1), @)

where V¢ represents the Coulomb potential and the subscript
¢ denotes the associated vector as seen from the molecule’s
referencg frame, which is centered about the molecule’s center
of mass R(¢) and has its z axis aligned along the molecule axis.
The vectors 7\(t) and g,, are thus given by

PO = QP - R(t), (8a)
do = Q) g, (8b)

where the matrix (¢) describes the rotation around the y axis
(see Fig. 1). Due to the diatomicity of the nitrogen molecule
the interaction matrix element depends on the orientation of
the molecule with respect to the surface, that is, on the angle
¢. For convenience we suppress however this dependence in
our notation of the matrix element. Note that since we are
considering the Penning process, the continuum states g are
defined with respect to the molecule’s center of mass. Thus
the associated wave function within Eq. (7) must depend on
the molecular reference frame variables é(/, and 7(/;(t).

As already mentioned, we take the image interaction only
for the emitted electron into account. It always feels the image
potential and can thus only escape from the surface when its
perpendicular energy is sufficiently high.” Therefore, in the
calculation of the secondary electron emission coefficient and
the spectrum of the Auger electron we will multiply the matrix
element by a step function

6 &2 1 ©)
gy — —m— ),
= N6mey zr(t) — z;

where z; is the position of the image plane. For aluminum and
tungsten z; is given in Table I and turns out to be closer to the
surface than the turning point of the molecule. Equation (9)
is thus well defined along the trajectory of the molecule. It
is sometimes referred to as surface transmission function,’
although for the case of Penning de-excitation this term is
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TABLE I. Model parameters for aluminum and tungsten.

Material Dy (eV) O (eV) Ref. z; (ap) Ref.
Al 4.25 16.5 7 2.95 33
w 4.5 109 18 3.0 33

somewhat misleading, as the escaping electron is not emitted
from the inside of the solid but from the molecule.

III. QUANTUM KINETICS

The model established in the previous section will now
be treated using the Keldysh technique, a brief description of
which is given in Appendix B.

We start by calculating the unperturbed Green’s functions
Q;Oﬁ), with & and B representing any of the labels we used to

characterize the single-electron states of the system, I:, q,0m,
or 1m. Since the time evolution of the free Green’s functions
is determined by Hj, they are diagonal, that is, g;‘;} ~ 8up.
For convenience we abbreviate the double subscript ¢ by o
in the following. Inserting the solutions of the interaction-
free Heisenberg equations for the creation and annihila-
tion operators appearing in model (6), the free propagators
read

iGEt,1") = O — 1) /M=) (10a)

iGNty = —O( — 1)/ I=0 " (10b)
iGEOt,1") = [1 = 2ng(19)] /M= (10¢)

where n4 (%) is the initial occupancy of the state o atty = —oo0.

In accordance with the model we introduced in the previous
paragraph we assume the excited molecular level to be initially
occupied with a single electron of magnetic quantum number
m = (; that is, n1,,(fo) = ;. The molecular ground state
level for that particular magnetic quantum number is thus
empty at ty. Hence, no,(tp) = 0. The free electron states are
also empty at 1y, implying n;(f) = 0, and the electronic states
within the metal are initially filled up to the Fermi energy ¢r;
that is, ng(f)) = O(sr — g).

For the calculation of the full Green’s functions G,s we
need expressions for the self-energies X,g, which, in line
with the work by Makoshi,'> we derive from a diagrammatic
expansion up to second order in the Auger matrix element. This
is justified because the Auger matrix element is in general very
small. Because of the diagonality of the unperturbed Green’s
functions the self-energies and thus the full Green’s function
are also diagonal.

We first investigate the excited molecular state. Figure 3
shows the only nonvanishing second-order self-energy dia-
gram for Xy,. It can be evaluated to

E],L(IIJZ) = Ot — I (t,0), (11a)
(tl,lz) = =0 — )T, (t1,1), (11b)

Bn) =~ Z Vi) vit(n)
X nlz(IO) e—(t/h)(80+sq _Sk)(fl_lz)‘ (11c)
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FIG. 3. Diagrammatic representation of the self-energy >, (t,%,)
of the excited molecular state in second-order perturbation theory.

Using Eq. (11a), the Dyson equation for the retarded
Green’s function [Eq. (B11a) in Appendix B] can be solved
iteratively. The result is

GT,(t.t) = Gt YW,u(t.t') (12)

l[L

with the infinite series

Wty =Y WPt (13)

v=0

whose individual terms, W,i”), are given by

W(”)(t 1= (— 1)”fdt1/dz2 fztz]

xAu(t,0) oo Au(tu—1,t0), (14)

where we introduced the quantity

Au(t1,) = iSK (11,1) VM0, (15)

1

which emerges from the self-energy terms of the iterated
Dyson equation.

The infinite series (13) is exact but useless. To obtain
an expression for the retarded Green’s function which is
amenable to further manipulations we employ the exponential
resummation technique (see, for instance, Ref. 28). For that
purpose we introduce a new function F,(,#") and perform a
perturbation expansion of W, and F,, in terms of A . Using
the virtual expansion parameter A = 1 we write

o oo
SAWO) = 00 = exp [Z wy(,,,')} . (16)
v=0

v=1

G

1p

t G (£

G(O)
k
FIG. 4. Diagrammatic representation of the self-energy X;(t1,t,)
of the emitted electron in second-order perturbation theory. The
dressed Green’s function G, is indicated by a double line.
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Expanding the exponential in (16) and then comparing the
different orders of A leads to explicit expressions for the
expansion coefficients F ;(LV) , the first few of which are

FY=wd, (17a)
2
FP=w? - 1[w]", (17b)
3 3 2yl 1 n73
FO=w® - w@wd 4+ L [WP], (17¢)

where, for convenience, we dropped the time arguments.
The retarded Green’s function can now be conveniently
written as

G, (t.1) = G e, et (18)

with the function F), in the exponent given by the sum of the
terms in (17). Using relation (B10) together with Eq. (18) the
advanced Green’s function becomes

Gl (t.1) = Gy 1) el 0T, (19)

To calculate the occupation of the excited molecular state
we also need the Keldysh part of the Green’s function defined
in Eq. (B12) of Appendix B. Using the explicit form of the
free Green’s functions (10) we first rewrite this equation into'?

Gty = —ill — 2n,(10)1GE(2,10) G2 (19,1)

t t
+ f dt, / d6GR(t,1) SK(t1 1) GA(1t), (20)
fo fo

using the identity

GEOXt 1"y = —i[1 — 2n4(1)]

x GROt,10) GAty,1"), 1)

and the Dyson equation of the retarded and advanced Green’s
function (B11a). Note that Eq. (20) is not limited to the excited
molecular level. It holds for all states o.

Inserting (11c), (18), and (19) into (20) we can now
calculate the Keldysh part of the Green’s function G ﬁl (,1).
Taking the latter at equal times ¢ = ¢’ and utilizing Eq. (B13)
we finally obtain for the occupancy of the excited level at
time ¢

n(t) = exp{2R[F.(1,10)]1}, (22)

where N[---] denotes the real part. To lowest order in the
interaction, that is, to lowest order in A, the occupation of
the molecular excited state is given by

1) = exp {20 [F"(t,10)]}

= exp I:—/dlj/dl‘z Au(ll,lz)i| . (23)

We now turn to the free electron states, that is, the states
which may get occupied by the electron released by the
de-excitation of the molecule. A treatment of these states
analogous to the excited state leads to the following expression
for the occupation at time 7:

ng(t) =1 — exp{2R[F, ;(t,10)]}, 24)
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where F), ; is defined the same way as F), but with A , replaced
by A, ;. The latter is implicitly defined through the relation

Aulti) =Y A gltit) (25)
q

using Eqgs. (15) and (11c) for A, (#1,1).

Equation (24) is not very useful, because it cannot easily
be summed over g, which is however needed to calculate the
secondary electron emission coefficient y,. Because of this
obstacle we adopt the approach of Makoshi'>!3 and go back
to Eq. (20), expand it for equal times ¢t = ¢ and @ = g up
to first order in the self-energies, and insert the result into
Eq. (B13) which yields'3

t t
ng(t) = —i f dn f dnG; %, n) T (t,1)
fo to
<G5 0.1, (26)

To account in Eq. (26) for lifetime effects of the metastable
molecule we follow once more Makoshi'? and employ in the
calculation of the self-energy ¥ f the full (“dressed”) Green’s
function of the excited state GTM_ instead of the unperturbed
one. Up to second order (see Fig. 4) we obtain

X0 = QZvoi‘;‘(m Vin)]”

xco“‘”(rmc+ Ot.0) G (1.0, (@27)

In order to proceed we need to calculate GTM_ . For that
purpose, we first transform the corresponding component of
the matrix Dyson equation (B7) into

Gl =6 "I+, 6l ]+G6IV=f Gl . @)

1u >

employing the fact that up to second perturbation order £/ + =
2f, and X~ = —%{, . Inserting the free Green’s functions
(10) as well as the self-energies (11) and the full advanced
Green’s function (19) one can solve Eq. (28) iteratively to
obtain

l;t “(t,t ) GTM (0)(t t/) eFu(f,t(ﬂ e[Fu(t’,to)]*. (29)

After inserting Eqs. (10) and (29) into Eq. (27) we obtain for
the Keldysh part of the self-energy

K(t.n) = Zv;;';(r Vi)

% ”12([0) /M (eo—er—e1)(t1—12) (30)
with

V() = VI () e 31)

Op,k

the renormalized Auger matrix element.'
To compute finally the occupation of the g states, we insert
Eq. (30) into Eq. (26) and obtain

t t
na(t) = / dr, / dty R a(to), (32)
Iy Iy
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where A u,g 1s defined in Eq. (25) with the plain matrix ele-
ments replaced by the renormalized matrix elements leading
to

Z/M;(tl 1) = Ay a(t,1) el En 101" g Fuli.10) (33)

Equation (32) represents the spectrum of the emitted
electrons. The secondary electron emission coefficient y, can
be calculated from Eq. (32) by taking t = oo and summing
over all possible g,

vo= Ym0 = [ dn [ dnBunm o
‘? Io o

with A, defined by

Au(ti) =Y Ay g(t). (35)
q
Equation (34) can be rewritten to
ye — 1 _ ezm[F,l(OO,to)J' (36)

The lowest two orders of Eq. (36) in terms A, read

o0 o0
V§°)=fdt1/ dty A,(t,1), (37a)
to I
t t
y =1—exp [—f dtlfdtz Aﬂ(tl,t2)j|. (37b)
T o

The preceding calculation of the self-energies does not
treat free and excited states on an equal footing. Only the
self-energy for the free states is renormalized whereas the one
for the excited state is not. As a result, particle conservation is
not strictly guaranteed when the corresponding occupation
numbers are calculated. The same shortcoming holds for
Makoshi’s'? original approach. Our numerical results showed
however that particle conservation is obeyed for all physically
relevant situations, justifying the treatment of the self-energies
a posteriori.

Let us finally remark that although, as far as the logic of
our approach is concerned, we closely followed Makoshi,'?
our results have wider applicability. In contrast to him we
do not work with a real phenomenological Auger interaction,
depending only on time, and do not employ the wide-band
approximation for the free states which would lead to time-
local self-energies. We are also not restricted to the lowest
order expressions given in Eqgs. (23) and (37). In principle, we
can calculate corrections to these expressions using the higher
order expansion coefficients of F,, given by Eq. (17).

IV. NUMERICAL SCHEME

Inspecting the main results of the previous section, Egs. (22)
and (36), we realize that these equations are highly complex.
For instance, calculating A, from Eq. (15) requires summation
of a matrix element product over all k and g vectors, which,
letting the box size L — oo, equals a sixfold integral. The
Auger matrix element itself, according to Eq. (7), involves
another six-dimensional integration over 7 and 7’. Since in
Eqg. (15) the matrix element occurs as a product at two different
times, this makes a total of eighteen dimensions of integration.
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Calculating the level occupancies from Eqgs. (22) and (36)
requires at least another two-dimensional integration over the
time arguments of A,. Thus, employing these equations as
they stand for numerical calculations is clearly out of reach if
reasonable computing time and considerably small numerical
errors are required. In this section we will therefore introduce
an approximation, which makes those numerical calculations
feasible.

To simplify the matrix element (7) we first utilize the
particular form of the wave functions (see Appendix A). Since
the molecular wave functions Wy, 1, are localized on the
molecule and the metal wave functions W} and the free wave
functions W; are bounded everywhere (in the mathematical
sense), the main contribution to the matrix element (7) will
arise from points close to the actual molecule position. We
note further that for the low kinetic energies we are interested
in (&kin < 1 eV) the molecule’s turning point lies far outside
the surface [zg > 4.35 ap; see Eq. (4) and the parameters (5)].
We can thus safely restrict the 7 integration in (7) to z > 0, that
is, neglect the overlap of the wave functions inside the solid.
Using then the transformation

70 = Ql(p) Fia) + R(1), (38)

along with the explicit form of the electronic wave functions
(see Appendix A), we arrive at

Vo (1) = Cy Ty, expl—kr. zr (D] V], (39)

Om,k
with

e [V)
v 4 ey (271)5/2 sz’

. . eim@—¢1)
v = /dn fdrz Oy + 2028

% (e—\71+\ + e—|717|)(e—|72+\ _ e_‘;2—‘)ei(k.\'xlw""kyyltp)

X e "M g0 2 (G Fay, Z)C(GyoTa—r Z),  (40D)

(40a)

|F) — 72

where o; and ¢; (i = 1,2) are the usual cylindrical coordinates
and we have introduced the abbreviations Z = Z¢ /g’. Fix =
R (8/2). (i =1.2), and Fi, = (Wip.yig.210) = (@) 71
Here § is the bond length of the molecule. Note that
in Eq. (40b) we have used «~' as the unit of length.
Moreover, we did approximate ®(zi, + zz(1)) by O(zi, +
Z0), which, as numerical tests confirmed, is a good ap-
proximation for the distant turning point positions we are
considering.

To calculate the occupation numbers from the equations
given in Sec. III, we need to compute the time integral of
A, (t1,1). Since in Eq. (39) the time dependence has been
separated we can insert the trajectory (3) and carry out the
time integration analytically. For the lowest order equations it
suffices to calculate the integral with equal upper boundaries;
that is,

()= /dtlfdtz A, (t,1). 41)
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Using spherical coordinates for the wave vectors k and g we
obtain

Zz e4 kr T 2
I(t) = dk | doy | d
® 2(27)® Nym, Nom, BP02k3 63 /0 /0 k/o #

qe 7 2
xf dq/ dﬂq/ do,
0 0 0

k* sin (9) cos? (%) sin (¥
x (1 — e=27(Z/9))2

e~icn0 |y
q

2
T (1) 1%

(42)

2m, (e — Vo) 2m, Vol
L A

(kr,~ Aeg) min(0,~5)

where

and

e(KkZﬂ'Aekq)min(t, —15)

i) = O —— +®<r)<e
¢4 q

ef(/ck: ~+i Agrg) max(0,15) _ ef(KkZH Aggg)t )
,

Kk, —iAEkq

+0O(t —13)

ki, TiAgry
(44)
with
Aery = ot &g — &1~ & (452)
hkv
m,e? 1
;=2 — 20+ (45b)

O Sreohi g2 cost (D)’

The term #; emerges from the inclusion of the transfer
function (9) and needs to be set to zero when considering the
population of the excited molecular level.

Equation (42) is still highly complex, as it consists of an
integral over 12 variables. In order to compute this expression
numerically we divide the calculation into two steps. First,
we calculate Vi, on a discrete grid within the (12,21) space.
Afterward, we calculate the wave vector integral in Eq. (42)
while using sexalinear interpolation to obtain the intergrid
values of Vi.. Because of this grid-based scheme we have
to introduce a cutoff constant g. for the g integration in
Eq. (42), which we choose to be slightly larger than the
classical cutoff gm.x. This is however not an issue, since the
spectrum of the emitted electron falls off very rapidly beyond
the classical cutoff. The high-dimensional integrals which
occur in our formalism are then efficiently computable by
means of Monte Carlo techniques. In particular, we employed
the VEGAS algorithm as implemented in the GNU Scientific
Library.

V. RESULTS

We now present numerical results. The parameter values
used in our calculations are listed in Tables I and II. In all of the
calculations we fixed the turning point z to the value given by
Eq. (4) for 50 meV, which amounts to approximately 4.42 ap.
Within the energy range &, < 1 eV this approximation is
uncritical, since the turning point as given by Eq. (4) varies very
weakly. We aim at calculating, respectively, the occupancies
of the excited molecular state n;(¢) and of the free electron
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TABLE II. Model parameters for nitrogen.

Parameter Value Reference
8 2.067 ap 33
£ —17.25eV 8
£ —9.57eV 8

states n(1) = ) i n;(t). Within our model the initial magnetic
quantum number p = £1 has no impact on the occupation
numbers. For convenience we thus omit any m subscripts in
the following. We restrict the molecule’s orientation to the
two fundamentally distinct situations ¢ = 0 (axis parallel to
the surface) and ¢ = 7 (axis perpendicular to the surface).
Furthermore, if not stated otherwise, we consider an aluminum
surface.

We start our analysis with the final occupancies, that is,
ni(oo) and n(oo), where according to Eq. (34) the latter
quantity is the secondary electron emission coefficient y,.
For now we employ only the lowest order equations (23)
and (37a), which, concerning the emitted electron, means that
we neglect the matrix element renormalization and thus the
lifetime effects of the metastable molecule.

The final occupancies of the excited molecular level
and of the free electron states (secondary electron emission
coefficient y, ) are plotted in Fig. 5 for different kinetic energies
of the incident molecule. Obviously, the Penning process gets
more efficient for lower kinetic energies, which is evident,
because lower kinetic energies correspond to smaller molecule
velocities and thus to larger interaction times of the solid-
molecule system. Note that for ey, < 10 eV the secondary
electron emission coefficient becomes larger than one although
physical values for y, should obviously be less than or equal
to one. This unphysical peculiarity is a consequence of the
negligence of the lifetime effect in the zeroth-order formula

5 102l
o] E
E af
=}
c E
c 4L
kel
T 5[
o E
> F ]
Q Ok 4
(&) E E
o s ]
®©
.E _8: E
L 10F — parallel 3
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-10 m L | ol L | Lol L
10 N - - - B
10 10 10 10° 10 10" 10°
&n [8V]

FIG. 5. Final occupancies of the excited molecular level and of
the free electron states (secondary electron emission coefficient)
in parallel (solid lines) and perpendicular (dashed lines) molecule
orientation for different kinetic energies &y, of the incident molecule.
The curves were calculated using the zeroth-order formulas, Eq. (23)
and (37a), respectively.
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FIG. 6. Comparison of the secondary electron emission coeffi-
cient y, computed in zeroth order from Eq. (37a) (solid line) and
in first order from Eq. (37b) (dashed line). The molecular axis was
aligned perpendicular to the surface. Clearly, the first-order correction
heals the divergence of y, for &, — O and ensures y, < 1 for all
energies.

for y,, Eq. (37a), and can be fixed by employing higher order
terms of the full Eq. (36) (see below).

From Fig. 5 we see that for the two distinct orientations the
Penning process is almost equally efficient in de-exciting the
molecule. The number of emitted electrons, however, is about
a factor three smaller when the molecular axis is parallel to the
surface as compared to when it is perpendicular. Numerical
tests showed that for the parallel case the electron is primarily
emitted with a very small perpendicular energy whereas in
the perpendicular case the perpendicular energy of the emitted
electron is distributed more equally. Thus, in the perpendicular
orientation the electron has a higher probability to breach
through the surface barrier originating from the image potential
leading to a larger value for y,.

To fix the unphysical behavior of the secondary electron
emission coefficient at low collision energies, the first-order
formula, Eq. (37b), already suffices. It includes additional
exponential factors which damp the integrand in the divergent
region leading to y, — 1 for &y, — 0. Figure 6 explicitly
demonstrates this behavior. The region in which the zeroth-
order result for y, exceeds unity corresponds to very low
molecule velocities &g, < 107° eV. These subthermal colli-
sion energies are rarely realized and are of lesser significance
to our problem. In low-temperature plasmas, for instance, the
systems we are primarily interested in, molecules have at least
thermal collision energies. Only in beam experiments with
extreme grazing incidence* may the collision energies be low
enough to require the lifetime effect to be explicitly included
in a theoretical analysis. For electron energies above 0.1 meV
the difference between the zeroth- and first-order formulas is
vanishingly small indicating that in this energy range Eq. (37a)
is sufficient.

Next, we investigate the time evolution of the occupancies.
We fix the kinetic energy of the molecule to 50 meV, which
is about twice the thermal energy at room temperature. In
addition, we employ the zeroth-order formulas. This is justified
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FIG. 7. Time evolution of the occupancies of the excited molec-
ular level (upper panel) and of the free electron states (lower panel)
for parallel (solid lines) and perpendicular (dashed lines) molecule
orientation. The kinetic energy of the incident molecule was fixed
to 50 meV. Time is measured in units of 1/(kv). A time difference
of At =1 thus corresponds to the motion of the molecule over a
distance of Az = ap/2.

because the higher order corrections are small in the considered
energy region. The results are plotted in Fig. 7. Obviously,
the occupancy of the excited molecular level (upper panel)
changes significantly only in the range |¢| < 5, which, taking
the turning point into account, equals maximum distances of
the molecule’s center of mass from the surface of roughly
7ap. As expected, within our model, the process is equally
effective in the incoming and outgoing branch of the trajectory.
The time evolution of the occupancy of the free states (lower
panel) is however distinctively different. It shows a plateau
around t =0, that is, a stagnation of the probability to
escape from the solid. This is a consequence of the image
potential which almost completely traps an electron emitted
at low surface distances where its perpendicular energy is too
small to overcome the image barrier encoded in the surface
transmission function.

The energy distribution n. of the emitted electron atf = oo
is also of interest. This quantity is shown in Fig. 8 for the
two principal molecule orientations and a collision energy
exin = 50 meV. The graphs for the two different orientations
(denoted by “this work™) start at the origin and monotonously
increase until a cutoff energy is reached. The latter resembles
the classical cutoff energy eg‘a" (see Fig. 2), implying that
energy conservation is restored at the end of the collision, as it
should be. The low-energy part of the spectrum is cut off due
to the surface transmission function which allows electrons to
escape from the surface only when their perpendicular energy
is large enough. The spectrum for the perpendicular case takes
on larger values, as was explained in connection with the g-
integrated spectrum shown in Fig. 5.

For comparison, we also plotted in Fig. 8 the spectra
Lorente et al.” obtained for an electron released due to charge
transfer and subsequent autodetachment, reaction (2), assum-
ing zo ~ Sap. For low energies the spectra due to Penning
de-excitation (1) are practically zero and thus significantly
smaller than the ones corresponding to reaction (2). In this
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FIG. 8. Energy spectrum n,,(00) = nj(oo) of the Penning-
emitted electron for parallel and perpendicular molecule orientation
[reaction (1), this work]. The kinetic energy of the incident molecule
was fixed to 50 meV. For comparison we also show the results Lorente
et al. (Ref. 7) obtained for reaction (2).

energy range the resonant channel dominates. Close to the
cutoff energy, however, the Auger spectra are only one order
of magnitude smaller than the spectra for the charge-transfer
process indicating that in this energy range the two processes
are indeed eye-to-eye competitors. To study in our model the
competition between the two channels quantitatively requires
however to dress up the free Green’s functions of the molecular
electron by a hybridization self-energy and is thus beyond the
scope of the present investigation. Integration of the energy
spectra yields the secondary electron emission coefficients
¥, listed in Table III. For aluminum the Penning process is
thus one to two orders of magnitude weaker than the resonant
process.

‘We now investigate the influence of the molecule’s turning
point on the de-excitation process. For aluminum and tungsten
the occupation number of the excited molecular level calcu-
lated with the turning point given by Eq. (4) for e, = 50 meV
is shown in Fig. 9 together with the data obtained for the
turning point fixed to zp = 4 ap. For the latter the de-excitation
probability increases drastically at low energies leading to
significantly reduced occupancies of the excited molecular
state. At large energies the difference in the turning points
shows almost no influence. Quantitatively, for energies below
1 meV, the occupancy of the excited molecular level for
Zo = 4ap is approximately one order of magnitude smaller
as the one obtained for zg = 4.42 ap. This has however no

TABLE III. Comparison of the secondary electron emission
coefficient y, due to Penning de-excitation (this work) and resonant
charge transfer with subsequent autodetachment (Lorente et al.;
Ref. 7) for a N»(*Z;") molecule hitting an aluminum surface with
a kinetic energy of 50 meV and parallel or perpendicular orientation.

¥. (parallel) y. (perpendicular)

6.43 x 1073
8.98 x 1072

1.93 x 1073
1.06 x 107!

This work
Lorente et al. (Ref. 7)
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FIG. 9. Comparison of the final occupancy of the excited molec-
ular level n(c0) for two different values of the turning point z, for
aluminum (solid lines) and tungsten (dashed lines). The molecule’s
axis is perpendicular to the surface.

influence for the occupancy of the free states (not shown in
Fig. 9) because an electron emitted closer to the surface has
a lower perpendicular energy and can thus no longer breach
through the surface potential arising from the image potential
as we discussed before.

Throughout our investigation we assumed that the Coulomb
interaction, which drives the Penning de-excitation of the
molecule, is unscreened. In reality, however, the Coulomb
interaction in the vicinity of a surface is screened due to
the charge carriers of the solid. The strength of Penning
de-excitation should thus be affected by screening. To estimate
this effect it suffices to consider the statically screened
Coulomb potential VCS (r) = Ve(r)e ™" with kg the screening
wave number at the surface. Little is known about this quantity
except that it has to be smaller then the bulk screening wave
number. Positron transmission and trapping experiments for
various metallic films®® indicated, for instance, that the screen-
ing wave number near the surface is most probably a factor 0.6
less than in the bulk. Taking this correction factor into account
the screening wave number for an aluminum surface, for
instance, is 1.2285/ A. The screened Coulomb potential affects
only the values of V., which enters quadratically into the
lowest order formulas for the occupation numbers and reduces
them by approximately 40%. Thus, as expected, screening
reduces the efficiency of the Coulomb-driven de-excitation
channel, but it does not change its order of magnitude.

So far, we compared our results only with the theoretical
results of Lorente et al.,” who studied the charge-transfer
channel (2) for N,(3 =) hitting an aluminum surface. To
make contact with the experimental data obtained by Stracke
et al.,® who also emphasized the direct charge-transfer reaction
but nevertheless gave an estimate for y, due to Penning
de-excitation (1), we also calculated y, for tungsten using
the 50 meV turning point of the surface potential (4) and
a statically screened Coulomb interaction with x; = 0.6 «,"
where k) = 1.7659/ A is the screening wave number of bulk
tungsten.>” We find y, ~ 2 x 1073 which is rather close to the
experimental estimate ¥."* [penning &~ 107* to 10~ Despite the
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crudeness of the effective model, which neglects, for instance,
dangling bonds and surface states and the simplistic treatment
of screening near a surface, our approach seems to capture even
quantitatively the essential physics of Penning de-excitation.
We attribute this to the rather large value of the molecule’s
turning point zo & 4.42 ap which partly immunizes Penning
de-excitation against the details of the electronic structure in
the immediate vicinity of the surface.

VI. CONCLUSIONS

We investigated the release of secondary electrons due
to Auger de-excitation of metastable nitrogen molecules at
metallic surfaces using an effective model for the two active
electrons involved in the process and the Keldysh formalism
to calculate the occupation numbers of the relevant single-
electron states as originally proposed by Makoshi.'? In contrast
to him, however, we are not restricted to time-local Auger
self-energies and thus to the wide-band approximation because
we solve the Dyson equation for the retarded Green’s function
by exponential resummation. We also employed the Auger
matrix element obtained from a LCAO-type description of
the molecule and an abrupt half-space-type description of
the metal and not a phenomenological matrix element. The
dependencies of the matrix element on the single-electron
quantum numbers are retained in our calculation, as is the
image interaction of the Auger electron with the surface and
the distortion of the continuum of Auger states in the vicinity
of the surface due to the molecule which is accounted for
by using for the Auger electron a continuum of two-center
Coulomb waves.

The complexity of the final equations forced us to calculate
and interpolate the Auger matrix element on a grid in a high-
dimensional parameter space. This numerical approximation
for the matrix element enabled us however to calculate the
time evolution and the final values of the occupancies of the
excited molecular level and of the free electron states with
standard Monte Carlo integration routines without further
approximations. Since the Auger interaction is rather weak,
we utilized only the lowest order formulas derived from the
quantum kinetic theory. The lifetime correction introduced by
Makoshi,'? contained in higher order terms, was shown to be
important only for very low kinetic energies of the molecule.

We applied our approach to Auger de-excitation of N, Z )
on aluminum or tungsten. For an aluminum surface we showed
that for realistic turning points of the molecule’s trajectory,
for instance, the one obtained from the molecular-surface
potential for thermal kinetic energies, which is about 4.42 ag,
Auger de-excitation is one to two orders of magnitude less
efficient in releasing an electron than the direct charge-transfer
process investigated by Lorente and coworkers.” For a tungsten
surface our model produced for a turning point of 4.42ap
a secondary electron emission coefficient due to Auger de-
excitation which agrees with the experimental estimates of
Stracke and coworkers.°

The effective model we used works with crude wave
functions, but has the virtue to be parameterizable with a few
easily obtainable energies. For the applications we have in
mind, secondary electron emission in low-temperature gas dis-
charges, where a great variety of different kinds of molecules
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and different kinds of wall materials occur, we consider this
as a real advantage. With appropriate modifications the model
can be applied to dielectric surfaces as well. We used the
model only for the investigation of Auger de-excitation. In
combination with the Keldysh Green’s function technique,
however, it can be also employed for the description of direct
charge-transfer processes provided the energy shift and the
broadening of the molecular levels due to the image interaction
of the molecule with the surface and the self-energy corrections
due to the Coulomb interaction between the excess electron
and the excited electron of the molecule are included.
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APPENDIX A: WAVE FUNCTIONS

The bound wave functions for the active molecular electron
Wom/1m are calculated from the linear combination of atomic
orbitals

Vs, (1) £ W3, (2)
N27T,,/g

\IJOm/lm \Ij2rru/g = (Al)
with 1 and 2 labeling the two distinct nitrogen atoms
and Ny, e denoting normalization constants. The atomic
nitrogen wave functions W, —are approximated by using a
hydrogen-like model with effective nucleus charge Z . = 4.
The resulting wave functions show excellent agreement with
Roothaan-Hartree-Fock calculations for the nitrogen atom.3*
The molecular wave functions (A1) are most conveniently
expressed in cylindrical coordinates (0,¢,z) and possess the

explicit form
1 —2mk®/?

87 €

<[ (—x e+ (z+g))

img

\Ijz”g;g (Q e Z) N27T/
u/g

5\2
+exp (—K 0%+ (Z - 5) >i|, (A2)
with ¥ = 2/ap and normalization constants
o0 o0
Nog,,, =2+ 2/(5/ dQ/ dz o°
0 —00
5\2
— 2 e
oo ()
5\2
— 2 =
X exp( k.l0* + <z 2) ), (A3)

which need to be calculated numerically. The order of the
wave functions within (A1), that is, the labeling of the nitrogen
atoms, does not matter in our calculation.
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The wave functions for the electrons inside the metal are
calculated along the lines of Ref. 25 by solving the Schrddinger
equation for an electron trapped by the step potential

V) = {g'VO'

The presence of the molecule is thus ignored, as far as the
calculation of the metal wave functions is concerned. Using
box normalization with box size L we obtain

7 <0,

z20. (A4)

‘1’12(7) — ei(k"x+k"y){Tkze_Kk*’z®(Z)

+ [eikfZ + sze_ikfz]G)(—Z)},

where the following wave vector dependent coefficients have
been introduced:

(A5)

ik
R = e (A62)
ik, — kg,
2ik
T = (A6b)
: ik, — Kk,
2me
K, = Vol — (A6c)
The energy of an electron in the state k is given by
2
& = (k3 + k5 + k) — Vol (A7)

2m,

We now turn to the free states involved in the Penning
process. As discussed in the main text we include here the
effect the molecule has because the Auger electron originates
from the molecule. The continuum of free states resembles
thus not the continuum of the solid but the single-electron
continuum of the molecule which we approximate by a
two-center Coulomb (TCC) wave.* In the past it has been
successfully used to model electron-impact ionization and
photoionization of H, and H," molecules.’'*? The TCC wave
is an approximate solution of Schrddinger’s equation for an
unbound electron moving in the field of two fixed centers.
Employing ap as the unit of length it reads

igr
W (r) = —3/2NEIC(r},ﬁ,Zl)NiC(c?,rE,Zz), (A8)
with
Ni = ™/PZ/40) F(l +i —> (A9a)

C(ﬁ,?,Z):M(—z—l —ilgr+q- 7]), (A9b)
q

where M is the confluent hypergeometric function of the
first kind. The two vectors 71 and 7, denote, respectively, the
position of the electron as seen from nucleus 1 and 2 and Z;
and Z, are effective charge numbers. As proposed in Ref. 31
we account for the partial screening of the nuclei by the passive
electrons and choose Z) = Z, = Z¢c = %

APPENDIX B: KELDYSH FORMALISM

To fix our notation we give a brief description of the Keldysh
formalism. For a more complete survey of the topic we refer
the reader to Refs. 14-17.
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Consider a fermionic system with a Hamiltonian
H(t) = Ho + Hi(1), (B1)

where H,(t) represents a time-dependent perturbation of the
noninteracting system Hy. Due to the time-dependence of
the Hamiltonian H(f) we are faced with a nonequilibrium
situation.

One way to treat systems with a time-dependent Hamil-
tonian is the nonequilibrium Green’s function technique
introduced by Keldysh.'* The key feature of the technique
is a time contour C in the complex plane running from —oo
to oo and then back again to —oo. All quantities of the usual
Green’s function technique are then defined on this complex
time path.

Of particular importance is the contour-ordered Green’s
function G,g(t,t"), describing the propagation from a state
at time ¢’ to a state « at time ¢. It is defined by

iGup(t.1) = (Te ¥, (1) ¥ 5] ). (B2)

where T¢ specifies the chronological time-ordering operator
on the contour, ¥ and W represent the usual field operators,
and (...)y denotes the averaging with respect to an arbitrary
state of the full dynamical system (B1).

Employing the interaction picture, Eq. (B2) can be trans-
formed to

iGap(t.1") = (Te [T, (1) Bt Sc1 ), (B3)
with the contour scattering operator S¢ defined by

i

Se = T¢ exp [_fz fc dt ﬁl(r)] ) (B4)

The tilde in Eqs. (B3) and (B4) characterizes the corresponding
quantity in the interaction picture. Equation (B3) is suitable
for performing the usual perturbation expansion in terms of
H, (), the only difference being that all time integrals need to
be taken over the time contour C instead of the real time axis.

Inspecting the definition of the contour ordered Green’s
function (B2) and the possible location of the two time
arguments ¢ and ¢’ on either the increasing (+) or the
decreasing (—) branch of the contour we can decompose
Gap(t,t") into the four analytical pieces

G (t.1) = (T, () Wh(t)) . (BSa)
iGly (t.1) = —(We) W, (). (B5b)
iGof (t.1)) = (¥, () Wi, (B5c)
iGo (11) = (T [W, () WH( )i, (B5d)

where T, and T, denote the chronological and antichrono-
logical time ordering operator on the real time axis, re-
spectively. Equation (B5) can be also expressed in matrix

notation,
GH Gty
Gup = ( A (B6)

where the time arguments are omitted for convenience.
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The time evolution of the Green’s function (B6) is governed
by the Dyson equation
Gop = Oy + G355, G, - (B7)
where the summation over internal indices and integration
over internal times is implicitly assumed. Equation (B7)
involves the unperturbed Green’s function [indicated by a (0)
superscript] and the self-energy Xs, . The latter is defined on
the contour C as well and thus possesses a matrix representation
similar to Eq. (B6). Hence, the Dyson equation (B7) is a matrix
equation.
The structure of this equation can be simplified when it

is noted that the set (BYS) is linearly dependent. Applying the
unitary transformation

I (1-1
v=5(71)
to the Dyson equation (B7) the Green’s function and the self-
energy turn into

(B8)

. ; Gl

gaﬁZUgaﬂUz( R (,X() (B9a)
Gt GK

~ r (2’; zRﬂ)

Sup = U B Ut = | Y o). (B9b)
4 0

The superscripts A, R, and K denote, respectively, the
advanced, retarded, and Keldysh part of the corresponding
quantity. For the retarded and advanced Green’s functions
holds

Gapt,12) = [Gs(n.t)] (B10)
Carrying out the matrix multiplication in the transformed

Dyson equation one obtains the set of equations that deter-
mines the different parts of the Green’s function,

Guf = GUf O+ GOy Gk (Blla)
K ~K(©) K(O0)wA ~A
Gop = Gop +Gas 25, Gp

+Gm[By, Goy + 25, Gly]. (BlIb)

Equation (B11b) can be solved iteratively to give the
important relation

Gap = [8a, + Gy T3, 1G5, Gl + 8]

+Gy; 85, Gy . (B12)
The Keldysh part of the Green’s function can thus be computed
from Eq. (B12) once the advanced and retarded parts are
known. The diagonal component GX, can then be used to
calculate the occupation of the state « at arbitrary times

ne(t)=1[1-iGE,@.0)]. (B13)
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