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Capacitance of graphene bilayer as a probe of layer-specific properties
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The unique capabilities of capacitance measurements in bilayer graphene enable probing of layer-specific
properties that are normally out of reach in transport measurements. Furthermore, capacitance measurements
in the top-gate and penetration field geometries are sensitive to different physical quantities: The penetration
field capacitance probes the two layers equally, whereas the top-gate capacitance preferentially samples the
near layer, resulting in the “near-layer capacitance enhancement” effect observed in recent top-gate capacitance
measurements. We present a detailed theoretical description of this effect and show that capacitance can be used
to determine the equilibrium layer polarization, a potentially useful tool in the study of broken symmetry states
in graphene, stemming from the interplay between interlayer screening, disorder, and the inverse-square-root van
Hove singularity particular to the bilayer graphene band structure. We show how capacitance experiments can be
used to probe the ground-state layer polarization, a potentially useful tool in the study of broken symmetry states
in graphene.

DOI: 10.1103/PhysRevB.84.085441 PACS number(s): 73.22.Pr

I. INTRODUCTION

Capacitance measurements probe the energy cost of moving
charge between different parts of a system. In a classical
system, this energy cost is a purely geometric quantity and
consists of the electrostatic energy. In contrast, capacitance
measurements performed on quantum systems can access a
range of subtle and interesting phenomena. In particular, Pauli
exclusion in degenerate electronic systems gives rise to a
characteristic quantum contribution to the internal energy. The
associated contribution to capacitance, known as “quantum
capacitance”,1 is proportional to the electronic compressibility
∂n
∂μ

. In addition, at low carrier densities, the internal energy is
dominated by electronic correlations, resulting in a so-called
negative compressibility contribution to capacitance.2 In low-
dimensional systems these effects can amount to a sizable
contribution, making capacitance measurements a powerful
probe of many-body effects.3 Moreover, whereas electrical
transport is often dominated by a small subset of electronic
states, capacitance probes all states equally. Consequently,
capacitance is a useful tool in the study of phenomena in
which localization plays a role, such as quantum Hall effects
and the metal-insulator transition.3–7 Under certain conditions,
the quantum capacitance can become an order-one effect.8,9

Graphene and its bilayer are ideal materials for the
application of the capacitance technique. The two-dimensional
geometry of these materials permits the placement of proximal
metal gates,10–12 electrolytic solutions,13 or scanning probe
heads,14,15 all of which can be used to probe capacitance.
Interesting results have been obtained for monolayer graphene,
in which this quantum capacitance was found to dominate
the total capacitance near the Dirac point even at room
temperature.13 Surprisingly, the compressibility measured at
low temperature14 was found to be well described by the
noninteracting massless Dirac model, a fact attributed to an
exact cancellation of correlation effects in the monolayer.16

In bilayer graphene (BLG), in contrast, the interaction effects
are expected to be strong, potentially leading to novel many-
body states near charge neutrality.17–25 Such effects, if they

exist, would directly manifest themselves in compressibility
measurements.26

In this paper we discuss the unique capabilities of ca-
pacitance measurements in BLG. Due to the finite interlayer
separation, capacitance measurements can probe layer-specific
properties that are out of reach in conventional transport
measurements in which the layers are not contacted separately.
Motivated by recent experiments, we calculate the effect
of a gate-induced charge imbalance between the layers on
the measured capacitance in several geometries, taking into
account electronic interactions and short-range disorder. We
interpret the peculiar electron-hole asymmetry observed in
top-gate capacitance measurements12 in terms of a “near-layer
capacitance enhancement,” which is a combined effect of van
Hove singularities in the BLG band structure and the interlayer
screening. We show that capacitance experiments can be used
as a which-layer probe, offering a unique capability in studying
electronic properties of graphene.

II. THE NEAR-LAYER CAPACITANCE ENHANCEMENT

Recently, capacitance techniques have been applied to dual-
gated bilayer graphene.11,12 The geometry of these devices
allows the electrostatic potentials on the two layers to be varied
independently, enabling independent control of both carrier
density and the gap in the electronic spectrum.27–29 In the
absence of external fields, BLG is a metal characterized (at
sufficiently low energies) by approximately parabolic valence
and conduction bands that touch at the corners of the hexagonal
Brillouin zone (at the K and K ′ points). The degeneracy at
this band crossing is protected by the symmetry of the BLG
crystal structure, in which atomic sites on different layers are
equivalent under transformations of the point symmetry group.
Application of an external electric field perpendicular to the
layers breaks the which-layer symmetry, turning BLG into
a semiconductor with a gate-tunable band gap. At not too
strong fields the gapped state can be described27 by projecting
the tight binding Hamiltonian on the low-energy subspace of
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wave functions (ψ1, ψ2) where the subscript indicates the layer
index, giving the two-band Hamiltonian

H0(p) =
(

v1
p2

+
2m

p2
−

2m
v2

)
, p± = px ± ipy, (1)

where momentum p is measured relative to the K (or K ′)
point and v1, v2 are the potentials on each layer, controlled
by external gates or dopants. The Hamiltonian (1) features
a band gap of size � = |v1 − v2| and a pair of van Hove
singularities (vHS) in the density of states of inverse-square-
root form positioned on either side of the gap at ε = v1

and ε = v2.
The field-induced gapped state is characterized by inter-

layer density imbalance, in which the occupancies of the
two layers differ markedly for v1 = v2 and v1 �= v2. For the
balanced bilayer (v1 = v2) the wave-function amplitudes on
each layer are equal (up to a phase); however, in the presence
of an imbalance (v1 �= v2), the amplitudes become unequal.
This leads to population imbalance between the two layers,

|ψ1(2)(p)|2 = 1

2
∓ 1

2

v1 − v2√
(p2/m)2 + (v1 − v2)2

, (2)

with a higher occupancy on the layer that has lower energy.
This layer population asymmetry results in a strong asymmetry
in the partial (layer specific) densities of states: since each
vHS shows up only in the partial density of states for one
of the two layers, the corresponding divergent contribution
to compressibility comes only from the vHS-bearing layer,
remaining finite for the other layer.

As we discuss in detail below, the layer population asym-
metry, Eq. (2), manifests itself in capacitance measurements.
This is illustrated in Fig. 1(b), in which top-gate capacitance
found using a self-consistent model (see Sec. IV) is plotted
as a function of gate voltages Vt and Vb. The enhancement in
capacitance associated with the band edge is stronger when
the divergent vHS-bearing layer is facing the gate used to
measure capacitance [top layer for Ct and bottom layer for
Cb in Fig. 1(a)]. We refer to this behavior as “near-layer
capacitance enhancement” (NLCE). This NLCE effect is seen
in the capacitance map shown in Fig. 1(b): the dark region,
which corresponds to the insulating state realized when the
chemical potential is positioned inside field-induced gap, is
bordered on one side by a bright fringe corresponding to the
NLCE. The markedly different contrast between the van Hove
singularity-associated features positioned on either side of the
dark region is associated with the density piling up on the near
layer rather than the far one.

This behavior explains the asymmetry observed in top-gate
capacitance measurements,12 in which a feature identified with
the vHS was observed only for electrons (holes) when the
high- (low-) energy layer was nearest the gate from which
capacitance was measured. In contrast, no such asymmetry
is expected for the capacitance measured using “penetration
field” geometry,11 because the penetration field capacitance
is more symmetric than the one-sided (top or bottom) gate
capacitance. Indeed, no NLCE-type asymmetry was observed
in the measurements reported in Ref. 11. As we shall see,
the gate capacitance and the penetration field capacitance
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FIG. 1. (Color online) (a) Bilayer graphene capacitor schematic.
Layer densities (n1 and n2) and electrostatic potentials (v1 and v2)
are controlled by voltages on external gates (vt and vb), which couple
to the bilayer through the fixed geometric capacitances C0

t and C0
b .

Capacitance measurements12 are performed by measuring the current
flowing through both layers in the presence of an ac driving potential
on one of the gates. (b) Top-gate capacitance as a function of external
gate potentials for a clean bilayer, calculated using the self-consistent
approach of Sec. IV [see Eq. (26) as well as Eqs. (17)–(20) and
(13)–(15)]. The capacitance, which is small in the insulating regime
and high in the metallic regime, is enhanced at the edges of the
metallic region due to the presence of van Hove singularities in the
density of states at the band edge. The enhancement is asymmetric,
reflecting the asymmetric population of the layers, Eq. (2).

measure fundamentally different characteristics of the system.
Simultaneous measurements of gate and penetration field
capacitances can thus provide detailed and direct information
on layer polarization of the bilayer.

The NLCE effect is sensitive to the form of the vHS,
which depends on the specifics of the dispersion relation. The
simplest model for BLG, which we focus on below, is that of
quartic dispersion, described by the Hamiltonian (1). A more
detailed analysis,27–29 based on the four-band model, leads to
a “Mexican hat” structure in band dispersion near points K

and K ′. However, the Mexican hat dispersion and the quartic
dispersion both lead to an inverse-square-root vHS at the band
edge, resulting in essentially identical NLCE effects.

In this paper we develop theory of the NLCE effect. In
Sec. III we calculate, using a two-band model of BLG, layer-
indexed densities of states, νij = −∂ni/∂vj , where i,j, = 1,2
refer to the two layers. In Sec. IV we develop a many-body
approach that describes interactions of particles in BLG with
other particles and also with gate potentials. Using a self-
consistent Hartree-type approximation, we derive expressions
for several quantities of interest relevant to capacitance
measurements in terms of the matrix elements νij . We find
that different experimental observables exhibit very different
behavior. In particular, the gate capacitance exhibits strong
particle-hole asymmetry and the NLCE effect (see Fig. 1),
while the penetration-field capacitance is nearly particle-hole
symmetric. In Sec. V, we consider the effect of disorder and
show that the asymmetry persists for relatively high disorder
concentrations corresponding to the experimental regime.
Finally, we conclude with a discussion of the usefulness
of different capacitance measurements in bilayer graphene
for probing the layer-pseudospin texture of possible broken
symmetry phases.
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III. THE VAN HOVE SINGULARITIES AND
COMPRESSIBILITY IN CLEAN BLG

The main features of the compressibility of BLG in an
external field can be understood in terms of the many-body
Hamiltonian

H =
∑
p,α

ψ†
p,αH0ψp,α + Hint, (3)

where H0 is the single-particle Hamiltonian (1) and summation
over four flavors α = 1,2,3,4 accounts for the spin and valley
(K , K ′) degrees of freedom. The interaction is written in terms
of density harmonics on the layers, ni,k = ∑

p,α ψ
†
i,p,αψi,p+k

(i = 1,2),

Hint = 1

2

∑
k

(
n1,−k
n2,−k

)T (
Vk Ṽk

Ṽk Vk

) (
n1,k
n2,k

)
, (4)

with Vk and Ṽk the intralayer and interlayer Coulomb interac-
tion,

Vk = 2πe2

κ|k| , Ṽk = e−|k|dVk, (5)

where d ≈ 0.3 nm is the interlayer spacing in BLG.
We analyze quantum corrections to the capacitance of gated

BLG described by the Hamiltonian (3) using a Hartree-type
approximation. This is done in two steps. We first find the
compressibility matrix of noninteracting fermions, formally
setting Hint = 0 in Eq. (3). In doing this, the BLG potentials v1

and v2 are treated as external parameters. Next, in Sec. IV, we
restore the interaction Hint, adding to it the interaction between
all charges, including those on the gates. We relate potentials
v1(2) to charges on the gates and the graphene bilayer self-
consistently and use these relations to evaluate capacitance as
a function of external gate voltages.

The Hartree-type analysis presented in this paper does
not account for correlation effects; however, estimates of the
correlation energy and the analysis of compressibility of BLG
presented in Ref. 25 indicate that the corresponding correction
to capacitance is small, except at very low values of disorder
and temperature, where the BLG system develops an instability
toward a correlated state.

In recent experiments11,12 electronic states with different
doping relative to the neutrality point are probed by varying
the potentials v1 and v2 through their response to the potentials
vt and vb applied to external gates. Insulating and metallic
conductance regimes occur when the Fermi level lies inside or
outside the gate-induced gap.30–32 The insulating regime was
observed to accompany a drop in compressibility.

It is convenient to introduce layer-symmetrized potentials
v± = 1

2 (v1 ± v2). Within the two-band model (1), the gap size
is � = 2|v−| and the position of the gap center relative to the
Fermi level is v+ − μ; the metallic and insulating regimes in a
clean bilayer are then described by |v+ − μ| > |v−| and |v+ −
μ| < |v−|, respectively. In experiments11,12 capacitance was
measured with the graphene bilayer grounded. This situation
can be described by a Fermi level pinned to zero energy, μ = 0.

Particle densities on the two layers can be expressed as
sums over all occupied states,

n1(2) =
∫

d2p

(2πh̄)2
f (p)|ψ1(2)(p)|2, (6)

where f (p) = 1/(eβε(p) + 1). In what follows, we focus on the
case of zero temperature, f (p) = θ [−ε(p)]. Using the eigen-
states of the Hamiltonian (1) and defining layer-symmetrized
densities n± = n1 ± n2, we find

n+ =
⎧⎨
⎩−ν0

√
v2+ − v2− sgn v+ (metal),

0 (insulator),
(7)

n− =
⎧⎨
⎩

−ν0v− ln
(

2�

|v+|+
√

v2+−v2−

)
(metal),

−ν0v− ln
(

2�
|v−|

)
(insulator),

(8)

where � is an ultraviolet cutoff of order the bandwidth.
Here ν0 = 2me2/(πh̄2) accounts for the fourfold spin/valley
degeneracy and can be written as 2/πaB , where aB is the
Bohr’s radius of BLG. The two cases in Eqs. (7) and (8),
metallic and insulating, correspond to the regimes |v+| > |v−|
and |v+| < |v−|.

Using these expressions we can compute the entries of the
compressibility matrix νij = −∂ni/∂vj . The expressions have
different form for |v+| > |v−| and for |v+| < |v−|:

ν++ =
{

ν0
|v+|√
v2+−v2−

(metal),

0 (insulator),
(9)

ν−− =
⎧⎨
⎩

ν̃0 + ν0
|v+|√
v2+−v2−

(metal),

ν0 ln
(

2�
e|v−|

)
(insulator),

(10)

ν+− = ν−+ =
{−ν0

v−sgn v+√
v2+−v2−

(metal),

0 (insulator),
(11)

where we defined

ν̃0 = ν0 ln

⎡
⎣ 2�

e(|v+| +
√

v2+ − v2−)

⎤
⎦ , (12)

with e = 2.71828 . . .. Expressions (9)–(11) are plotted in the
left panel of Fig. 2. Note that the compressibility matrix is
symmetric, ν+− = ν−+.

Different elements of matrix ν̂ have different physical
meanings. The diagonal element ν++ = −∂n+/∂v+ is the
total charge compressibility. The diagonal element ν−− =
−∂n−/∂v− is layer polarizability. The off-diagonal ele-
ments ν−+ = ν+− = −∂n−/∂v+ describe the charge-flavor
response. The latter quantities are particularly useful, as they
measure the layer distribution of incremental additions of
charge, giving information about the layer polarization of
the ground state: the quantities ν−+ and ν+− are zero for an
unpolarized bilayer but nonzero in the presence of a charge
imbalance.

Rewriting Eqs. (7) and (8) in terms of variables character-
izing individual layers, n1, n2, we obtain

ν11 = 1

2
ν0

|v+| − v−sgn v+√
v2+ − v2−

+ 1

4
ν̃0, (13)
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FIG. 2. (Color online) Energy dependence of the interlayer
compressibility matrix elements νij in the 1/2 [left panel, Eqs. (13)–
(15)] and ν± [right panel, Eqs. (9)–(11)] bases for fixed interlayer
asymmetry v− = 50 meV and � = 5 eV. In the left panel, single layer
charge compressibilities ν11 and ν22 are divergent only on one side
of the charge gap, allowing the interlayer asymmetry to be probed
by single side capacitance measurements. In the +/− basis, this
asymmetry is reflected by the charge-flavor response, ν+−.

ν22 = 1

2
ν0

|v+| + v−sgn v+√
v2+ − v2−

+ 1

4
ν̃0, (14)

ν12 = ν21 = −1

4
ν̃0. (15)

Expressions (13)–(15) are invariant under simultaneous 1 ↔ 2
exchange and gap inversion, v− → −v−.

Both of the diagonal compressibility matrix elements (ν11

and ν22) exhibit an inverse-square-root divergence at the charge
gap edge, where the density of single-particle states has
a van Hove singularity. The two diagonal compressibilities
behave asymmetrically, diverging on opposite sides of the
gap: ∂n1/∂v1 diverges at v1 → 0, while ∂n2/∂v2 diverges at
v2 → 0. In contrast, the off-diagonal compressibilities (i �= j )
remain finite on either side of the charge gap and are symmetric
(see Fig. 2, left panel). Inside the charge gap, |v+| < |v−|, the
diagonal and off-diagonal compressibilities are constant:

ν11 = ν22 = −ν12 = −ν21 = ν0

4
ln

(
2�

e|v−|
)

, (16)

exhibiting no divergence at the gap edge.

IV. SELF-CONSISTENT CAPACITANCE CALCULATION

We shall focus on the geometry pictured in Fig. 1(a), which
describes a dual-gated graphene device of the type studied in
Refs. 12 and 11. The experimental system consists of a bilayer
graphene sheet placed between two gates, characterized by
potentials vt and vb, charge densities nt and nb, and geometric
capacitances to the bilayer C0

t and C0
b . The bilayer is described

by the potentials v1 and v2 and charge densities n1 and
n2 induced by the external gates on the individual layers.
Electrostatic energy of the bilayer itself is taken into account
by including an interlayer capacitance CBLG, which can
be estimated from the “geometric” value obtained for a
parallel plate capacitor, CBLG = (4πd)−1, with d ≈ 0.3 nm.
This electrostatic model amounts to the approximation that

the charge density on the bilayer is of the for m n(z) =
n1δ(z − d/2) + n2δ(z + d/2). While corrections are expected
due to the finite extent of the wave functions, these corrections
amount, for the most part, to a renormalization of CBLG, on
which our results do not sensitively depend.

The quantities of interest obey the general electrostatic
charge field relations

C0
t (vt − v1) = 1

2 (nt − n1 − n2 − nb), (17)

C0
BLG(v1 − v2) = 1

2 (nt + n1 − n2 − nb), (18)

C0
b (v2 − vb) = 1

2 (nt + n1 + n2 − nb), (19)

nt + n1 + n2 + nb = 0. (20)

To complete the system of equations for charge densities and
potentials, a set of constitutive relations for BLG must be used.
These relations, which are of general form n1 = f1(v1,v2),
n2 = f2(v1,v2), will be calculated in subsequent sections.

Capacitance measurements are done in the finite frequency
regime by applying a small ac bias (on top of the dc bias used
to control density and interlayer imbalance) to one terminal of
the device and then recording the resulting change in charge
density on a second terminal. Choice of terminals distinguishes
top- (back-) gate capacitance, Ct(b), from penetration field
capacitance, Cp,

Ct(b) = − δn1 + δn2

δvt(b)

∣∣∣∣
δvb(t)=0

; Cp = − δnt

δvb

∣∣∣∣
δvt=0

. (21)

After eliminating nt and nb from Eqs. (17)–(20) by expressing
them in terms of other variables, nt = C0

t (vt − v1), nb =
C0

b (vb − v2), the remaining two equations are linearized with
the help of the matrix of inter- and intralayer compressibilities

ν̂ = −
(

∂n1
∂v1

∂n1
∂v2

∂n2
∂v1

∂n2
∂v2

)
,

(
δn1

δn2

)
= −ν̂

(
δv1

δv2

)
. (22)

This yields

[ν̂ + Ĉ]

(
δv1

δv2

)
=

(
C0

t δvt

C0
bδvb

)
, (23)

where Ĉ is a matrix of geometric capacitances,

Ĉ =
(

C0
BLG + C0

t −C0
BLG

−C0
BLG C0

BLG + C0
b

)
. (24)

These expressions account for both the geometric and “intrin-
sic” capacitance of BLG.

Solving for δv1, δv2, we find the charges induced on each
layer by the gate potentials:

(
δn1

δn2

)
= [1̂ − Ĉ(ν̂ + Ĉ)−1]

(
C0

t δvt

C0
bδvb

)
. (25)

Here the first term describes the geometric capacitance, which
would be the only contribution if the electronic system in
BLG was infinitely compressible, ν̂ → ∞. The term propor-
tional to −Ĉ(ν̂ + Ĉ)−1 describes the quantum capacitance
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contribution. Combining Eq. (25) with the relations for nt and
nb, all three capacitance observables can be calculated:

Ct = C0
t

[
1 − det(Ĉ) − C0

bν21 + C0
t ν22

det(ν̂ + Ĉ)

]
, (26)

Cb = C0
b

[
1 − det(Ĉ) − C0

t ν12 + C0
bν11

det(ν̂ + Ĉ)

]
, (27)

Cp = C0
bC

0
t

det(ν̂ + Ĉ)

(
C0

BLG − ν21
)
. (28)

These quantities implicitly depend on the gate potentials
through the compressibility matrix νij .

Notably, different capacitance observables depend on dif-
ferent combinations of the compressibility matrix elements
and obey different symmetries. The penetration field ca-
pacitance Cp is dominated by the off-diagonal component
of the (necessarily symmetric) compressibility matrix. As a
result, for a symmetric device (C0

b = C0
t ) it is invariant under

interchanging layers 1 and 2 and therefore does not exhibit the
NLCE effect. In contrast, the expressions for Cb and Ct are not
1 ↔ 2 invariant. In particular, the last term in the expression
for Ct , proportional to ν22, changes to ν11 on layer permutation.
As shown in the previous section, in the presence of a layer
imbalance these two quantities are not the same, leading to the
observed NLCE observed in Ref. 12.

In a device in which all capacitances can be measured,
combinations of the measured quantities can be combined to
probe the charge-flavor response. For the simplest case of a
symmetric gate configuration (C0

b = C0
t ),

Ct − Cb

Cp

= 4ν−+
4C0

BLG + ν−− − ν++
. (29)

Because this quantity is proportional to ν−+, it can be used
to probe both gate-induced and spontaneous layer polariza-
tion, allowing direct experimental measurement—somewhat
analogous to Knight Shift measurements for spin—of the
ground-state layer polarization.

V. THE EFFECT OF DISORDER

In the devices used for capacitance measurements in
Refs. 12 and 11, graphene flakes were supported by a silica
substrate. The carrier mobility in such devices was of order
1000 cm2/V s. For such low-mobility devices, taking into ac-
count the effect of disorder is crucial for developing a sensible
model of the experimental data. Full quantitative description
of experiments requires including realistic disorder, which is
likely long range,33–35 along with the effects of electronic
correlations36 which can give quantitative corrections to the
electronic compressibility. However, the the key features of the
data are captured by a simpler short-range disorder model,37

which involves δ-function impurities localized on carbon sites:

H =
∑

p

ψ†
pH0ψp +

∑
x

u(x)ψ†
xψx, (30)

with potential u(x) = ∑
i Uδ(x − xi) taking values U on

the carbon sites occupied by impurities and zero elsewhere.
The impurities are assumed to be distributed randomly with
concentration n.

The problem (30) can be analyzed using a self-consistent
T -matrix approximation (SCTA). The SCTA approach pro-
vides a somewhat more general approach than the self-
consistent Born approximation and is reduced to the latter
for weak disorder.

We evaluate the DOS and the total energy by employing
disorder-averaged Green’s functions expressed through the
layer-indexed disorder-averaged self-energies �i

G(ε,p) =
(

ε − v1 − �1 −tp
−t∗p ε − v2 − �2

)−1

, (31)

where tp is the kinetic energy operator,27–29

tk ∝ (1 + e−ike1 + e−ike2 )2. An infinitesimal imaginary
part ±i0 should be added to ε to obtain the retarded and
advanced Green’s functions.

The self-energy is approximated by the average values of
the T matrix, evaluated separately for the sites on layers 1
and 2,

�1(ε) = ñ〈T1(ε)〉, �2(ε) = ñ〈T2(ε)〉, (32)

where ñ = nρ0 is the adatom density with ρ0 = 2/3
√

3a2 the
density of type 1 sites. The quantities T1(2), written as a 2 × 2
matrix, are given by(

T1 0
0 T2

)
= Ũ

1 − Ũg
, g =

∫
d2p

(2π )2
G(ε,p), (33)

where Ũ = U/ρ0. For realistic values of v1 and v2 the
integral of the Green’s function over the Brillouin zone is
dominated by the regions near K and K ′; approximating
tp ≈ (px ± ipy)2/2m, we obtain

g = −im

2
√

ε1ε2

(
ε2 0
0 ε1

)
, ε1(2) = ε − v1(2) − �1(2)(ε). (34)

This expression is valid for ε1(2) small compared to the
bandwidth. Combining this result with Eq. (32), we obtain
two coupled equations for ε1, ε2:

ε1 = ε − v1 − nU

1 + iβ/λ(ε)
, ε2 = ε − v2 − nU

1 + iβλ(ε)
,

(35)

where we defined λ(ε) = √
ε1/ε2 and β = mŨ/2. Solving

these equations for ε1, ε2 as a function of ε, we find the Green’s
function (31) and use it to calculate the density of states,

ρ(ε) = 1

π
Im

∫
G(ε + i0,p)

d2p

(2π )2
= m

π

(
λ−1(ε) 0

0 λ(ε)

)
,

(36)

where the integral is identical to the one in Eq. (34). A factor of
2 was inserted after integration to account for spin degeneracy.

The density of states is expressed through the quantity λ(ε).
Taking the ratio of the self-consistent equations for ε1 and
ε2, Eq. (35), we obtain a single equation for the quantity λ.
Focusing on the case of weak disorder potential and expanding
in U , we arrive at

λ2 = ε − v1 + iγ /λ

ε − v2 + iγ λ
, γ = mU 2

2ρ0
n, (37)
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FIG. 3. (Color online) Calculated Ct (a) and Cp (b) for the clean
bilayer. Different color traces correspond to different values of the
top-gate capacitance, measured relative to a fixed C0

b (taken to be
120 aF/μm2 corresponding to the standard 285 nm SiO2). Penetration
field traces are normalized by the geometric value corresponding to
full penetration, C0

p = (1/C0
b + 1/C0

BLG + 1/C0
t )−1.

where the terms linear in U have been incorporated in the
quantities v1(2). Once λ(ε) is found from Eq. (37), it can be
plugged into Eq. (36) to obtain partial densities of states on
each of the layers (see Fig. 3),

ρ1(ε) = ν0

2
Re λ−1, ρ2(ε) = ν0

2
Re λ. (38)

In the absence of disorder, γ = 0, we have λ =√
(ε − v1)/(ε − v2), which gives van Hove singularities of

an inverse-square-root form at the band edges ε = v1,v2 as
found in Sec. I. In the presence of disorder, these singularities
are washed out to varying degrees. As shown in Fig. 4,
this washing out proceeds by both reducing the height of
the vHS peak and closing the gap. Crucially, the “off”-layer
density of states at the energy of the “on” layer vHS peak
increases with disorder. This has the effect of increasing the
screening effect of the “off” layer when it lies closer to the

FIG. 4. (Color online) The effect of disorder on the density of
states. Partial density of states ρi , Eq. (38) for layers i = 1 (solid
lines) and i = 2 (dashed lines) of a graphene bilayer, obtained from
the self-consistent Born approximation, Eqs. (36) and (37). Increasing
the disorder strength leads to smearing of van Hove singularities and,
eventually, to a closing of the energy gap.

FIG. 5. (Color online) Top-gate (left panel) and penetration field
(right panel) capacitance for different values of the short-range
disorder parameter γ , here measured in millielectron volts. Interlayer
asymmetry parameter v− = 50 meV and the cutoff � = 5 eV.
Geometric parameters are chosen to match experiment reported in
Ref. 12, C0

t /C0
b = 30, C0

b = 120 aF/μm2. Color scheme corresponds
to varying values of γ as in Fig. 4.

gate used to measure capacitance, enhancing the NLCE effect
for disordered samples.

To calculate experimental capacitances, Eqs. (27) and (28),
the partial densities of states are integrated numerically with
respect to energy and then redifferentiated with respect to the
appropriate energy variable, v1 or v2. In Fig. 5, the results for
both top-gate and penetration field capacitance for a device
with electrostatic parameters resembling those in Ref. 12
are plotted. The asymmetry of top-gate capacitance survives
disorder averaging, and indeed is enhanced. For intermediate
values of disorder, electrons and holes display qualitatively
different behavior: The nonmonotonic vHS feature survives for
holes but is completely obliterated for electrons, as observed
in Ref. 12.

VI. CONCLUSIONS

As we argue above, electrostatic capacitance measurements
offer a unique which-layer probe for BLG. The sensitivity
to the interlayer imbalance arises despite the fact that the
layers are not contacted separately: The relative proximity
of the layers to the top and bottom gates, combined with the
interlayer screening, allows capacitance measurements to ac-
cess layer specific quantities. Gate capacitance measurements
preferentially probe the nearer layer, leading to the NLCE
effect as the near layer screens the far layer. Consequently,
in the presence of a layer imbalance, top- and bottom-gate
capacitance measurements will differ. This difference is the
signature of layer polarization, allowing its unambiguous
experimental determination.

Our analysis provides an explanation of recent top-
gate capacitance experiments on dual-gate bilayer graphene
structures.11,12 Since the degeneracy of the band crossing
in the BLG spectrum at the K and K ′ points is linked to
inversion symmetry, the gate-induced density imbalance and
the opening of a band gap go hand in hand.27–29 As we have
shown, this imbalance can be probed directly through NLCE
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measurements; the NLCE-type asymmetry observed in Ref. 12
is direct experimental evidence of layer imbalance in BLG.

The possibility of probing layer polarization directly
through capacitance measurements has implications beyond
the study of gate-induced gap opening. Recently, experimental
sample quality has improved to the point of allowing the
observation of a multitude of novel features likely associated
with electronic correlations.26,38–41 A large number of possible
broken symmetry states, arising in the presence and in
the absence of magnetic field, have been explored in the
theoretical literature,17–25 including several mutually exclusive
scenarios for the ordering at low densities and small electric
and magnetic fields. The main open questions pertaining to

these states have to do with identifying broken symmetries
and determining the exact structure of the order parameter
and excitations. Future NLCE measurements, by offering a
direct method for determination of the layer polarization,
will help to narrow down the possibilities for these new
states.
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16D. S. L. Abergel, P. Pietiläinen, and T. Chakraborty, Phys. Rev. B

80, 081408 (2009).
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