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Theoretical study of thermal conductivity in single-walled boron nitride nanotubes
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We perform a theoretical investigation on the thermal conductivity of single-walled boron nitride nanotubes
(SWBNT) using the kinetic theory. By fitting to the phonon spectrum of the boron nitride sheet, we develop an
efficient and stable Tersoff-derived interatomic potential which is suitable for the study of heat transport in sp2
structures. We work out the selection rules for the three-phonon process with the help of the helical quantum
numbers (κ,n) attributed to the symmetry group (line group) of the SWBNT. Our calculation shows that the
thermal conductivity κph diverges with length as κph ∝ Lβ with exponentially decaying β(T ) ∝ e−T/Tc , which
results from the competition between boundary scattering and three-phonon scattering for flexure modes. We
find that the two flexure modes of the SWBNT make dominant contribution to the thermal conductivity, because
their zero frequency locates at κ = ±α, where α is the rotational angle of the screw symmetry in SWBNT.
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I. INTRODUCTION

Recently, experimentalists have accomplished significant
progress with the synthesis of boron nitride (BN) nanomate-
rials, including the hybridized boron nitride and graphene,1

the boron nitride thin film,2 and the boron nitride nanoribbon.3

Prior to these breakthroughs, the BN nanomaterials have drawn
continuous attention over past decades. The optical transitions
in the single-walled boron nitride nanotubes (SWBNT) were
measured by the optical absorption spectroscopy4 or the
spatially resolved electron-energy-loss spectroscopy.5 The
giant Stark effect in SWBNT was observed by the bias depen-
dent scanning-tunneling microscopy and scanning-tunneling
spectroscopy.6 The lattice dynamics properties have been
investigated by first-principles calculation7–10 or the valence
force-field model.11–13 For the thermal transport in SWBNT,
both experimental14,15 and theoretical16,17 results have con-
firmed the importance of isotopic doping. The theoretical study
of the thermal transport in SWBNT is mainly in the ballistic
region where the Landauer formula is applied with phonon
dispersion obtained from lattice dynamics calculations. In
these studies, the phonon-phonon scattering is ignored in the
ballistic region, while the effect of phonon-phonon scattering
on the thermal conductivity in carbon-based nanomaterials has
been investigated by the Boltzmann equation approach.18–21

However, it is still a blank field for the the thermal conductivity
of SWBNT. One of the main objectives of the present paper
is to investigate the effect of the phonon-phonon scattering on
the thermal conductivity of SWBNT.

In this paper, we study the effect of the boundary and three-
phonon scattering on the thermal conductivity in SWBNT.
In our investigation, we calculate all required physical
quantities from the Tersoff plus universal force-field out-of-
plane (Tersoff + UFFOOP) potential. The parameters of this
potential are fitted to the phonon spectrum in the sp2 BN sheet.
It preserves the efficiency and stability of the original Tersoff
potential. We find the selection rules for the three-phonon
process by using the helical quantum numbers (κ,n) which are
assigned to the screw and rotation symmetries in the line group
of the SWBNT. The helical quantum numbers are conserved
in the three-phonon scattering process and can distinguish the

flexure modes in SWBNT from other acoustic modes. We
find that the thermal conductivity of SWBNT shows diverging
behavior with length as κph ∝ Lβ , where the exponent β(T )
decreases exponentially with the increase of temperature T .
The thermal conductivity is dominated by the flexure modes,
which can be clearly interpreted with the help of the helical
quantum numbers.

The present paper is organized as follows. In Sec. II,
we find the selection rules for the three-phonon scattering
process. Section III is devoted to the interaction potential.
Section IV shows formulas for the phonon life time and thermal
conductivity. In Sec. V, calculation results are presented and
discussed. The paper ends with a summary in Sec. VI.

II. SYMMETRY SELECTION RULES

In the scattering process, symmetry selection rules impose
strong constraints on the symmetry properties of particles
which participate in the process. Resulting from the scalar
property of the scattering operator in the three-phonon
process,22 the selection rules reflect directly the conservation
of quantum numbers corresponding to all symmetry operations
in the system. First of all, the energy conservation leads to

ω + ω′ = ω′′. (1)

We will only exhibit selection rules for combining process.
They can be obtained analogously for the splitting process and
will be listed at the end of this section. Besides the energy
conservation, the other selection rules are governed by the
symmetry group of the system. For chiral, armchair, and zigzag
SWBNT (n1,n2), the symmetry groups are the first, fourth,
and eighth class of line group.23,24 The chiral SWBNT have
the screw symmetries and the pure rotational symmetries with
generators S(α,h) and C1

N . The SWBNT are rotated around
the z axis for α and translated by h in the z direction after the
operation of S(α,h). z is set to be the rotational axis of SWBNT.
α and h are related to n1 and n2.25 The rotational angle for
C1

N is 2π/N , where N = gcd(n1,n2) is the greatest common
divisor of n1 and n2. The armchair or zigzag SWBNT also
have the screw and pure rotational operations. Besides, there
are additional reflection symmetries σh/σv in armchair/zigzag
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SWBNT. In the irreducible representations of the line group,
the quantum numbers corresponding to the screw and rotation
operations are a set of helical quantum numbers (κ,n), with
κ ∈ (−π/h,π/h] and n = (−N/2,N/2].26 Using the group
theory, one finds that the selection rules in chiral SWBNT
for the three-phonon process is merely to guarantee the
conservation of helical quantum numbers (κ,n). In armchair
or zigzag SWBNT, the symmetry property is different for
phonons in the center or at the edge of the Brillouin zone
(BZ), i.e., (κ,n) = (0,0), (±π/h,0), or (0, ±N/2) for even
N . Those phonons carry the information of the reflection
symmetries; thus, they are of higher symmetry than the other
phonons. From group theory, higher symmetry will lead to
more complicated selection rules. However, those phonons
of higher symmetry are unable to carry heat energy in the
thermal transport, because they either correspond to a rigid
movement of the system or have zero-phonon velocity. It
should be noted that the other long-wave acoustic modes make
an important contribution, except the mode with (κ,n) = (0,0).
After ignoring those phonons, the selection rules in armchair
or zigzag SWBNT turn out to be the same as that of the chiral
SWBNT. Consequently, the selection rules in all SWBNT are

κ + κ ′ = κ ′′ mod
2π

h
,

(2)

n + n′ = n′′ mod N.

We emphasize that the physical consequence of these selection
rules is to conserve the quantum numbers (κ,n) corresponding
to the screw and pure rotational symmetries of the SWBNT.
Besides the simplicity in their selection rules, (κ,n) have
several advantages. The present paper applies the helical
quantum numbers which correspond to the actual symmetries
of the SWBNT in the study of the phonon-scattering process in
nanotubes. All existing literatures use the linear quantum num-
bers (k,m)27 attributed to the pure translational and rotational
operations with generators Tq̃h and C1

q . q is the number of atom
pairs in a big translational unit cell, and q̃ = q/N . The oper-
ation Tq̃h translates the SWBNT by q̃h in the z direction. All
of those pure translational and rotational operations together
form a subgroup of the line group. Although Tq̃h is a symmetry
operation in the SWBNT, the C1

q is not a symmetry operation
of SWBNT. As a result, the linear quantum numbers (k,m)
are not conserved in the three-phonon process. The relations
between linear and helical quantum numbers are n = mmodN ,
and κ = k + mα

h
+ j 2π

h
, where j is an integer to keep κ in its

BZ. These relations lead to an additional constraint on the
selection rules of (k,m), which has been originally pointed out
by Dobardzic et al.,26 and demonstrated by Lindsay et al.21

Analogously, we can obtain the following selection rules
for the splitting process:

ω = ω′ + ω′′,

κ = κ ′ + κ ′′ mod
π

h
, (3)

n = n′ + n′′ mod N.

III. INTERATOMIC POTENTIAL

The interaction for the sp2 BN sheet or SWBNT can
be described by valence force-field models in the linear

approximation.11,12,28 This linear model can be adopted to
study the ballistic phonon transport without phonon-phonon
scattering. To investigate the thermal transport beyond the
ballistic region, it is necessary to apply a more realistic
interatomic potential which can include the nonlinear effect
and bond reaction phenomenon. Several sets of parametric
Tersoff bond order potentials have been applied in the
molecule dynamics simulation of various properties for BN
materials.29–31 However, these parameters are not fitted to
the sp2 BN sheet structure. Especially, they are not good
in the description of the phonon spectrum of the BN sheet,
which is crucial for the investigation of thermal transport
in the present work. It is important to fit a set of Tersoff
parameters to the phonon dispersion of the sp2 BN sheet,
as there is no experimental values for nonlinear properties
of the BN sheet. The fitting procedure is realized in the
following steps. Firstly, the phonon dispersion in BN sheet
is quite similar to that of the graphene, because these two
materials have a similar honeycomb structure. So we start
with the Tersoff parameters for carbon,32 with parameters A

and B in the Tersoff potential rescaled by a factor of 0.3.
Figure 1 [dashed line (blue online)] shows that this set of
Tersoff parameters gives a good description of the four in-plane
vibrations: longitudinal acoustic (LA), transverse acoustic
(TA), longitudinal optical (LO), and transverse optical (TO)
modes.33 However, it results in much lower frequencies for the
two out-of-plane vibrations: z acoustic (ZA) and z optical (ZO)
modes. We find that it is impossible to account for the in-plane
and out-of-plane vibrations simultaneously through adjusting
the parameters in the Tersoff potential where the bond order
function depends on the bond length and in-plane bond
angles. The in-plane transverse vibration is captured by the
in-plane bond angle term. The in-plane longitudinal vibration
and out-of-plane vibration are coupling together in the bond
length term. As a result, it is impossible to modify Tersoff
parameters to independently affect the out-of-plane vibration
while keep in-plane longitudinal vibration unchanged. Brenner
et al. solved this problem by generalizing the bond order
function to be dihedral angle dependent,34 which can treat
the out-of-plane vibrations separately. However, this is a
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FIG. 1. (Color online) Phonon spectrum in the BN sheet calcu-
lated from the Tersoff potential, Tersoff + UFFOOP potential are
compared with experimental results from Ref. 33. The UFFOOP
potential enhances merely the two out-of-plane (ZA and ZO)
vibration modes.
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TABLE I. Parameters of the four-body UFFOOP potential: V =
C0[C1 + C2 cos(φ) + C3 cos(2φ)]. The second/third lines are for
configuration with B/N in the center of the other three N/B atoms. C0

is in eV. The other three parameters are dimensionless.

Bond type C0 C1 C2 C3

BNNN −0.776387 1.000000 1.473839 0.424507

NBBB 0.236178 1.000000 0.373869 0.223418

numerically expensive generalization. Particularly for large
systems, the numerical simulation using the Brenner potential
becomes much slower than the Tersoff potential. Actually,
this problem can be settled down by a more efficient and
straightforward approach. We introduce a concise potential
to manipulate the out-of-plane vibration separately. It should
be noted that it is an attractive way to describe each degree of
freedom by a separate term, as this can provide a clear physical
picture for each phonon branch. Among various potentials, we
find that the most stable one is the UFFOOP potential:35 V =
C0[C1 + C2 cos(φ) + C3 cos(2φ)], where φ is the dihedral
angle. The four optimized parameters Ci are shown in Table I.
Figure 1 [solid line (red online)] shows that UFFOOP only
enhances the out-of-plane vibration and does not affect the
in-plane vibration at all in the planar BN sheet. For tubes,
especially those with small diameters, the dihedral angle φ

depends on the curvature of the tube, so the out-of-plane and in-
plane vibrations are mixing together by the UFFOOP potential.
The phonon spectrum calculated from the Tersoff + UFFOOP
potential agrees well with the experimental values. It should
be noted however that the theoretical frequencies for LO
and TO modes do not coincide with the experimental data
in detail, since these two modes are more sensitive to long-
range interactions compared with acoustic branches.13 The
long-range interactions originate from the charge polarization
of boron and nitride atoms in this ionic system. Especially,
the crossing of TO and LO branches can not be repeated
by the Tersoff + UFFOOP potential. However, we can safely
ignore the effect of long-range interaction in the study of
phonon thermal transport, because the LO and TO modes
only contribute to thermal conductivity through providing new
channels for phonon-phonon scattering of other phonons due to
their low phonon velocity. At this point, we would like to point
out two distinct features of the Tersoff + UFFOOP potential.
Firstly, it is of high efficiency and stability, which inherits from
the original Tersoff potential for the carbon system. We have
tested that the SWBNT are still stable in molecular dynamics
simulation at 2000 K after 1010 steps. Secondly, this potential
can give a good description simultaneously for the in-plane
and out-of-plane vibrations of the sp2 BN system, and is thus
suitable for the study of thermal transport in these structures.

IV. PHONON LIFE TIME AND THERMAL
CONDUCTIVITY

The thermal conductivity can be calculated by the following
formula:19

κph = 1

V

∑
κ,n,σ

τ σ
κ,nCph(ω)v2

κ,n,σ,z, (4)

where V is the volume of the system. The thickness of the
SWBNT is considered to be the interlayer spacing (3.35 Å) in
the hexagonal BN multilayers.3 σ is the polarization index
of phonon dispersion. The phonon heat capacity is given
by Cph = kBx2ex/(ex − 1)2 with x = h̄ω/(kBT ). vσ

κ,n,z is the
phonon velocity in the direction of thermal current. Under
the single-mode relaxation-time approximation, the relaxation
rate for the phonon mode (κ,n,σ ) due to the three-phonon
scattering process is36

1

τps
=

∑
κ ′,n′,σ ′

2|C3|2 h̄

M3ωω′ω′′ πδ (�ω) N (ω′,ω′′), (5)

where the coefficient |C3|2 = 4γ 2

3A
M2

v2
g
ω2ω′2ω′′2. To simplify the

notation, we have introduced a single prime to denote that
the quantity corresponds to the mode (κ ′,n′,σ ′). Similarly,
a double prime means that the quantity corresponds to the
mode (κ ′′,n′′,σ ′′). The two modes (κ ′,n′,σ ′) and (κ ′′,n′′,σ ′′)
are related to each other through the selection rules in
Sec. II. A is the total number of atoms in the system. M

is the atomic mass of a single atom. For the combining
process, �ω = ω + ω′ − ω′′ and N (ω′,ω′′) = N ′

0 − N ′′
0 . The

distribution function is N0 = 1/(ex − 1). For the splitting
process, �ω = ω − ω′ − ω′′ and N (ω′,ω′′) = N ′

0 + N ′′
0 + 1.

γ is the Grüneisen parameter of mode (κ,n,σ ). It is important
to use mode-specific Gruneisen parameters. This has been
confirmed by Nika et al. in the calculation of thermal
conductivity of 2D graphene, which shows that the result from
mode-dependent Grüneisen parameters is in better agreement
with experiment.20 γ is calculated by γ = −(V/ω)(∂ω/∂V )
in the 3D structure, and by γ = −(S/ω)(∂ω/∂S) in the 2D
system with S as the area. In the quasi-one-dimensional
SWBNT system, we calculate it by γ = −(L/ω)(∂ω/∂L).
The summation over κ ′ in the relaxation rate can be changed
into an integral, as the SWBNT are usually very long. The
relaxation rate is then obtained by the following formula:19

1

τps
=

(
4

3ρL

) (
h̄ωγ 2

v2
z

) ′∑
n′σ ′

1

vg

ω′ω′′N (ω′,ω′′), (6)

where ρL = NaM/L is the mass per length. vg = |v′ − v′′| is
the group velocity. The prime over the summation indicates
the selection rules imposed on those phonon modes in the
summation.

In the low-temperature region, the thermal conductivity
is dominated by the boundary and defect scattering, as the
three-phonon process is very weak. We consider the boundary
scattering by the following relaxation rate:22

1

τbs
= vσ

κ,n,z

L
× 1 − p

1 + p
, (7)

where p is the specularity parameter. For example, in studies of
graphene this specularity parameter was fitted to experimental
data.20 Since there is no experiment on thermal boundary
scattering phenomenon, we fit this parameter to the molecular
dynamics simulation results on short SWBNT of 10 nm long
where boundary scattering is important, as shown in Fig. 2. The
simulation is run based on the same potential. In the molecular
dynamics simulation, the thermal current is mimicked by
setting two different temperatures on the two ends of the tube.
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FIG. 2. Fit specularity parameter p to the thermal conductivity
from the molecular dynamics simulation.

The Nóse-Hoover37,38 thermostat is employed to maintain
constant temperatures with a relaxation time of 0.4 ps. The
description of boundary scattering is phenomenological, since
we do not have an atomic model for the boundary scattering.
Equation (6) will give some error in the calculation of vg for
short tubes, where the κ space is discrete. However, the error
will be reasonably small, as the phonon lifetime in short tubes
is mainly determined by the boundary scattering.

The total phonon lifetime can be obtained through
Matthiessen’s rule:

1

τtot
= 1

τps
+ 1

τbs
. (8)

From the above, we can calculate the phonon lifetime
and thermal conductivity due to boundary scattering and
three-phonon scattering. This procedure requires the linear
properties including phonon spectrum ωσ

κ,n, phonon velocity
vσ

κ,n, and the nonlinear property of the Grüneisen parameter
γ σ

κ,n. All of these quantities are obtained from the Tersoff +
UFFOOP potential.

V. CALCULATION RESULTS AND DISCUSSION

We employ the Tersoff + UFFOOP potential to calculate
all physical quantities required in the calculation of thermal
conductivity. Figure 3 shows the results for SWBNT (3,3),
where κ ∈ (−π/h,π/h] with h = 1.23 Å. Quantities belong-
ing to n = −1, 0, 1 are plotted in solid (blue online), dashed
(red online), and dotted (green online) lines. Thicker lines
are used to mark physical quantities of the four acoustic
phonon dispersions, i.e., the LA, the twisting (TW), and two
TA phonon modes (or flexure modes). Panel (a) is the phonon
spectrum parameterized by the helical quantum numbers (κ,n).
Different from the LA and TW modes, the zero point of the
two TA modes are located at (κ,n) = (−α, − 1) and (α,1).
Panel (b) shows the phonon spectrum parameterized by the
linear quantum numbers (k,m). The BZ of k is only half
of the BZ for κ and m = −3, −2, −1,0,1,2. These curves
are obtained through the relationship between two sets of
quantum numbers. The zero points of the four acoustic phonon
dispersions are all in the �point (k,m) = (0,0). We can not tell
the difference between the TA modes and the other acoustic
modes through the position of the zero frequency anymore.
Panel (c) shows the phonon velocity. Let us concentrate on
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FIG. 3. (Color online) Physical quantities in SWBNT (3,3). (a)
Phonon spectrum parameterized by helical quantum numbers (κ,n).
(b) Phonon spectrum parameterized by linear quantum numbers
(k,m). (c) Phonon velocity. (d) Grüneisen parameter. In (a), (c), and
(d), n = −1, 0, 1 are displayed by solid (blue) lines, dashed (red)
lines, and dotted (green) lines. The four acoustic phonon modes are
highlighted by thicker lines.

the six curves attributed to n = 0 [dashed line (red online)].
Among the six phonon modes at κ = 0, LA/TW modes are
the rigid translation/rotation of the SWBNT, so they do not
contribute to the thermal conductivity. The other four modes
have zero velocity; thus cannot carry heat energy during
thermal transport. Similarly, the twelve phonon modes at κ =
±π/h do not transfer heat energy directly, as their velocities
are zero. In other SWBNT with even N , e.g., SWBNT (4,2),
we find that phonon velocities are also zero at the BZ boundary
(κ,n) = (0,N/2). Actually, the zero velocity of phonon modes
at the BZ edge and optical modes at � point is the result of
the continuity and inversion symmetry of phonon velocities
for optical modes. This is also true in bulk materials where
the selection rules of the three-phonon process are merely
to conserve the momentum besides the energy conservation,
while the conservation of quantum numbers corresponding
to other point symmetries is ignored. Panel (d) shows the
Grüneisen parameter. Most phonon modes have positive γ ,
except the two TA modes whose γ are large negative numbers.
The large negative Grüneisen parameter was also found in 2D
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FIG. 4. (Color online) Thermal conductivity of SWBNT (5,0)
with length 1, 5, 10 μm from bottom to top.
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FIG. 5. (Color online) (a) Thermal conductivity of 1 μm SWBNT
(3,3) contributed from different acoustic phonon modes. (b) Lifetimes
for acoustic phonon modes.

graphene by Mounet et al. doing first-principles calculation.39

It is the origin of thermal contraction at low temperatures in
many materials. The obtained Grüneisen parameters are quite
different for different phonon modes, so it is important to use
a mode-dependent Grüneisen parameter γ σ

κ,n in the calculation
of thermal conductivity from Eqs. (4) and (6).

Figure 4 shows the thermal conductivity in the temperature
range [1.0, 1000.0] K for SWBNT (5,0) with several different
lengths. In the low-temperature region, the thermal conductiv-
ity is limited mainly by the boundary scattering. κph increases
with increasing temperature according to the temperature
dependence of phonon heat capacity as the boundary scattering
is temperature independent. Around Tc = 80 K, thermal con-
ductivity reaches a maximum value, where boundary scattering
and three-phonon scattering counterbalance each other. Above
Tc, the three-phonon process becomes more important leading
to the decrease of κph with further temperature increase. The
critical temperature Tc is lower in longer tubes where boundary
scattering contributes less than shorter tubes. With the increase

of length, κph increases due to weaker boundary scattering,
exhibiting the ballistic characteristic thermal transport.

The acoustic modes are major heat carriers, because of their
higher velocities compared with optical modes. Figure 5(a)
shows the contribution from the four acoustic modes to κph

in 1-μm-long SWBNT (3,3). It shows that the two TA modes
dominate the thermal conductivity, although their velocities
are smaller than the LA and TW acoustic modes. The TA
vibrations are also most visible in the molecular dynamics
simulation. Figure 6 displays the vibrational morphology of the
four selected TA modes. The length of the arrow is proportional
to the amplitude of vibrational displacement.

The TA modes are more effectively excited than LA and
TW modes in the whole temperature range because of their
quadratic phonon spectra. As a result, there are more TA
phonons to carry the heat energy. However, the TA modes
should not have such a dominant contribution to κph if they
can not carry heat energy for a long time. Hence, it is also
necessary to compare the lifetime of different phonon modes.
The comparison is shown in Fig. 5(b). It shows that the lifetime
of TA mode is about three to four orders longer than the
LA/TW modes. From Fig. 3(d), the value of the Grüneisen
parameters for general TA modes are close to that of the
LA/TW modes. It means that there should be almost the
same phonon-phonon scattering for all three acoustic modes
between phonon modes (κ,n,σ ), (κ ′,n′,σ ′), and (κ ′′,n′′,σ ′′),
satisfying the selection rules. However, for long-wave LA/TW
modes, the energy conservation will always lead to σ ′ = σ ′′,
while the other selection rules require κ ′ to be close to κ ′′,
and n′ = n′′. From Fig. 3(c), two modes with closer κ and the
same (n,σ ) will have similar phonon velocity, which results
in a very small value of group velocity vg in Eq. (6). As a
result, the three-phonon scattering rate is extremely strong for
LA/TW modes. The situation is quite different for TA modes,
where the selection rules require κ ′ to be far away from κ ′′,
and n �= n′. It will lead to a large value of vg , which eventually
results in a considerably weak three-phonon scattering rate.
Considering the above two aspects of TA modes, we learn that
the TA modes are fully excited in the whole temperature range
and can carry heat for a long time, so they dominate the thermal
conductivity.

It has been well established that the thermal conductivity in
bulk materials will converge with the length increasing at some
point, yet it is still an open issue in low-dimensional materials
such as graphene or nanotube. The thermal conductivity
shows a different length dependence in different transport
regions. In the pure ballistic region, the thermal conductivity
is proportional to the length, while κph is length independent

FIG. 6. (Color online) The vibrational morphology of four flexure modes in SWBNT (5,0) with frequency increased from 1.7 cm−1 to 26
cm−1 in panels (a)–(d). The values displayed are (κ,n,σ,ω) for each mode.
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L ∈ [0.3, 5] μm at 300 K.

in the pure diffusive region. Intuited by these two situations, it
is a usual trick to fit the thermal conductivity as an exponential
function of length. This technique is useful in the study of
thermal conductivity in nanomaterials, where the Fourier law
fails and the thermal transport is neither ballistic nor diffusive.
From this point of view, the beta exponent in the length
dependence of thermal conductivity is a nice way to observe
the thermal transport nature. The origins for the exponential
behavior in ballistic and diffusive regions are clear, while there
is no good reason for the exponential behavior of thermal
transport between ballistic and diffusive. It can be taken as an
artifact of fitting approximation at this moment.

We calculate κph in [1.0, 1000] K for SWBNT (5,0) with
lengths distributed in [0.3, 10] μm and SWBNT (10,0) with
length L ∈[0.3, 5] μm. At each temperature, we fit κph as
a power function of L: κph = aLβ . Two fitting results at
300 K are illustrated in Fig. 7. In bulk materials, β = 1
for ballistic transport, while β = 0 in the case of diffusive
transport. For nanomaterials, the ballistic transport is easier to
observe, because the structure is too small for phonon-phonon
scattering to take effect. However, a pure diffusive thermal
transport has seldom been seen in quasi-one-dimensional
systems.40–43 β should be smaller at higher temperatures where
the three-phonon process becomes more important. A detailed
study of the temperature-dependence of β is very difficult to
do by molecular dynamics simulation because of the large
computation requirement. The above approach in Sec. IV can
be used to perform this calculation efficiently. Figure 8 shows
that β decreases exponentially with increasing temperature.
β has a large value at low temperatures as it is almost in
the ballistic transport region. With temperature increase, β

decreases faster in thinner tubes. In the high temperature limit,
β = 0.44 and 0.42 for SWBNT (5,0) and (10,0), respectively.
The thermal transport in both tubes are not in the pure diffusive
region. Thicker tubes are closer to the pure diffusive transport
with smaller β. It is still unclear why the exponent β decays
exponentially with increasing temperature, even though such
behavior has been clearly observed here.

The divergence of thermal conductivity with nonzero β is
the result of the competition between three-phonon scattering
and boundary scattering of the TA modes, which dominate
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FIG. 8. (Color online) Temperature dependence for the power
factors of SWBNT (5,0) and (10,0).

the thermal conductivity. Figure 9 shows the lifetime for
TA modes at room temperature. The dropoff of lifetime for
low-frequency phonons is due to the quadratic dispersion of
the flexure modes, which leads to an extremely large Grüneisen
parameter of these modes around κ = ±α as displayed by
Fig. 3(d). Another important feature of Fig. 9 is that the
three-phonon scattering for TA modes around 50 and 70 cm−1

is so weak that the lifetimes of these modes are mainly limited
by the boundary scattering. This part of the contribution to
the thermal conductivity will diverge with increasing length,
i.e., β should be 1.0. Other flexure modes have considerable
three-phonon scattering. Contribution from these phonons to
the thermal conductivity does not depend on the length of
SWBNT, i.e., β should be 0. The counteraction between
these two mechanisms results in a power factor β in the
range [0, 1]. Actually, a similar phenomenon was also found
by Nika et al. for the thermal conductivity in graphene,
where the boundary scattering still plays an important role
for a very large piece of the graphene sample and eventually
leads to the increase of thermal conductivity with increasing
size.20
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FIG. 9. (Color online) Phonon lifetime of TA modes in 2 μm
SWBNT (10,0) at 300 K. The lifetime due to boundary scattering,
τbs, is shown by blue stars. The three-phonon scattering life time, τps,
is displayed by red open circles. The total lifetime is shown by black
diamonds.
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VI. CONCLUSION

To conclude, the present work calculates the phonon
lifetime due to boundary scattering and the three-phonon
scattering process in SWBNT. The linear and nonlinear
physical quantities required in the calculation are obtained
from the Tersoff + UFFOOP interatomic potential, which
inherits the efficiency and stability of the original Tersoff
potential and is suitable for the field of heat transport. The
selection rules for the three-phonon process are figured out
by analyzing the symmetry group (line group) of SWBNT.
A set of helical quantum numbers (κ,n) corresponding to
the line group is accepted in the selection rules instead of

the usual linear quantum numbers (k,m) corresponding to
a subgroup of the line group. The calculation focuses on
the thermal conductivity for SWBNT with different lengths
and the contribution of different phonon modes in the heat
transport.
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