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Dislocation-mediated melting of one-dimensional Rydberg crystals
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We consider cold Rydberg atoms in a one-dimensional optical lattice in the Mott regime with a single atom
per site at zero temperature. An external laser drive with Rabi frequency � and laser detuning � creates Rydberg
excitations whose dynamics is governed by an effective spin-chain model with (quasi) long-range interactions.
This system possesses intrinsically a large degree of frustration resulting in a ground-state phase diagram in
the (�,�) plane with a rich topology. As a function of �, the Rydberg blockade effect gives rise to a series
of crystalline phases commensurate with the optical lattice that form a so-called devil’s staircase. The Rabi
frequency �, on the other hand, creates quantum fluctuations that eventually lead to a quantum melting of the
crystalline states. Upon increasing �, we find that generically a commensurate-incommensurate transition to a
floating Rydberg crystal that supports gapless phonon excitations occurs first. For even larger �, dislocations
within the floating Rydberg crystal start to proliferate and a second, Kosterlitz-Thouless-Nelson-Halperin-Young
dislocation-mediated melting transition finally destroys the crystalline arrangement of Rydberg excitations. This
latter melting transition is generic for one-dimensional Rydberg crystals and persists even in the absence of
an optical lattice. The floating phase and the concomitant transitions can, in principle, be detected by Bragg
scattering of light.

DOI: 10.1103/PhysRevB.84.085434 PACS number(s): 05.30.Rt, 32.80.Ee, 37.10.Jk, 64.70.Rh

I. INTRODUCTION

The experimental progress in manipulating ultracold atomic
gases has established these systems by now as versatile
quantum simulators of basic many-body Hamiltonians with
an unprecedented control over coupling parameters.1 The
interactions between ultracold neutral atoms are, however,
usually limited to on-site or contact interactions due to the
s-wave nature of ultracold collisions. In order to overcome this
limitation, there has been a considerable effort recently to cre-
ate atomic gases with (quasi) long-range dipolar interactions.2

Generally, long-range interactions can give rise to a variety
of competing ground states and stabilize new quantum phases
of matter that are unfamiliar from systems with finite-range
interactions only. In the context of ultracold gases of dipolar
atoms, various examples have been studied theoretically so
far, e.g., supersolids,3–5 crystalline phases,6–8 liquid crystal,
and nematic phases.9–12

Apart from using atoms with a static dipole moment,
long-range forces can also be generated by laser driving atoms
to dipolar states or, alternatively, to highly excited Rydberg
states. Such excited Rydberg atoms then experience either a
dipolar or a van der Waals force, respectively, that can become
quite strong due to their huge polarizability that scales as
n7 where the principal quantum number n is typically on
the order of n ∼ 50 in current experiments. The interesting
aspect of this realization is that in either case, the additional
long-range interaction acts only between excited atoms. As a
consequence, it becomes energetically unfavorable to excite
two atoms at short distance—a phenomenon known as the
dipole-blockade effect.13–17 In the presence of many atoms,
this blockade mechanism gives rise to interesting collective
behavior18–21 especially in low-dimensional systems.22–29

In the present work, we consider a regular one-dimensional
(1D) lattice of Rydberg atoms and study the ground-state phase

diagram as a function of laser detuning � and Rabi frequency
�. Interestingly, this 1D system possesses intrinsically, as
we will argue below, a large degree of frustration, and, as
a result, the dipole-blockade leads here to various liquid-
like and crystalline phases with the concomitant melting
transitions. This system was studied in a number of recent
publications23–28,30 that elucidated several aspects of the prob-
lem. The density of Rydberg excitations and its dependence
on the Rabi frequency � were studied experimentally and
theoretically for a trapped gas without an optical lattice,23,24

the dynamics of excitations for Rabi frequencies larger than the
interaction energy was investigated in Ref. 25, and crystalline
phases were considered in Refs. 26–28, and 30. It is the
purpose of this work to complement and to complete the
picture of the phase diagram of the system, to identify the
universality classes of the phase transitions, and to put it
into context with well-established results in statistical physics
about melting of crystalline phases.31,32 In particular, we
point out that as a function of laser detuning � the Rydberg
excitations first condense into a gapless incommensurate
crystalline state in agreement with Ref. 26, but we identify
the transition to be of Berezinskii-Kosterlitz-Thouless33 type
in analogy to the Kosterlitz-Thouless-Nelson-Halperin-Young
scenario of dislocation-mediated melting of two-dimensional
crystals on periodic substrates.34,35 As quantum fluctuations
are further suppressed, for example, by lowering �, a second
commensurate-incommensurate (C-IC) transition occurs and a
Rydberg crystal forms with a periodicity that is commensurate
with the optical lattice. At the two transitions, the character
of Rydberg correlations changes abruptly, which we argue,
can in principle be detected by Bragg scattering of light.
In the following, we introduce the considered model in
some detail and discuss the methods applied throughout this
work.
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II. MODEL

We consider ultracold bosonic atoms in a 1D optical lattice
in the presence of external laser fields that drive a transition
from the ground state of an atom to a highly excited Rydberg
state. Experimentally, this transition occurs via a two-photon
process, the intermediate state of which can be adiabatically
eliminated resulting in an effective two-level description in
terms of the ground and the excited Rydberg state.36 Thus we
start from a Bose-Hubbard model of atoms in a 1D optical
lattice together with an additional external driving field at
effective Rabi frequency � and detuning �. We assign to each
atom a pseudospin σ =↓ , ↑ that indicates whether it is in the
ground or excited Rydberg state, respectively. The laser excites
Rydberg atoms and excited atoms can decay by spontaneous
emission or collisional processes giving rise to a decay rate
1/τ . In general, it is therefore not possible to describe the
atomic subsystem by a Hamiltonian but a description in terms
of a density operator must be used instead. However, if we limit
ourselves to time scales much smaller than the lifetime τ of the
excited Rydberg atoms, we can approximate the evolution of
the density operator with the help of an effective Hamiltonian
whose ground-state phase diagram can be analyzed.

Employing the rotating wave approximation,36 this Hamil-
tonian takes the form

HHE =−
∑
j,σ

tσ (b†jσ bj+1σ + H.c.)+ �

2

∑
j

(b†j↑bj↓ + H.c.)

−�

2

∑
j

(nj↑ − nj↓) + 1

2

∑
j,σ

Uσσnjσ (njσ − 1)

+
∑

j

U↑↓nj↑nj↓ + 1

2

∑
j �=�

J|j−�| nj↑n�↑, (1)

where bjσ is the bosonic annihilation operator at lattice site
j and njσ = b

†
jσ bjσ is the density operator for ground- and

excited-state atoms at site j . Generally, the hopping of atoms
tσ and their on-site interaction Uσσ ′ depend on their internal
energy state σ . In addition, the excited atoms experience a
repulsive interaction denoted by J|r| that decays algebraically
with dimensionless distance r:

J|r| = JR

|r|α , (2)

where the exponent is either α = 6 if the interaction is of
van der Waals type or α = 3 for a dipolar interaction between
excited Rydberg atoms.2 Although the interaction of Eq. (2)
decays rather fast for the exponents of interest, we call it
nevertheless (quasi) long-range in this work in the sense that
it is finite for all distances r .

We assume that the filling is exactly one atom per site, and
we consider the Mott regime where the strong on-site U � tσ
prohibits the atoms to hop and freezes them to the lattice
positions. Projecting the “high-energy” Hamiltonian (1) onto
the low-energy Hilbert space with a fixed density of one atom
per site, one obtains an effective spin Hamiltonian:

H =
∑
�>j

J|�−j |
(
Sz

j + 1/2
)(

Sz
� + 1/2

)
−J⊥

2

∑
j

(
S+

j S−
j+1 + H.c.

) − �
∑

j

Sz
j + �

∑
j

Sx
j (3)

with Sα
j denoting spin-1/2 operators at lattice site j . The Rabi

frequency � > 0 corresponds to a transversal magnetic field
and the detuning � is an additional magnetic field component
in the longitudinal direction. Virtual hopping processes in the
Mott regime give rise to a transverse spin interaction J⊥ ∼
t2/U between nearest neighbors, see Appendix A. Note that
J⊥ > 0 is ferromagnetic as we consider bosonic atoms.37,38

In Appendix A, we also shortly discuss the opposite limit of
a Bose-Einstein condensate of ground-state atoms and show
that the effective Hamiltonian in this case is identified with a
spin model similar to Eq. (3) as well.

Equation (3) is the Hamiltonian that we analyze in this
work. In the following, we will use the language of spins and
Rydberg atoms interchangeably. For example, the magnetiza-
tion per site plus one-half, 0 < m + 1/2 < 1, corresponds to
the mean number of Rydberg excitations per lattice site. We
will be mainly interested in the ground-state phase diagram
of the Hamiltonian (3) in the (�,�)-plane. Note that this
phase diagram is symmetric with respect to the line � =
�̄ ≡ ∑

r>0 Jr , which corresponds to vanishing longitudinal
magnetic field. In the following we restrict, however, our
discussion to the relevant regime |�| 
 JR , i.e., |�| 
 �̄.

In usual experimental settings, the Rydberg interaction JR

is by far the largest energy scale,

�,|�|,J⊥ 
 JR. (4)

Previous studies have been limited to the so-called frozen-
Rydberg-gas limit where the hopping of Rydberg excitations
J⊥ is omitted arguing that relevant experimental time scales
like the Rydberg lifetime τ are usually much smaller than
h̄/J⊥. Although the bare value of J⊥ is indeed small, it becomes
strongly enhanced by renormalization effects generated in
second order in �.26 We therefore find it convenient to keep
it explicitly in the model (3) as it simplifies the theoretical
analysis.

The analysis of Eq. (3) in the parameter regime (4) is
actually a formidable task for the following reason. As a
starting point of an analysis, we might neglect the fields �

and �, the transverse interaction J⊥, and also all longitudinal
interactions between neighbors with a distance larger than a
single lattice spacing because of the strong decay of J|r|/JR =
1/|r|α with increasing distance r . In this case, the Hamiltonian
reduces to

H0 =
∑

j

JR

(
Sz

j + 1/2
)(

Sz
j+1 + 1/2

)
. (5)

It turns out that the ground state of Eq. (5) is macroscopically
degenerate with zero-point entropy S = ln 1+√

5
2 , given by the

logarithm of the golden mean,40 as all states without two
adjacent up spins, i.e., two adjacent Rydberg excitations, have
the same energy. Almost any additional term will immediately
quench this entropy, and it is clear that a perturbative approach
in the parameters �,�,J⊥, and J|r| with r > 1 is, therefore,
inadequate to derive the properties of the Hamiltonian (3).

III. METHODS

One can obtain an idea of the complexity of Eq. (3) by
considering the classical limit � = J⊥ = 0. The ground states
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of the resulting classical model were determined by Bak
and Bruinsma41 who demonstrated that the phase diagram
as a function of � possesses infinitely many phases, and
the magnetization m(�) forms a complete devil’s staircase.
For � < 0, the ground state is fully polarized . . . ↓↓↓↓ . . .

with magnetization m = −1/2 per site. For positive �, it
becomes energetically favorable to accommodate up spins,
i.e., Rydberg excitations in the ground state. The up spins
are however arranged in a way so that their distance is
maximized thus minimizing their interaction energy. The
resulting mean distance between two Rydberg excitations,
known as the Rydberg blockade radius, depends on the density
of excitations. By increasing �, more Rydberg excitations
are accommodated, the blockade radius shrinks, and the
magnetization increases in steps giving rise to a plethora of
phases that are commensurate with the periodicity of the
optical lattice potential. The magnetization finally vanishes
at sufficiently large detuning � for the antiferromagnetic
phase . . . ↓↑↓↑↓↑ . . . , where every second atom is excited.
Generally, the commensurate phases break a certain Zp

symmetry of the optical lattice, where p is the periodicity
of the spin configuration. For example, the antiferromagnetic
state repeats itself after every second site so that it breaks an
Ising, i.e., a Z2, symmetry. The devilish aspect of the phase
diagram is due to its fractal appearance as phases of all possible
commensurabilities with the optical lattice are realized on the
classical level.

The presence of a finite � and J⊥ induce quantum
fluctuations, which eventually melt the commensurate phases,
and one enters the realm of commensurate-incommensurate
transitions, floating phases, and dislocation-mediated melting
intensively studied at the dawn of the 1980s.31,32 We are going
to apply the results and techniques developed at that time to the
present context. In particular, throughout this work we apply
intensively the strategy of Villain and Bak42 as used in their
analysis of the axial next-nearest-neighbor Ising (ANNNI)
model. First, we consider the classical Hamiltonian close to
one of its phase transitions and analyze the effect of a finite
hopping J⊥ perturbatively still keeping � = 0. This allows to
derive an effective low-energy Hamiltonian for excitations of
the Rydberg crystal—domain walls—that represents a proper
fixed-point theory in the renormalization group sense. We are
then able to apply a standard stability analysis of this effective
theory with respect to quantum fluctuations induced by a
finite Rabi frequency �, which creates topological defects,
i.e., dislocations. This strategy allows us to derive the phase
diagram in the limit � 
 J⊥. We then combine this knowledge
with known results in order to derive the topology of the full
phase diagram of the Hamiltonian (3), in particular, in the
experimentally relevant regime � � J⊥.

The rest of the article is organized as follows. In Sec. IV,
we consider the various gapped commensurate phases where
the Rydberg crystal is commensurate with the optical lattice
and construct an exact critical theory for the transitions
between those crystalline states. In Sec. V, we consider the
Hamiltonian (3) in the continuum limit and discuss the melting
of the incommensurate floating phase. We conclude with a
summary and discussion in Sec. VI. In Appendix A, we shortly
discuss the superfluid regime, which has been addressed in
a recent experiment on Rydberg atoms in a 1D lattice.29 In

Appendix B, we establish the effective particle formulation
used in the text to describe arbitrary transitions between
classical commensurate phases.

IV. COMMENSURATE RYDBERG-CRYSTAL PHASES

In this section, we derive the topology of the phase diagram
of the Hamiltonian (3) in the (�,�) plane with an emphasis
on the various Rydberg crystal phases that are commensurate
with the optical lattice.

In order to approach the problem and to circumvent the
complexity of the Hamiltonian (3) at its classical level � =
J⊥ = 0 where it possesses a fractal phase diagram,41 it is useful
to consider first a class of auxiliary Hamiltonians of the same
form as Eq. (3) but with the infinite-range interaction, J|r|, of
Eq. (2) replaced by an interaction J

(n)
|r| of finite range only,

J
(n)
|r| > 0 if 1 � |r| � n,

J
(n)
|r| = 0 if |r| > n.

(6)

This finite-range interaction should have the property that it
obeys the convexity condition, J (n)

|r−1| + J
(n)
|r+1| > 2J

(n)
|r| for each

n and that it coincides with J|r| in the limit n → ∞. We
start our analysis by considering only interactions between
close neighbors with small n, and afterward we discuss the
modifications obtained by including interactions of higher
order by increasing n. This allows us to develop the topology
of the phase diagram step by step. The full Hamiltonian is
obtained in the limit n → ∞, but it turns out that for a finite
hopping J⊥ the topology of the phase diagram in the (�,�)
plane becomes insensitive to interaction components J|r| at a
sufficiently large distance r so that J|r| 
 J⊥.

The case n = 1, when the Rydberg interaction is limited
to nearest-neighbors only, J

(1)
|r| = JRδ|r|,1, is special and well

known, so we summarize here only the result. In this case, the
Hamiltonian reduces to a standard strongly anisotropic spin
chain in a strong longitudinal and a weak transversal magnetic
field. In the classical limit � = J⊥ = 0, there are just two
ground states, the antiferromagnetic state . . . ↑↓↑↓↑ . . . for
� > 0 and the fully polarized state . . . ↓↓↓↓↓ . . . for � < 0.
At the transition � = 0, the classical Hamiltonian reduces
to Eq. (5) with a macroscopically degenerate ground-state
manifold. The corresponding zero-point entropy, however, is
immediately quenched by an infinitesimal hopping J⊥ and the
single transition is replaced by an extended Luttinger liquid
phase bounded by two Lifshitz transitions.43 The Luttinger
liquid phase, however, is itself unstable with respect to a finite
transverse field �, and it gives way to a single line of Ising
transitions in the (�,�) plane.44

This picture, however, changes qualitatively upon including
Rydberg interactions beyond nearest neighbors. In Sec. IV A,
we consider the spin chain with nearest- and next-nearest
neighbor interactions before discussing the long-range inter-
action in Sec. IV B.

A. Anisotropic spin-chain with nearest and
next-nearest-neighbor interaction

The auxiliary Hamiltonian with the infinite-range interac-
tion replaced by J

(2)
|r| of Eq. (6), i.e., with nearest- J1 and
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next-nearest-neighbor interaction J2 reads

H =
∑

j

∑
r=1,2

Jr

(
Sz

j + 1/2
)(

Sz
j+r + 1/2

)

−J⊥
2

∑
j

(
S+

j S−
j+1 + h.c.

) − �
∑

j

Sz
j + �

∑
j

Sx
j . (7)

It will be important that the interactions obey the condition of
convexity J1 > 2J2 > 0, see Eq. (2). In this section, we discuss
in detail the phase diagram of Eq. (7) in the limit �,|�|,J⊥ 

J1. We start with a discussion of the classical ground states
at � = J⊥ = 0 and identify two phase transitions. We then
analyze how the phase transitions are influenced by a finite J⊥
and � and present the resulting phase diagram.

The discussion of this section is closely related to work by
Fendley, Sengupta, and Sachdev.49 In fact, the Hamiltonian (7)
in the limit J⊥ → 0 and J1 → ∞ reduces to the one studied in
Ref. 49. However, the presence of a finite J⊥ in our case
facilitates some of the analysis and allows to present the
physics in a transparent manner.

1. Classical analysis for � = J⊥ = 0

At � = J⊥ = 0, there are three classical ground states as a
function of the longitudinal field � that are separated by two
classical phase transitions located at

�c1 = 0 and �c2 = 3J2. (8)

The classical ground states are the fully polarized state
. . . ↓↓↓↓↓ . . . at � < �c1 with magnetization m = −1/2,
the state . . . ↓↓↑↓↓↑↓↓↑ . . . with periodicity p = 3 and
magnetization m = −1/6 for intermediate fields �c1 < � <

�c2, and the antiferromagnet . . . ↓↑↓↑↓↑ . . . with periodicity
p = 2 and magnetization m = 0 for � > �c2. The two states
with period p break a Zp symmetry of the optical lattice; the
state with m = −1/6 is a Z3 symmetry-broken state and the
antiferromagnetic state breaks an Ising Z2 symmetry.

At both transitions, there is a finite residual entropy at zero
temperature. For example, the lowest energy excitation of the
antiferromagnet is a single pair of two adjacent down spins, i.e.,
a domain wall or a spinon . . . ↑↓↑↓↓↑↓↑ . . . . The excitation
energy of these domain walls vanishes at the second critical
field �c2 so that they proliferate, resulting in a large degeneracy
of the ground state at this critical point. The domain walls are
strongly interacting as they must be separated at least by a
single down spin. The corresponding entropy per site can be
evaluated by the transfer matrix method, which gives in the
thermodynamic limit L → ∞

S = 1
2 ln x = 0.28119 . . . at � = �c2, (9)

where x is the real root of the cubic equation −1 + x − 2x2 +
x3 = 0. Similarly, the lowest energy excitation of the fully
polarized state is a single up spin . . . ↓↓↓↑↓↓↓ . . . whose
excitation energy vanishes at �c1 = 0. At the critical field
�c1, all states with spins up separated at least by two down
spins are degenerate leading to a residual entropy

S = 1
2 ln x = 0.38224 . . . at � = �c1 = 0, (10)

where x is the real root of the equation −1 − 2x − x2 + x3 =
0.

... ↓↑↓↑↓↑ ...... ↓↓↓↓↓ ... ... ↓↓↑↓↓↑↓↓↑ ...

J⊥

ΔΔc2Δc1 = 0

K = 1 K = 1
9 K = 1

9 K = 1
4

FIG. 1. (Color online) Phase diagram in the (�,J⊥) plane of the
auxiliary Hamiltonian (7) at � = 0. A finite J⊥ gives rise to Luttinger-
liquid phases (shaded areas) emanating from the classical transition
points at �c1 = 0 and �c2 = 3J2. The spin configurations indicate
the classical ground states in the three phases with magnetizations
m = −1/2, m = −1/6, and m = 0 per site, respectively. The values
of the Luttinger parameter K at the four Lifshitz transitions given in
the figure is derived in the text.

In the presence of a finite J⊥, the excitations acquire kinetic
energy and each single classical transition is replaced by two C-
IC transitions enclosing an extended floating Luttinger liquid
phase (see Fig. 1). We first discuss these transitions close to the
second critical field �c2 and afterwards the ones close to �c1.

2. Transition at �c2

We first focus on the transition at �c2 and study the
influence of a finite hopping J⊥ that leads to an extended
Luttinger-liquid phase. Afterward, the stability of these phases
is analyzed with respect to a finite driving �.

(a) Effective Hamiltonian for small J⊥ > 0 and � = 0. At
the classical transition located at �c2, the ground state changes
its period from p = 2 to p = 3. Generally, the unit cell of a
commensurate state with periodicity p involves p spins that we
denote as up, for example, up =↓↑ for p = 2 and up′ =↓↓↑
for p′ = 3. Near the classical transition between two adjacent
commensurate phases, we can limit ourselves to the degenerate
states with the successive occurrence of unit cells of the p = 2
and p′ = 3 states only, e.g., . . . u2u2u3u2u3u3 . . . . The border
between two different unit cells corresponds to a domain wall.
In order to capture the meandering of domain walls, we follow
Villain and Bak42,50 and introduce fictitious particles living on
a fictitious lattice to describe the commensurability transition.
We associate the unit cell u2 with an empty site and the unit
cell u3 with an occupied site so that the above sequence of unit
cells is identified with . . . 001011 . . . . The number of particles
is denoted as N and the number of empty sites as Ne so that
L = 2Ne + 3N , where L is the length of the chain. The number
of fictitious particles is bounded by 0 � N � L/3 and the
length of the fictitious lattice is Lf = Ne + N = (L − N )/2.
The magnetization per site is a function of N and given by
m = −N/(2L) ranging between −1/6 � m � 0.

At the classical transition, all states with 0 � N � L/3 are
degenerate. We can evaluate the resulting entropy S = 1

L
ln �s ,

where �s is the total number of available states,

�s =
L/3∑
N=0

(
L−N

2

)
!

N !
(

L−N
2 − N

)
!
, (11)

where each term in the sum is just the number of arrange-
ments of N particles on Lf = (L − N )/2 sites. This exactly
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reproduces Eq. (9) in the limit L → ∞. Note that we are
ignoring here boundary effects that depend on the employed
boundary conditions and are negligible in the thermodynamic
limit.

A finite J⊥ allows the particles to propagate on the fictitious
lattice. The effective Hamiltonian describing this propagation
of domain walls is, in the lowest order in J⊥, just the tight-
binding model for hard-core bosons

Heff =
Lf∑
i=1

[
−J⊥

2
(a†

i ai+1 + a
†
i+1ai ) + � − �c2

2
a
†
i ai

]
,

(12)

with the hopping amplitude J⊥/2. All states must obey
the hard-core constraint a

†
i ai � 1. The effective chemical

potential is obtained by realizing that each particle carries the
magnetization −1/2 and, in addition, that at the critical field
� = �c2 for J⊥ = 0 the energy is independent of the number
of particles N .

The ground-state energy in the presence of N particles is
easily evaluated,

E = N
� − �c2

2
− J⊥

N/2∑
n=−N/2

cos

(
2π

Lf

n

)
. (13)

Using N = −2Lm, one obtains the magnetic energy per site,
ε = E/L, as a function of m that reads in the limit L → ∞

ε(m) = −m(� − �c2) + J⊥
2π

(1 + 2m) sin

(
4πm

1 + 2m

)
. (14)

Minimizing ε(m) with respect to the magnetization −1/6 �
m � 0, one obtains the magnetic equation of state ∂ε/∂m =
0. From the second derivative, one gets the differential
susceptibility χ−1 = ∂2ε/∂m2,

χ = (1 + 2m)3

8πJ⊥ sin
(−4πm

1+2m

) . (15)

The classical jump of the magnetization from zero magneti-
zation to m = −1/6, implying an infinite susceptibility at the
classical transition, is smoothened out by the finite hopping
J⊥. Instead, the classical transition is replaced by two Lifshitz
transitions at the fields � = �±

c2 with

�+
c2(� = 0) = �c2 + 2J⊥, (16)

�−
c2(� = 0) = �c2 − 3J⊥. (17)

Close to these critical fields the magnetization changes with
the square-root cusps typical for C-IC transitions,45,46

m = − 1
4π

√
�+

c2−�

J⊥
(�+

c2 − �) + O
(

�+
c2−�

J⊥

)
, (18)

m = − 1
6 + 1

9π

√
2(�−�−

c2)
3J⊥

(� − �−
c2) + O

(
�−�−

c2
J⊥

)
. (19)

For fields �−
c2 < � < �+

c2, the gas of domain walls is
compressible and forms a Luttinger liquid, whose properties
we consider in the following.

(b) Luttinger liquid theory for J⊥ > 0 and its stability with
respect to � perturbations. The low-energy properties of the

effective Hamiltonian (12) in the magnetic field range �−
c2 <

� < �+
c2 is captured by the Luttinger liquid theory

HLL = v

2π

∫
dx

[
K(∂xθ )2 + 1

K
(∂xφ)2

]
, (20)

where the bosonic field φ represents fluctuations in the magne-
tization, δm ∼ − 1

π
∂xφ, and [ 1

π
∂xφ(x),θ (x ′)] = −iδ(x − x ′),

the two parameters v and K are to be determined. The
velocity v is given by the energy spacing for a finite-size
system �L = 2π

L
v. From the Hamiltonian (12), we get �L =

2πJ⊥
Lf

sin(Nπ/Lf ) and after expressing N and Lf in terms of
the magnetization we obtain

v = 2J⊥
1 + 2m

sin
−4πm

1 + 2m
. (21)

From the magnetic susceptibility (15) and the relation51

χ = K/(πv) we obtain the important result for the Luttinger
parameter:

K = (
m + 1

2

)2
. (22)

As the upper boundary �+
c2 of the Luttinger-liquid region

is approached, the magnetization vanishes and the Luttinger
parameter assumes the value K = 1/4. Close to the lower
boundary �−

c2, the magnetization becomes m = −1/6 and thus
K = 1/9, see also Fig. 1. The values of the Luttinger parameter
close to �±

c2 are consistent with the general expectations for
Lifshitz transitions into commensurate states of periodicity
p that are stabilized by umklapp scattering processes of p

spinons yielding K = 1/p2.51

Physically, the Luttinger-liquid phase corresponds to an
incommensurate, floating crystalline state of Rydberg excita-
tions. It has no true long-range order but algebraically decaying
crystalline correlations51

〈Sz(x)Sz(0)〉 − m2 ∼ cos [π (1 + 2m)x]

|x|2K
. (23)

Now we are in a position to analyze the effect of the
transversal magnetic field �. Within the Luttinger liquid
framework, the transversal field gives rise to the perturbation51

Hpert = �√
2πa

∫
dx cos(θ ), (24)

where a is the optical lattice spacing. Note that the interaction
J⊥ is ferromagnetic so that the low-energy fluctuations of the
Sx operator are nonstaggered. The origin of this perturbation
becomes apparent by realizing that the conjugate fields φ(x)
and θ (x) can be viewed as the polar and azimuthal angles
of classical vectors representing the spins. The transverse
field term (24) thus wants to lock the azimuthal angles at
θ = 0 or π , depending on the sign of �, such that all spins
point in x direction, as expected. Using standard scaling
arguments,51 one finds that the perturbation (24) is relevant
in the renormalization group (RG) sense if the Lutttinger
parameter exceeds a critical value K � 1/8. Using Eq. (22),
this implies for the magnetization m � −(2 − √

2)/4 and,
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finally, � � �KT
c2 where the critical field is determined by

the magnetic equation of state:

�KT
c2 = �c2 − J⊥

[
sin(2

√
2π )

π
− 2

√
2 cos(2

√
2π )

]

= �c2 − J⊥ × 2.5908 . . . (25)

So the Luttinger liquid generated by J⊥ is only stable very
close to the first Lifshitz transition at �−

c2 in a small field range
obeying −3 < (� − �c2)/J⊥ < −2.5908 . . . . At the critical
field �KT

c2 , the operator (24) leads to a Kosterlitz-Thouless
transition into an incommensurate gapped state. This gapped
phase extends to finite �, and the phase boundary in the (�,�)
plane starts at �KT

c2 linearly with �, which follows from the
separatrix of the Kosterlitz-Thouless RG flow.33

Effective Hamiltonian for small finite J⊥ and �. It is
instructive to consider the modification of the effective
model (12) due to the transversal magnetic field explicitly
with the help of a Schrieffer-Wolf transformation. Including
corrections up to first order in J⊥ and second order in �, i.e.,
O(J⊥,�2), the low-energy Hamiltonian assumes the form

Heff =
Lf∑
i=1

[−t(a†
i ai+1 + a

†
i+1ai ) − μa

†
i ai + Ua

†
i ai a

†
i+1ai+1],

(26)

where we remind that the size of the fictitious lattice Lf =
Ne + N = (L − N )/2 depends on the number of particles
N = ∑

i a
†
i ai . The hopping amplitude t at � = �c2 is given by

t = J⊥
2 + (

�
2

)2
(

1
J1−2J2

+ 1
2J2

)
. (27)

To obtain the chemical potential μ and the interaction U ,
it is useful to consider the correction to the energy per site,
δε = δE/L, of various specific states in orderO(�2,� − �c2)
in the absence of any hopping t ,

δε...0000... = −
(

�

2

)2 1

2

(
1

2J1 − 3J2
+ 1

J2

)
, (28)

δε...1111... = � − �c2

6
−

(
�

2

)2 1

3

(
2

J1 − 2J2
+ 1

3J2

)
, (29)

δε...010101... = � − �c2

10
−

(
�

2

)2 1

5

×
(

1

2J1 − 3J2
+ 1

J2
+ 2

J1 − 2J2

)
. (30)

Equation (28) gives the correction to the vacuum with no
particles . . . 0000 . . . ≡ . . . u2u2u2u2 . . . , where u2 =↓↑.
The energy correction δε...010101... for the state with particles
at every second site can be used to compute the chemical
potential; for Ne = N , which implies N = L/5, we have
the relation −μN = (δε...010101... − δε...0000...)L. With this we
obtain for the chemical potential

μ = �c2 − �

2
+ 5 (δε...0000... − δε...010101...)

= �c2 − �

2
− �2

8

(
3

2J1 − 3J2
− 4

J1 − 2J2
+ 3

J2

)
.

(31)

The interaction U can be obtained by relating the energy
corrections to the vacuum and to the state with particles at
every site, δε...1111...L = δε...00000...L + N (−μ + U ) where
the number of particles is now maximal, i.e., N = L/3. This
yields an attractive interaction given by

U = μ + 3(δε...1111... − δε...0000...) = −
(

�

2

)2 1

3J2
. (32)

Alternatively, we can consider the effective Hamiltonian
after a particle-hole transformation where holes are created by
h
†
i within the fully occupied chain . . . 111111 . . . ,

Heff =
Lf∑
i=1

[−te(h†
i hi+1 + h

†
i+1hi ) − μeh

†
i hi

+Ueh
†
i hi h

†
i+1hi+1]. (33)

Again, all states must obey the hard-core constraint h
†
i hi �

1. The hopping amplitude is the same as for the parti-
cles te = t . However, the effective chemical potential μe

and the interaction Ue for the holes are now obtained
from the relations −μeNe = (δε...010101... − δε...1111...)5Ne and
δε...0000...2Ne = δε...11111...2Ne + Ne(−μe + Ue), respectively.
In particular, this yields the relation μe = −2μ/3 + 5U/3.

At this order of perturbation theory, the model (26) still
exhibits two Lifshitz transitions. To obtain the upper critical
field we can neglect the interaction and simply set 2t + μ = 0,
yielding

�+
c2(�) = �c2 + 2J⊥

+
(

�

2

)2 (
− 3

2J1 − 3J2
+ 8

J1 − 2J2
− 1

J2

)
.

(34)

The Lifshitz transition at the lower critical field takes place if
2te + μe = 0, giving

�−
c2(�) = �c2 − 3J⊥

−
(

�

2

)2 (
3

2J1 − 3J2
+ 2

J1 − 2J2
+ 13

3J2

)
.

(35)

However, the picture changes qualitatively if corrections of
order O(J⊥�) or of order O(�3) are included as processes are
generated in the effective description that do not conserve the
number of particles. For example, applying three spin flips, two
effective particles can be created out of three adjacent holes,
so that the state . . . ↓↑↓↑↓↑ . . . = . . . 000 . . . is converted
to . . . ↓↓↑↓↓↑ . . . = . . . 11 . . . . In the dense limit close to
�−

c2 where there are only few holes in the ground state, this
process corresponds to the additional operator hihi+1hi+2 in
the Hamiltonian that destroys three holes. This operator is
irrelevant and the Lifshitz transition near �−

c2 remains unaf-
fected. In the dilute limit, however, this process corresponds
to the additional operator a

†
i a

†
i+1 that creates two particles,

which is relevant and converts the Lifshitz transition at �+
c2

into an Ising transition. This is analogous to the mechanism
at play close to the multicritical point in the ANNNI model
where also an Ising transition emerges.42,52 As a result, there
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is also an additional transition of Kosterlitz-Thouless type at
�KT

c2 , with �−
c2 < �KT

c2 < �+
c2, between a gapped ground state

and the Luttinger liquid as discussed in Sec. IV A 2. In order to
evaluate the correction to �KT

c2 in second order in �, however,
the interacting Hamiltonian (26) must be solved.49

3. Transition at �c1

We now turn to the transition at �c1 between the fully po-
larized state and the commensurate phase with magnetization
m = − 1

6 , see Fig. 1. Again, we first study the influence of a
finite hopping J⊥ and afterward we perform a stability analysis
with respect to � perturbations.

(a) Effective Hamiltonian for small J⊥ > 0 and � = 0. We
can repeat the reasoning of the previous section and derive an
effective Hamiltonian also close to the transition at �c1 = 0.
Whereas the ground state for �c1 < � < �c2 has periodicity
p = 3 with unit cell u3 =↓↓↑, the ground state for � < 0 is
fully polarized. The unit cell of the latter is trivial as it consists
of a single spin only, u1 =↓. At the classical transition � = 0
for J⊥ = � = 0, there is again a class of degenerate ground
states that correspond to the successive occurrence of the two
unit cells u3 and u1, e.g., . . . u3u3u1u3u1u1 . . . . We introduce
effective particles and associate u1 with an empty and u3

with an occupied site so that the above sequence becomes
. . . 110100 . . . . The length of the chain is related to the number
of particles N with 0 � N � L/3 and the number of empty
sites Ne by L = Ne + 3N . The particles live on a fictitious
lattice of size Lf = Ne + N = L − 2N and the magnetization
per site is given by m = −(Ne + N )/(2L) = N/L − 1/2 that
varies between −1/2 � m � −1/6.

In the classical limit, there is again a macroscopic degen-
eracy at the critical field �c1 with a finite entropy per site
S = 1

L
ln �s ,

�s =
L/3∑
N=0

(L − 2N )!

N !(L − 2N )!
, (36)

where each term corresponds to the number of arrangement
of N particles on Lf sites. This reproduces the entropy of
Eq. (10).

A finite J⊥ results in the hopping of particles described by
the tight-binding model of hard-core bosons,

Heff =
Lf∑
i=1

[
−J⊥

2
(a†

i ai+1 + a
†
i+1ai ) − (� − �c1)a†

i ai

]
,

(37)

where the chemical potential is obtained with the same
reasoning as for Eq. (12). Repeating the steps of the previous
analysis in Sec. IV A 2, we obtain for the magnetic energy per
site

ε(m) = −m(� − �c1) − 2J⊥
π

cos
( π

4m

)
. (38)

Minimization with respect to m gives the magnetic equation
of state, ∂ε/∂m = 0, that relates � to the magnetization m

in the range −1/2 < m < −1/6. For the susceptibility χ−1 =

∂2ε/∂m2, we obtain

χ = 8m3

J⊥π cos
(

π
4m

) . (39)

The hopping J⊥ smoothens out the classical transition and
gives rise to two Lifshitz transitions located at

�−
c1(� = 0) = −J⊥ and �+

c1(� = 0) = 3J⊥, (40)

close to which the magnetization again varies as a square root
of � − �−

c1 and �+
c1 − �, respectively.

(b) Luttinger liquid theory for J⊥ > 0 and its stability
with respect to � perturbations. Between the critical fields
�−

c1 < � < �+
c1, the magnetization is compressible and its

fluctuations are described by a Luttinger liquid, see Eq. (20).
In the following, we determine the velocity v and Luttinger
parameter K . The velocity is again obtained from the finite-
size spectrum of Eq. (37), �L = 2πv/L, giving

v = J⊥
2m

cos
( π

4m

)
. (41)

With the help of the relation for the susceptibility51 χ =
K/(πv), we obtain the important result for the Luttinger
parameter

K = (2m)2. (42)

The Luttinger parameter varies within the compressible regime
between K = 1/9 close to the upper critical field �+

c1, where
m = −1/6 and K = 1 close to �−

c1 where the magnetization
is saturated, m = −1/2 (see Fig. 1).

A finite transversal field � gives rise to the operator (24) that
becomes relevant for K � 1/8 implying for the magnetization
the bound m � −1/

√
32 for the stability of the Luttinger

liquid. Using the equation of state, we obtain the corresponding
bound for the field � � �KT

c1 with

�KT
c1 = −2J⊥

π
[cos(

√
2π ) +

√
2π sin(

√
2π )]

= J⊥ × 2.89583 . . . . (43)

The Luttinger liquid is only stable within a very narrow
range 2.8958 . . . < �/J⊥ < 3. At the critical field �KT

c1 ,
the operator (24) results in a Kosterlitz-Thouless transition
destroying the Luttinger liquid.

(c) Effective Hamiltonian close to �+
c1 for small �,J⊥ > 0.

In the following, we discuss corrections to the effective
Hamiltonian (37) that are generated by a finite transversal
field �. In the presence of �, the number of fictitious particles
is not conserved anymore already in linear order in �. In
the dilute limit close to �−

c1, the transversal field � can
create particles by flipping a single spin only, i.e., it can
produce u3 unit cells within the fully polarized state . . . ↓↓↓↓
. . . = . . . u1u1u1u1 . . . . In first order in �, an operator of the
form a

†
i is generated in the Hamiltonian that is relevant and

immediately destabilizes the Luttinger liquid in agreement
with Eq. (43). In the dense limit close to �+

c1, on the other
hand, the transversal field can convert in linear order in �

a particle, i.e., a u3 =↓↓↑ unit cell by down-flipping the last
spin into three holes. This process corresponds to an additional
term in the Hamiltonian that consists of the product of three
hole-creation operators h

†
i h

†
i+1h

†
i+2. This operator is irrelevant
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in the limit of small densities of holes, and the Luttinger liquid
survives in a finite sliver close to �+

c1.
This actually allows to determine the � dependence of the

phase boundary �+
c1 in the limit � → 0. It can be determined

by solving the Schrödinger equation for a single hole in the
background of particles in lowest order in �. The excitation
energy of the hole vanishes at �+

c1. Equivalently, we can
consider the effective single-hole Hamiltonian that captures
the Lifshitz transition:

Hcr
eff =

Lf∑
i=1

[−te(h†
i hi+1 + h

†
i+1hi ) − μeh

†
i hi ]. (44)

The three hole-creation operators generated in linear order in
� and the interaction between holes can be neglected as they
are irrelevant in the RG sense close to the Lifshitz transition.
The hopping and the chemical potential in lowest order in �

can be evaluated similar as in the previous section:

te = J⊥
2

+
(

�

2

)2 (
1

�
+ 1

J1 − �

)
, (45)

μe = −�

3
−

(
�

2

)2 (
1

3�
− 2

J1 − �
− 1

2J2 − �

+ 8

3(J1 + J2 − �)

)
. (46)

Setting 2te + μe = 0, we obtain the critical field �+
c1 up to

order O(J⊥,�2/J⊥):

�+
c1 = 3J⊥ + 5�2

12J⊥
, (47)

where we neglected corrections of order �2/J2 and �2/J1.

4. Phase diagram in the (�,�) plane

We started our analysis in Sec. IV A 1 with the classical limit
of the Hamiltonian (7), J⊥ = � = 0, where two transitions as
a function of � were identified. A finite hopping J⊥ replaces
each of these two classical transitions with two extended
gapless phases (see Fig. 1) where the fluctuations of the
magnetization are described by the Luttinger liquid theory.
As a consequence, at � = 0 and J⊥ > 0, one crosses four
Lifshitz transitions as a function of increasing �. This picture
is, however, modified if a finite � is taken into account as
shown in Fig. 2, which summarizes the phase diagram in the
(�,�) plane at some small but finite J⊥.

The � axis in Fig. 2 corresponds to a horizontal cut through
the phase diagram of Fig. 1. The Luttinger liquid phases (blue
shaded) that are generated by the finite hopping J⊥ and extend
for � = 0 between �−

ci < � < �+
ci with i = 1,2, are now

quenched by the finite driving � > 0 to only small regions
close to �+

c1 and �−
c2. (The extension of the Luttinger phases is

exaggerated in the figure in order to visualize them.) Both small
regions surround a commensurate phase with a broken Z3

symmetry, which is accompanied by a magnetization plateau
at m = −1/6. The C-IC transition between this commensurate
phase and the incommensurate Luttinger liquids is of Lifshitz
type, i.e., they are in the standard C-IC universality class45,46

so that the magnetization m(�) close to these transitions
changes with the characteristic square root cusps. The values

L

P3

L

KT

Δ

Ω

KT

I

0 Δ−
c2 Δ+

c2Δ+
c1Δ−

c1

0

Z3 Z2

FIG. 2. (Color online) Sketch of the phase diagram in the (�,�)
plane of the auxiliary Hamiltonian (7) at a small but finite hopping
J⊥ with two symmetry-broken phases (yellow shaded). A broken Z2

phase is bounded by an Ising transition (I ) and a broken Z3 phase is
enclosed by two Lifshitz (L), i.e., C-IC transitions except at a single
point where the transition is in the Z3 Potts universality class (P3).
The Luttinger-liquid phases (blue shaded) are confined to tiny regions
around the Z3 phase and are separated from the incommensurate
gapped phase by a Kosterlitz-Thouless transition (KT).

of the Luttinger parameter at these transitions is K = 1/9,
see Eqs. (22) and (42). We evaluated the phase boundaries
�+

c1(�) and �−
c2(�) in lowest order in � and J⊥, see Eqs. (35)

and (47), respectively. The Luttinger liquids themselves are
bounded by two Kosterlitz-Thouless (KT) transitions into
gapped incommensurate phases. At these transitions, the
Luttinger parameter reaches the value K = 1/8 at which the
operator Sx

i driving the transitions becomes relevant. The
positions �KT

ci (�) of the two KT transitions, where i = 1,2, in
the limit � → 0 were evaluated in Eqs. (25) and (43). From
the RG flow of the KT transition it follows that the phase
boundaries start linearly: �KT

ci (�) − �KT
ci (0) ∼ �.

We did not calculate the phase diagram for larger values
of �. From previous works treating similar problems,47–49 the
presence of a special point, indicated by P3 in Fig. 2, is known
where a direct transition between the broken Z3 phase and the
gapped IC phase takes place, which is in the Z3 Potts univer-
sality class. We assumed here that the two Luttinger liquids
meet at P3.53 In the limit J1 � J2, the position of this quantum
phase transition can be estimated to be at � ∼ � ∼ J2.49

Finally, at larger � the gapped IC phase is separated from
the Z2 broken phase by an Ising transition (I) whose boundary
�+

c2(�) was evaluated in Eq. (34).
We considered the phase diagram for a finite J⊥ and

evaluated the phase boundaries perturbatively in �. In the
limit J⊥ → 0, the phase boundaries �−

c2, �KT
c2 , and �+

c2 will
merge for � → 0, see Eqs. (35) and (34). It was demonstrated
explicitly in Ref. 49 that in the limit J⊥ → 0, the Luttinger-
liquid phase bounded by �−

c2 and �KT
c2 nevertheless survives

for � > 0. Note that the evaluation of the phase boundary
�+

c1(�) in Eq. (47) is only controlled if � 
 J⊥ and the limits
� → 0 and J⊥ → 0 do not commute.

B. Anisotropic spin chain with long-range interactions

In the last section, we demonstrated that the presence
of an additional next-neighbor interaction gives rise to an
additional broken Z3 phase that is surrounded by a floating
Luttinger-liquid phase. Now we consider the additional modi-
fications caused by including longer range interactions. We can
anticipate that an interaction between further distant neighbors
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stabilizes commensurate phases of higher periodicities p

breaking Zp symmetries of the lattice.
To prepare the basis for the following discussions, we

first generalize the treatments of Secs. IV A 2 and IV A 3
to classical transition points between two arbitrary adjacent
commensurate phases and study the influence of a finite
hopping J⊥. Afterward we discuss the resulting modifications
to the phase diagram.

1. General transitions between commensurate phases at finite
J⊥ > 0 and � = 0

If a Hamiltonian with the finite-range interaction (6) is
considered with n > 2, higher order commensurate phases
will be stabilized on the classical level. Here, following
closely Sec. IV A, we consider the influence of a finite
hopping J⊥ on the classical transition between two arbitrary
adjacent commensurate phases with periodicity p and p′ and
magnetization mp and mp′ , respectively.

We assume mp < mp′ , and we will also use the relation
between magnetizations and periodicities:

mp′pp′ = 1 + mppp′. (48)

The latter can be derived from results of Bak and Bruinsma.41

They demonstrated that as a function of increasing �,
commensurate phases are successively stabilized such that
their fraction q/p of up spins and thus their magnetization
mp = q/p − 1/2 increases monotonously. It is elementary to
show that for a given commensurate phase with a fraction q/p,
the adjacent phase with larger fraction q ′/p′ of up spins can
be found by solving the equation qp′ = pq ′ − 1 and choosing
the solution with largest p′. The choice for p′ is only bounded
by the range of the interaction, i.e., by p′ � n + 1 with n

of Eq. (6). Substituting the magnetizations for q and q ′, one
arrives at the above equation.

Near the classical transition, we can limit ourselves to
the degenerate states with the successive occurrence of unit
cells of the p and p′ states only, e.g., . . . upupup′upup′up′ . . . .
For a definition of these unit cells corresponding to arbitrary
fractions q/p and q ′/p′ and for a proof that the above limited
set of states becomes the degenerate ground-state manifold at
the classical transitions, see Appendix B. We again introduce
fictitious particles living on a fictitious lattice and associate
the unit cell up with an empty site and the unit cell up′

with an occupied site so that the above sequence of unit
cells is identified with . . . 001011 . . . . The number of particles
is denoted as N and the number of empty sites by Ne, so
that L = pNe + p′N with the length of the chain L. The
maximum number of fictitious particles is 0 � N � L/p′
and the length of the fictitious lattice is Lf = Ne + N =
[L − N (p′ − p)]/p. The magnetization per site is a function
of N and given by m = mp + N/(pL) ranging between
mp � m � mp′ .

At the classical transition, all states with 0 � N � L/p′
are degenerate. We can evaluate the resulting entropy S =
1/L ln �s , where �s is the total number of available states,

�s =
L/p′∑
N=0

[
L−N(p′−p)

p

]
!

N !
[

L−N(p′−p)
p

− N
]
!
, (49)

where each term in the sum is just the number of arrangements
of N particles on Lf = [L − N (p′ − p)]/p sites.

A finite J⊥ allows the particles to propagate on the fictitious
lattice. Note that adjacent unit cells with different periodicity,
up and up′ , can be exchanged by applying once the hopping
operator with amplitude J⊥, see Appendix B. So we obtain the
effective Hamiltonian describing the propagation of fictitious
particles in terms of a tight-binding model for hard-core
bosons,

Heff =
Lf∑
i=1

[
−J⊥

2
(a†

i ai+1 + a
†
i+1ai ) − � − �c

p
a
†
i ai

]
.

(50)

The chemical potential is obtained with the help of the relation
between the number of particles N and the magnetization m.
The resulting magnetic energy per site reads

ε(m) = −m(� − �c) + J⊥
π

[m(p − p′) + mp′p′ − mpp]

× sin

[
π (m − mp′)p′

m(p − p′) + mp′p′ − mpp

]
(51)

and has to be minimized with respect to m, ∂ε/∂m = 0, with
mp � m � mp′ . The finite J⊥ gives rise to a compressible
phase for fields � in the range

�c − pJ⊥ < � < �c + p′J⊥. (52)

The magnetization varies continuously within this range and
at both boundaries, a Lifshitz transition takes place. As before,
we can evaluate the susceptibility χ and with the help of the
velocity of the domain walls we derive the Luttinger parameter
within the compressible phase

K = [
(mp − m)p − (mp′ − m)p′]2

. (53)

With the help of Eq. (48), we obtain the value of the Luttinger
parameter close to the Lifshitz transition into a state with
periodicity p

KL = 1

p2
. (54)

This value validates that the commensurate phases are stabi-
lized by umklapp scattering of p spinons.51

2. Higher order commensurate phases for longer
range interactions

If a longer range interaction is considered, higher order
commensurate phases appear on the classical level.41 For
example, with the interaction J

(n)
|r| of Eq. (6) with n = 4,

there are already six classical ground states at J⊥ = � = 0
in the vicinity of � = 0. The positions of the phase transitions
between those states are given by41

�c1 = 0, �c2 = 5J4,

�c3 = 4J3 − 3J4, �c4 = 3J2 − 2J3,

�c5 = 3J2 − 2J3 + 5J4.

(55)

The sequence of these classical ground states is illustrated in
Fig. 3. The figure is not to scale: we exaggerated the extension
of phases with larger periodicities in order to visualize them.

085434-9



ERAN SELA, MATTHIAS PUNK, AND MARKUS GARST PHYSICAL REVIEW B 84, 085434 (2011)

− 1
10

0

−1
2

− 3
10

−1
4

−1
6

.. ↓↓↓ .. ↓↑

Δc1 Δc4Δc2 Δc5Δc3

↓↓↓↓↑

J⊥

Δ

↓↓↑↓↑↓↓↑↓↓↓↑

1
25

K = 1 1
16

1
4

1
9 1

25

1
9

m

FIG. 3. (Color online) Upper panel shows the magnetization as a
function of � of the classical auxiliary Hamiltonian with a finite-range
interaction J

(4)
|r| of Eq. (6). There are five classical transitions, see

Eqs. (55). The spin configurations in the lower panel illustrate the
structure of the unit cells of the periodic commensurate spin states.
A finite J⊥ gives rise to Luttinger-liquid phases (shaded regions)
[see Eq. (52)]; the value of the parameter K at their edges is given
by Eq. (54) and shown in the plot. The figure is not to scale: the
extension of phases with larger unit cells is exaggerated.

For � < �c1 = 0, the fully polarized state is the ground state
with magnetization m = −1/2. For positive �, commensu-
rate phases with various periodicities p are stabilized with
the concomitant breaking of a Zp symmetry. There are
single phases with periodicity p = 2, p = 3, and p = 4 with
magnetization m = 0, − 1/6, − 1/4, respectively, and two
phases with p = 5 and magnetizations m = −3/10 and m =
−1/10. The phases are arranged such that the magnetization as
a function of � monotonically increases in a stepwise fashion.
Each classical transition possesses a macroscopic degeneracy
given by Eq. (49) and thus a finite entropy that will be quenched
by a finite hopping J⊥. Furthermore, for a finite J⊥ as shown
in Fig. 3, each classical transition serves as the origin of a fan
containing a Luttinger-liquid phase with an extension given
by Eq. (52). The edges of each fan are Lifshitz transitions
where the Luttinger liquid parameter assumes the value given
in Eq. (54).

It is clear that for sufficiently large J⊥, Luttinger-liquid
phases attributed to adjacent classical transitions will start to
overlap (not shown). This has important consequence for the
full Hamiltonian (3) with the long-range interaction J|r|. As
the extension of a commensurate state with periodicity p on
the � = 0 axis is on the order of δ� ∼ Jp−1 + O(Jp) for
J⊥ = 0,41 it follows from Eq. (52) that for Jp−1 � J⊥ all higher
commensurate phases of period p will be washed out. This
means that if, e.g., J5 � J⊥, one crosses at � = 0 as a function
of � only ten Lifshitz transitions, as in Fig. 3, even if the
full long-range interaction J|r| of Eq. (2) is considered. This
simplifies the topology of the phase diagram in the (�,�)
plane of the full Hamiltonian (3) considerably.

3. Phase diagram

The phase diagram of the Hamiltonian (3) with the
long-range interaction J|r| in the (�,�) plane defined by
the Rabi frequency � and detuning � is shown in Fig. 4.
For simplicity and illustrative purposes, we assume a finite
hopping of Rydberg excitations on the order of J⊥ ∼ J5 so
that commensurate phases with periodicity p > 5 are not

I

Δc1 Δc2 Δc5

Z3Z4 Z2

KT

Δc3

Ω

K = 1
8

Δc4

0
Δ

FIG. 4. (Color online) Topology of the phase diagram for the
Hamiltonian (3) for a hopping J⊥ � J5 with commensurate phases
breaking Z2, Z3, Z4, and Z5 (two smallest lobes) symmetries.
Commensurate phases with higher periodicities are washed out.
The positions of the critical fields �ci are approximately given by
Eqs. (55). The figure is not to scale: the extension of the commensurate
phases with larger unit cells is exaggerated to make them visible.

realized. Note that in typical optical lattice experiments the
superexchange interaction is usually much smaller J⊥ ∼ Jp,
with p reaching up to 103 for deep optical lattices, see
discussion in Sec. VI B. The restriction to J⊥ ∼ Jp with p = 5
streamlines the discussion and captures all essential features
with obvious generalizations to larger p. Apart from a broken
Z2 Ising phase, there are broken Z3, Z4, and Z5 phases for
such parameters whose corresponding spin configuration was
illustrated already in Fig. 3. Up to corrections of order J5, the
critical fields �ci are given by Eq. (55).

The phases on the axis � = 0 follow from a vertical cut
through a phase diagram like that of the lower panel of Fig. 3
at a finite J⊥ � J5, so that only ten Lifshitz transitions are
crossed giving rise to five Luttinger liquid phases (blue shaded)
on the � = 0 axis. Repeating similar arguments as in Sec. IV A
about the stability of these Luttinger-liquid phases with respect
to the Sx

i operator associated with a finite �, we find that
the broken Z2 phase is bounded by an Ising transition line
denoted by I . The other broken Zp phases are surrounded by
a floating Luttinger-liquid phase that extends to finite � and
is itself bounded by a Kosterlitz-Thouless transition (KT). At
the latter transition, the Luttinger liquid parameter assumes
the universal value K = 1/8. We will discuss the physics and
the signatures of this KT transition in the next section in more
detail.

The topology of the phase diagram for larger � follows from
known results.47,48,54–56 First, the KT transition line close to
�c1 connects with the one close to the Ising transition so that
the Luttinger-liquid phase houses all gapped commensurate
phase of periodicity p > 2. Each broken Zp phase possesses a
special multicritical transition point where the magnetization
inside and outside the symmetry-broken phase is accidentally
commensurate. Whereas for the Z3 and Z4 phases, this point
connects directly with the polarized phase for large �, it is
located within the Luttinger-liquid phase for the Z5 phase (and
also for higher commensurate phases that appear for smaller
J⊥). For periodicity p = 3,4, this multicritical point is of Potts
type48,54,57 and for the higher commensurate phases, it is in
the KT universality class with K = 2/p2, i.e., the Luttinger
parameter at the multicritical point is larger by a factor of
two compared to the corresponding Lifshitz transition, see
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Eq. (54). The transitions from the commensurate phases into
the Luttinger liquid away from these special points are instead
Lifshitz transitions.45,46 The width δ� and height δ� of the
dome housing the Luttinger-liquid phases can be estimated to
be on the order of the next-nearest-neighbor coupling, δ� ∼
δ� ∼ J2 + O(J3).

V. DISLOCATION-UNBINDING TRANSITION OF THE
RYDBERG CRYSTAL

We now concentrate on the parameter regime of the phase
diagram where both Rabi frequency � and detuning � are
small compared to the hopping of Rydberg excitations, J⊥ �
�,|�|. We have seen in the last section that for increasing
�, a first commensurate state is stabilized for � = 0 only
at � ∼ J⊥, see Eq. (52). We, therefore, expect that in the
regime � 
 J⊥, a continuum description that neglects any
commensurability effects should be possible. Such a descrip-
tion is at the focus of this section. This allows us, in particular,
to elucidate the nature of the floating Luttinger-liquid phase
and, in particular, the Kosterlitz-Thouless transition with
Luttinger parameter K = 1/8.

We start with representing the spin operators with the
standard Jordan-Wigner fermions, {f †

i ,fj } = δij ,

S+
i = f

†
i e−iφi , S−

i = eiφi fi , (56)

Sz
i = n̂i − 1

2
= f

†
i fi − 1

2
, φi = −π

∑
j<i

n̂j , (57)

so that the Hamiltonian (3) becomes

H =
∑
j<�

J|j−�| n̂j n̂� − J⊥
2

∑
j

(f †
j fj+1 + H.c.)

−�
∑

j

(
n̂j − 1

2

)
+ �

2

∑
j

(f †
j e−iφj + eiφj fj ). (58)

We will again apply the strategy that we analyze first
the Hamiltonian for � = 0, and then consider the effect of
a finite Rabi frequency � perturbatively. For � = 0, we
can distinguish between two regimes: whereas for � < �∗,
with �∗ to be determined below, the Rydberg excitations
behave like a dilute weakly interacting gas, they form an
incommensurate Rydberg crystal for �∗ < � 
 J⊥.

A. Dilute weakly interacting Rydberg gas

Consider the Hamiltonian (58) for � = 0 at very small den-
sities of Rydberg excitations 〈n̂i〉 
 1. In this limit, there are
only few Rydberg excitations that hardly interact. Neglecting
this residual interaction, the dilute gas of Rydberg excitations
can be approximated by the single-particle Hamiltonian

Hsp =
∫

dx f †(x)

(−∂2
x

2m
− μ

)
f (x), (59)

where we have taken the continuum limit of small optical
lattice constant, a → 0, with fi → f (x)/

√
a and n̂ = f †f .

The mass m and the chemical potential μ simply follow from
the single-particle properties of Eq. (58),

1

m
= J⊥a2 and μ = � + J⊥. (60)

As the detuning � increases from negative values, the
excitation gap, −μ, for a single Rydberg excitation decreases
and vanishes at

�−
c = −J⊥. (61)

At � = �−
c , there is a Lifshitz transition: the Rydberg

excitations start to condense and form a Fermi sea. The critical
value (61) is in agreement with the results obtained in the last
section, see Eq. (52). The energy density as a function of the
density of Rydberg excitations nR is given by the standard
free-Fermi-gas expression:

ε(nR) = π2n3
R

6m
− μnR. (62)

For μ > 0, minimization with respect to the density gives nR =√
2mμ/π and thus the ground-state energy of the Rydberg gas

is

εRG = −2
√

2

3π

√
m μ3/2. (63)

The residual interaction among Rydberg excitations neglected
in Eq. (59) can in principle be extracted from the two-particle
sector of the lattice Hamiltonian (58). In the low-energy limit,
we expect it to have the form f †(x)[∂xf

†(x)]f (x)[∂xf (x)],
where the two gradients are required by the Pauli principle.
This gives rise to a correction to Eq. (62) on the order of
O(n4

R) that is subleading in the low-density limit nR → 0.
For small but finite densities, μ > 0, i.e., � > �−

c , the
small energy excitations on top of the Fermi sea are governed
by the Luttinger liquid theory [see Eq. (20)], characterized
by the velocity v and the Luttinger parameter K . They
obey here the relation v = vF /K (which follows form the
emergent Galilean symmetry), where vF = √

2μ/m is the
single-particle velocity, and the Luttinger parameter derives
from the compressibility ∂2ε(nR)/∂n2

R = vπ/K yielding

K = 1 − O(nR). (64)

The Luttinger parameter attains the value K = 1 close to the
Lifshitz transition, nR → 0, i.e., μ → 0+ in agreement with
Eq. (42) or, more generally, with Eq. (54).

A Luttinger liquid with such a large parameter K becomes
immediately unstable in the presence of a Sx perturbation that
is associated with the transverse field �. The operator Sx is
relevant for K > 1/8 [see Eq. (24)] and thus opens a gap. So
we obtain the result that in the small-density limit the gas of
Rydberg excitations is only gapless for � = 0 and gapped for
any finite �. We now turn to the situation of larger densities.

B. Incommensurate Rydberg crystal

If at � = 0 the detuning � is further increased, the density
of Rydberg excitations increases and the interaction becomes
more and more important. If � is sufficiently large, � � �∗,
the interaction J|r| finally cannot be treated perturbatively
anymore. In order to determine the crossover value �∗, we
start now from the opposite limit and treat perturbatively the
kinetic energy of Rydberg excitations, i.e., the coefficient 1/m

in Eq. (59).

085434-11



ERAN SELA, MATTHIAS PUNK, AND MARKUS GARST PHYSICAL REVIEW B 84, 085434 (2011)

1. Rydberg crystal for 1/m = � = 0

Consider the classical limit of the Hamiltonian (58). In the
continuum limit of small optical lattice constant a → 0, it
reads

Hclass = 1

2

∫
dxdy n̂(x)J|x−y|/an̂(y) − μ

∫
dx n̂(x), (65)

with μ given in Eq. (60). For μ > 0, there is a finite
number of particles, i.e., Rydberg excitations in the ground
state that interact via the long-range interaction J|r|. In the
thermodynamic limit L → ∞, an eigenstate with a fixed
density nR of Rydberg excitations is

|�RC〉 =
∞∏

j=−∞
S+(xj )|0〉, (66)

where we abbreviated S+(x) = f †(x)e−iφ(x). The state |�RC〉
depends on the positions, xj , that we assume to be ordered
such that . . . < xj−1 < xj < xj+1 < . . . .

The state |�RC〉 is an eigenstate of the density operator n̂(x)
with an eigenvalue given by the Dirac comb

n̂(x)|�RC〉 =
∞∑

j=−∞
δ(x − xj )|�RC〉. (67)

2. Ground-state energy of the Rydberg crystal

In the ground state |�(0)
RC〉, the Rydberg excitations are

equally spaced so that the positions xj of the wave function (66)
assume the values x

(0)
j = j/nR ,

|�(0)
RC〉 =

∞∏
j=−∞

S+(
x

(0)
j

)|0〉. (68)

The corresponding energy density ε(nR)|�(0)
RC〉 =

1
L
Hclass|�(0)

RC〉 is a function of nR and reads

ε(nR) =
( ∞∑

m=1

J|m|/(nRa) − μ

)
nR. (69)

Using Eq. (2) for the interaction, the energy simplifies to

ε(nR) = JRζ (α)(nRa)αnR − μnR (70)

that has to be minimized in order to determine nR , ∂ε/∂nR = 0,

nR = 1

a

[
μ

JR(α + 1)ζ (α)

]1/α

, (71)

with ζ the Riemann zeta function. Taking ε(nR) at its
minimum, one finally obtains the ground state energy for the
Rydberg crystal state,

εRC = − α

(α + 1)[(1 + α)ζ (α)]1/α

μ1+1/α

J
1/α

R a
, (72)

which is nonperturbative in the interaction JR .
Comparing the energies of the Rydberg gas, Eq. (63), and

the Rydberg crystal, we obtain for the crossover value of the
detuning:

�∗ = μ∗ + �−
c , with μ∗ ∼ J⊥

[
J⊥
JR

] 2
α−2

, (73)

and �−
c = −J⊥. Note that �∗ < 0 for J⊥ 
 JR and, conse-

quently, the incommensurate Rydberg crystal exists in a finite
regime �∗ < � < J⊥ between the Rydberg gas at smaller and
the commensurate Rydberg crystal at larger detuning �.

3. Degenerate perturbation theory in the kinetic term

The incommensurate Rydberg-crystal ground state of
Eq. (68) breaks the translational symmetry of the continuum
Hamiltonian. Consequently, quantum fluctuations induced by
a finite hopping J⊥ will give rise to phonon excitations.

Besides the simple shift in the expression for the chemical
potential μ, a finite J⊥ results in a kinetic energy with mass
m as defined in Eq. (60). Consider the crystalline wave
function in Eq. (66) where the positions of the excitations
xj differ from their equilibrium positions by uj = xj − x

(0)
j .

The eigenvalue problem in the presence of the kinetic term,
{Hclass + ∫

dxf †[−∂2
x /(2m)]f − E}|�RC〉 = 0, then reduces

to finding the solution of the first-quantized Hamiltonian

H = 1

2

∑
i �=j

J|xi−yj |/a − μNR +
∑

j

p2
j

2m
, (74)

where the momentum and position obey the canonical com-
mutation relation [xj ,pi] = iδij and NR = nRL.

Expanding the Hamiltonian in second order in the small
deviations uj , we obtain H ≈ Lε(nR) + Hphonon with the
energy ε(nR) of Eq. (70) and the phonon Hamiltonian

Hphonon =
∑

j

p2
j

2m
+ 1

4

∑
i �=j

J ′′
|i−j |/(nRa)

1

a2
(ui − uj )2, (75)

where J ′′
|r| = ∂2J|r|/∂|r|2. In order to obtain the asymptotics

at lowest energies, we consider a second continuum limit,
i.e., we confine ourselves to length scales much larger than
the mean distance between Rydberg excitations, 1/nR . In
this limit, we can use ui → u(x) and pi → p(x), with the
commutation relation [u(x),p(x ′)] ≈ iδ(x − x ′)/nR and the
phonon Hamiltonian is approximated by

Hphonon ≈ nR

∫
dx

[
p2

2m
+ 1

2

B
(anR)2

(∂xu)2

]
, (76)

where we kept only the lowest derivatives of the u(x) field and
we abbreviated

B =
∞∑

m=1

J ′′
|m|/(nRa)m

2 =
∞∑

m=1

α(α + 1)JRm2

[|m|/(nRa)]α+2

= α(α + 1)JR(nRa)2+αζ (α). (77)

Introducing the dimensionless fields u(x) = −φ(x)/(πnR)
and p(x) = −∂xθ (x) with the canonical commutation relations
[ 1
π
φ(x),∂x ′θ (x ′)] = iδ(x − x ′), the phonon Hamiltonian (76)

can be recast in the standard Luttinger-liquid form of Eq. (20)
with velocity v and Luttinger parameter K obeying

Kv = πnR

m
, v2 = 1

m

B
(anR)2

. (78)
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Using the explicit expressions for B, for the mass m given in
Eq. (60), and Eq. (71) for nR we obtain

v ∼
√

J⊥a2μ, (79)

K ∼
√

J⊥
μ

(
μ

JR

)1/α

∼
(

μ∗

μ

) 1
2 − 1

α

. (80)

The Luttinger parameter is small, K 
 1, in the incommensu-
rate Rydberg crystal regime μ∗ 
 μ. It increases and becomes
of order one if the chemical potential is lowered down to the
crossover value μ∗ of Eq. (73), and it thus smoothly connects
with Eq. (64) of the dilute Rydberg gas regime.

As a consistency check, we might consider the correction
to the ground-state energy due to the phonon excitations. This
is of order δε ∼ v

∫
dkk where the momentum integral is cut

off at nR so that one obtains for the relative correction

δε

εRC

∼
√

J⊥
μ

(
μ

JR

)1/α

∼
(

μ∗

μ

) 1
2 − 1

α

. (81)

Note that the relative correction is on the order of the Luttinger
parameter δε/εRC ∼ K . So the correction is of order one and
the perturbative treatment in the collective variables ui and pi

breaks down if the chemical potential is lowered down to the
crossover value μ∗ of Eq. (73).

4. Stability analysis with respect to � perturbations:
dislocation-mediated melting transition

In the presence of a finite Rabi frequency �, Rydberg
excitations can be added to or removed from the crystalline
arrangement. In the limit a → 0, with fi → f (x)/

√
a, this

perturbation can be written as

δH = �

2
√

a

∫
dx[S+(x) + S−(x)], (82)

where S+(x) = f †(x)e−iφ(x) and S−(x) = [S+(x)]†. In the
thermodynamic limit, the operation of S+(x) on the Rydberg-
crystal wave function, see Eq. (66), i.e., adding a Rydberg
excitation can be expressed in terms of a first-quantized
operator (neglecting Klein factors),

S+(x) ∼ 1√
2πa

: ei(x−xn)pn+
∑n−1

j=−∞ i(xj+1−xj )pj : , (83)

where the normal ordering, : Ô :, is defined such that the
momentum operators should be placed to the right of all
position operators. The index n for a given x is defined such
that xn < x < xn+1. As we require that the particle positions
are ordered, the addition of an excitation at position x involves
a collective shift of all particles with positions xj < x that
is just realized by the sum of momentum operators in the
exponent. The above expression simplifies in the continuum
limit,

S+(x) ∼ 1√
2πa

ei
∫ x

−∞ dy p(y) = 1√
2πa

e−iθ(x), (84)

where we used the continuum version of the momentum
operator and its relation to the θ field as defined in the last
paragraph. We have also set θ (−∞) = 0. The perturbation (82)

FIG. 5. World lines of the incommensurate Rydberg crystal.
Vertical axis shows position x in units of 1/nR and horizontal axis
shows time t . The wiggles indicate phonon excitations. The left panel
shows a single dislocation and the right panel a dislocation pair. The
unbinding of such pairs leads to a melting of the crystal at the KT
transition.

on the Rydberg crystal thus corresponds to the first-quantized
operator

δH = �√
2πa

∫
dx cos(θ ), (85)

[see also Eq. (24)]. This operator can create or destroy
dislocations in the incommensurate Rydberg crystal.

Figure 5 shows the world lines of Rydberg excitations. In
the ground state, these world lines are on average equally
spaced with a distance given by 1/nR . The wiggles around the
equilibrium positions illustrate the small-amplitude phonon
excitations. If the operator S− is applied on the Rydberg
crystal, a Rydberg excitation is destroyed at a certain time
and a dislocation is created, see left panel of Fig. 5. The
remaining excitations will accommodate themselves at a later
time but the averaged distance has slightly increased and, as a
consequence, the resulting state is energetically unfavorable.
In order to recover the ground state configuration, a particle has
to be added at a later time by applying the S+ operator giving
rise to an antidislocation as shown in the right panel. If the
incommensurate Rydberg crystal is stable, the dislocation and
antidislocation in the world lines are bound and, in contrast to
the phonons, correspond to large-amplitude excitations. This
is the case if the operator of Eq. (85) is irrelevant in the RG
sense, which implies K � 1/8.51 As the Luttinger parameter
K 
 1 for μ � μ∗, the incommensurate Rydberg crystal is
stable to such small � perturbations. The dislocation pairs,
however, unbind for K > 1/8 and, as a consequence, the
Rydberg crystal melts in a KT transition. We can estimate
the position of the KT transition using Eq. (80). The Luttinger
parameter becomes of order one for μ ∼ μ∗, and the location
of the transition thus coincides with the crossover between the
Rydberg gas and the incommensurate Rydberg crystal. As we
argued previously, from the separatrix of the RG flow for the
KT transition33 follows that the phase boundary starts linearly
in �, i.e., �KT(�) − �KT(0) ∼ �.

VI. SUMMARY AND DISCUSSION

Combining the results of Secs. IV and V, we summarize
in the following the topology of the phase diagram for 1D
Rydberg atoms that are governed by the Hamiltonian (3). We
first outline the global structure of the phase diagram before
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we focus on the experimentally relevant regime and discuss
possible experimental consequences.

A. Phase diagram

The topology of the phase diagram depends qualitatively
on the relation of � and � with respect to the hopping J⊥ and,
especially, the next-nearest-neighbor interaction J2 = JR/2α ,
see Fig. 6.

On scales J⊥,J2 
 |�|,� 
 JR [see Fig. 6(a)], the effect
of hopping J⊥ and higher order interactions J|r| with r > 1 is
negligible and the Hamiltonian (3) reduces effectively to an
Ising model in a longitudinal and transverse magnetic field.
Consequently, one obtains a single Ising transition located44

at � ∝ � between a paramagnet and an antiferromagnet with
a Rydberg excitation at every second lattice site, which breaks
the Z2 symmetry of the lattice. For smaller � � J2, the Ising
transition line, however, deviates from the straight line and
approaches a value on the � = 0 axis on the order � ∼ J2

[neglecting corrections of order O(J3)].
At intermediate scales J⊥ 
 |�|,� ∼ J2, an additional

dome close to the Ising transition appears that contains higher
commensurate phases. Figure 6(b) shows clearly the presence
of a lobe with a broken Z3 phase where a Rydberg excitation
is present at every third site of the optical lattice. The width
and height of the lobes decreases fast with the order of
commensurability so that higher-order commensurate phases
are barely visible on the scale of Fig. 6(b). In fact, most of
the commensurate phases of high order are not realized due
to the finite hopping J⊥. As a rule of thumb, one can say that
only those commensurate phases breaking a Zp symmetry
of the optical lattice appear in the (�,�) plane that fulfill
J⊥ < Jp−1; all phases with higher commensurabilities p′ with
Jp′−1 
 J⊥ are washed out, see discussion in Sec. IV B 1. In
addition, the extension of the broken Zp phases on the � = 0
axis is approximately on the order of δ� ∼ Jp−1 + O(Jp), and
thus strongly decreases with increasing p. The region between
these commensurate phases is filled with an incommensurate
floating phase. Here, the Rydberg crystal has a periodicity that
is incommensurate with the underlying optical lattice and, in
addition, supports low-energy phonon excitations described
by the Luttinger liquid theory. The existence of this floating
phase was already pointed out in Ref. 26. This floating
phase is microscopically stabilized by the hopping of Rydberg
excitations. Although the bare value of the hopping is very
small, J⊥ 
 |�|,�, it is strongly enhanced by renormalization
effects generated by the laser drive �,26 so that the floating
phase even extends to large values of � � J2. This in fact
implies that the phase diagrams in Figs. 6(a) and 6(b) even
apply to the model of Eq. (3) in the limit J⊥ → 0,

HJ⊥→0 =
∑
�>j

J|�−j |
(
Sz

j + 1/2
)(

Sz
� + 1/2

)
−�

∑
j

Sz
j + �

∑
j

Sx
j . (86)

In this limit, the full fractal structure of the classical long-range
Ising model is restored.

The transition between the incommensurate to a certain
commensurate Rydberg-crystal state is in the usual universality
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0 J2
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J2
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Ω

0

I

Z2

∼

KT

0
Δ

Ω
(c)

pJ⊥

Zp

0

J⊥

Δ∗

FIG. 6. (Color online) Sketch of the phase diagram in the (�,�)
plane of the Hamiltonian (3) close to the origin but on various scales:
(a) for |�|,� � J2, (b) for J⊥ 
 |�|,� � J2, and (c) |�|,� � J⊥,
see text. There are gapped commensurate (yellow), gapless incom-
mensurate (blue) phases, and a gapped polarized phase (white). The
commensurate phases break a Zp symmetry of the optical lattice and
their extension decreases fast with the order of commensurability p.
The commensurability of the last commensurate phase at small � in
(c) is determined by Jp ∼ J⊥, i.e., p ∼ (JR/J⊥)1/α . The abbreviations
I and KT indicate an Ising transition and a Kosterlitz-Thouless
transition line, respectively. Points Pn denote critical points of n-state
Potts universality.

class of C-IC transitions45,46 except at special points of
accidental commensurabilities. Furthermore, we find that the
boundary of the dome is given by a KT transition where the
incommensurate Rydberg crystal melts due to the proliferation
of dislocations.34,35 The Luttinger parameter at this KT transi-
tion takes the universal value K = 1/8 with the concomitant
universal correlation tails for Rydberg excitations. There are
two special multicritical points on the boundary of the dome
where the magnetization is accidentally commensurate with
the Z3 and Z4 phases denoted by P3 and P4, respectively. At
these two points, the transition is not of KT type but instead in
the three- and four-state Potts universality classes.47,48

Finally, at very small scales |�|,� 
 J⊥ [see Fig. 6(c)],
commensurability effects are negligible and an effective
continuum description is possible, see Sec. V. This allows

085434-14



DISLOCATION-MEDIATED MELTING OF ONE- . . . PHYSICAL REVIEW B 84, 085434 (2011)

to describe the physics at the lower left edge of the dome
where the KT transition hits the � = 0 axis. The floating
incommensurate phase can be here captured within a standard
strong-coupling perturbation theory familiar, for example,
from the treatment of Wigner crystals. The phonons of the
incommensurate Rydberg crystal give rise to gapless excita-
tions and the Luttinger liquid parameter can be determined.
We find that the creation of dislocations by the Rabi frequency
� is irrelevant and the floating phase is stable as long as
the detuning exceeds � > �∗, where �∗ = −J⊥ + μ∗ with
μ∗ ∼ J⊥(J⊥/JR)2/(α−2). For smaller detuning, the Luttinger
parameter reaches K = 1/8 and a dislocation-mediated (KT)
melting of the incommensurate Rydberg crystal sets in. If �

increases to values of order pJ⊥ [see Eq. (52)], where p ∼
(JR/J⊥)1/α follows from the criterion Jp ∼ J⊥, the floating
phase becomes unstable as well and a first commensurate state
with periodicity p takes over.

B. Experimental parameters and signatures of the two
melting transitions

In order to estimate the location of a typical experiment on
Rydberg atoms in the phase diagram, we now discuss typical
values for parameters. In case of a van der Waals interaction
between Rydberg atoms, the largest energy scale JR is given
by JR = C6/a

6 with C6 ≈ 500 GHz μm6 for heavy alkali
atoms with principal quantum number of order n ≈ 70.39 If
the interaction is instead of dipolar type, one has JR = Vdd/a

3,
where Vdd ≈ 1 GHz μm3 for heavy alkalis with n ≈ 15.28

Using an optical lattice constant a ≈ 0.5 μm, one obtains
JR ≈ 32 THz and JR ≈ 8 GHz for the van der Waals and
the dipolar interaction, respectively. Rabi frequencies of order
� ≈ 100 kHz have been achieved24 that is on the order of
the rth nearest neighbor interaction, Jr = JR/rα , with r ≈ 26
and r ≈ 43 for the two cases, respectively. On the other hand,
for a deep optical lattice with potential depth of 20Er , we
can estimate the hopping to be J⊥ ≈ 10−6Er .1 For this rough
estimate, we have assumed that the on-site interaction energy
between Rydberg and ground-state atoms is of the same order
as the interaction energy between two ground-state atoms. For
a typical recoil energy Er ≈ 10 kHz, this yields J⊥ ≈ 10−2 Hz,
which is very small compared to all other energy scales,
justifying the approximation of a frozen Rydberg gas.

Taken together, this would place a typical experiment in
the parameter regime pictured in Fig. 6(b). An important
requirement for the observation of different phases in this
phase diagram is, however, that the corresponding ground-state
energy is much larger than the decay rate of the Rydberg
excitations, 1/τ . In particular, the lifetime τ should be
much larger than the time of several Rabi cycles in order
to enable the crystallization of Rydberg excitations. Even
then, it will be very difficult to identify experimentally the
universality classes of transitions between different phases
of Fig. 6 because due to critical slowing down very long
lifetimes of Rydberg excitations would be required, especially,
to distinguish between the KT and a possible first-order
transition. Moreover, it is important to note that experiments
with quasi 1D atomic gases usually operate in a configuration
where a large number of independent, parallel 1D tubes are
arranged in a two-dimensional (2D) array with the number of

atoms per tube typically around ∼100. In order to observe a
crystalline arrangement of Rydberg excitation, one needs to
excite a sizable fraction of the atoms, say about 1/10, so that
one has to operate in a regime where the parameters � ∼ � ∼
JR/10α are accessible. For experimental protocols for cooling
the system in order to realize Rydberg crystallization, we refer
the reader to the literature.27,28

The important finding of this work is that as a function
of increasing detuning � at fixed �, one approaches first
a KT transition to enter the regime of an incommensurate
Rydberg crystal. In principle, this KT melting transition can
be detected by Bragg scattering of light, which can be achieved
by a resonant de-excitation of the Rydberg atoms. If the Bragg
signal is measured along a 1D tube axis, it is just proportional
to the 1D static structure factor:

S(q) =
∫

dx eiqx〈Sz(x)Sz(0)〉, (87)

where λ = 2π/q is the wavelength of the light and the spin,
Sz = nR − 1

2 , is related to the density of Rydberg excitations
nR . In the Rydberg gas phase, the structure factor does not
exhibit any Bragg peaks at some finite momentum q. However,
as the KT transition is reached and one enters the floating
crystal phase (blue shaded in Fig. 6), quasi-Bragg peaks will
appear. From the algebraic decay of correlations (23) in the
floating incommensurate Rydberg crystal phase, one obtains

S(q) ∼ 1

|q + 2πnR|1−2K
+ 1

|q − 2πnR|1−2K
, (88)

where the Luttinger parameter assumes its maximal value K =
1/8 at the KT transition. The structure factor is thus expected
to show a quasi-Bragg peak if the wavelength of the light
matches the lattice spacing of the floating Rydberg crystal.
As the quantum fluctuations are even further suppressed so
that one reaches the C-IC transition and a commensurate
Rydberg crystal forms (yellow shaded in Fig. 6), true long-
range crystalline order finally gives rise to well-defined (delta
function) Bragg peaks. In this way, the two melting transitions
could be experimentally detected.
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APPENDIX A: DRIVEN RYDBERG ATOMS IN THE
SUPERFLUID REGIME

So far we have discussed the ground-state phase diagram of
driven Rydberg atoms in a 1D optical lattice deep in the Mott
insulating regime where the Hamiltonian (1) can be mapped
to the effective spin model (3). Virtual hopping processes
tσ via high-energy states involving doubly occupied sites
contribute to the nearest-neighbor spin exchange. Evaluating
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this contribution in second order in the hopping tσ and in zeroth
order in � one obtains

J⊥ = 4t↑t↓
U↑↓

, (A1)

Jz = 2(t2
↑ + t2

↓)

U↑↓
− 4t2

↑
U↑↑

− 4t2
↓

U↓↓
. (A2)

In Eq. (3), we neglected the longitudinal part Jz because it only
gives rise to a negligible correction of the Rydberg-Rydberg
interaction on nearest-neighbor sites, which is several orders
of magnitude larger. At this order, one obtains the standard
expression for the generated spin exchange.37,38 As the initial
and the virtual states have the same number of up and down
spins, the energy differences appearing in the denominators
do not depend on the laser detuning �. The correction to
these expressions at finite � originates from exciting and de-
exciting a Rydberg atom or vice versa while in the virtual
state, it is located on a doubly occupied site. This yields a
correction on the order ofO( t2�2

U 2�
). For � > |�|, this correction

becomes large and will dominate over Eq. (A1). However, it
turns out that in this parameter regime, the spin exchange J⊥
is strongly renormalized by processes within the low-energy
Hilbert space so that its bare value can in fact be neglected.
If two neighboring atoms are both excited or de-excited with
�, an effective J⊥ on the order of �2/� is generated26 that
does not involve doubly occupied sites and, therefore, is much
larger than the bare one. For our purposes, we can therefore
restrict ourselves to the lowest order expression (A1).

Now we briefly consider the opposite limit, where the
ground-state atoms are in the superfluid regime and form
a (quasi)condensate, which has been addressed in a recent
experiment on Rydberg atoms in a 1D lattice.29 In this case,
we can apply the replacement bj↓ → √

n0 + σj↓e−iθj↓ with
the mean density of ground-state atoms, n0 � nR , assumed
to be much larger than the number of excited Rydberg atoms
nR , and σj↓ and θj↓ account for fluctuations of the density
and phase, respectively. In the 1D case, these fluctuations
destroy true long-range order leaving only a quasicondensate
of ground-state atoms with algebraic correlations. The part of
the Hamiltonian describing the excited Rydberg atoms reads

H = −t↑
∑

j

(b†j↑bj+1↑ + H.c.) + 1

2

∑
j �=�

J|j−�| b
†
j↑b

†
�↑b�↑bj↑

+�

2

∑
j

(b†j↑
√

n0 + σj↓e−iθj↓ + bj↑eiθj↓
√

n0 + σj↓)

−1

2

∑
j

[� − 2U↑↓(n0 + σj,↓)]nj↑. (A3)

In writing the above Hamiltonian, we assumed a strong
on-site repulsion U↑↑ between excited Rydberg atoms, which
implies the hard-core constraint nj↑ � 1. If we were to neglect
the fluctuations of the (quasi)condensate, θj↓ = σj↓ = 0, the
above Hamiltonian could be mapped to the same pseudospin
Hamiltonian of Eq. (3) with J⊥ → 2t↑, � → √

n0 �, and
� → � − 2U↑↓n0. Within this approximation, we would
expect the same ground-state phase diagram as the driven Mott
insulator. The main effect of the condensate is a scaling of the
Rabi frequency � with

√
n0, as observed experimentally.29

In general, however, the fluctuations will modify the phase
diagram. For � = 0, we expect the density fluctuations σi

to influence the phase diagram only quantitatively and not
qualitatively, at least for incommensurate fillings n0 because
σi couples to an oscillating Rydberg density profile nj↑. At
finite �, on the other hand, the presence of phase fluctuations
θj↓ reduce the relevancy of � operator in the renormalization
group sense, so that the incommensurate Rydberg crystal
will be stabilized. In addition, the Luttinger parameter at the
Kosterlitz-Thouless melting transition, see Fig. 6, will differ
from K = 1/8. The influence of fluctuations on the Ising
transition of Fig. 6(a) is probably more complicated and left
for a future study.

APPENDIX B: GENERAL PARTICLE DESCRIPTION FOR
GENERAL TRANSITIONS BETWEEN COMMENSURATE

CRYSTAL PHASES

In this appendix, we provide a general definition of the
fictitious particles introduced in Sec. IV B 1, and show that
they form a subspace that becomes the degenerate ground-state
manifold at the classical transitions between commensurate
states. We consider finite-range interaction specified by Eq. (6).
Before diving into technicalities, we outline our main steps
and results. From the results of Hubbard58 and Bak and
Bruinsma,41 it follows that all states with fraction q/p of up
spins with p � n + 1 [n is the interaction range in Eq. (6)]
have a finite stability region and occur in increasing order upon
increasing the longitudinal field �. Given the fraction q/p, in
order to minimize the interaction Eq. (6), the up spins arrange
in a particular crystalline pattern with periodicity p, which
maximizes their distance. The general formula for the unit
cell defining this pattern is given58 in Eqs. (B1) and (B2). For
example, for the fraction q/p = 2/5, this gives u5 =↓↑↓↓↑.
Next we consider a transition between two crystalline phases
q/p → q ′/p′ with p,p′ � n + 1, and with unit cells up and
up′ . Consider the set of states formed by arbitrary sequences
of the two unit cells, e.g., . . . upupup′upup . . . . We will show
that this set of states is the degenerate ground-state manifold at
the classical q/p → q ′/p′ transition. Furthermore, associating
the two types of unit cells up and up′ with either particles or
holes living on a fictitious lattice (e.g., the state upupup′upup

is denoted as 00100), we calculate the particle-hopping
amplitude (e.g., the amplitude for 00100 → 00010) at finite
J⊥. The result, leading to Eq. (50), is that the hopping of the
fictitious particles is obtained by means of a single operation
of J⊥ on the original spins.

C. Definition of the unit cell u p in a crystalline configuration

Consider the crystalline state with fraction q/p of up spins.
Its unit cell of length p, denoted up, is found using the
following prescription:58 (i) define the integers k,n0,n1, . . . ,nk

by

p/q = n0 + r0,

|1/r0| = n1 + r1,|1/r1| = n2 + r2, . . . , (B1)

|1/rk−2| = nk−1 + rk−1,|1/rk−1| = nk,
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where for all s, − 1
2 < rs � 1

2 . (ii) Define the sequences
X1,X2, . . . ,Xk+1 and Y1,Y2, . . . ,Yk by

X1 = n0,Y1 = n0 + α0,
(B2)

Xi+1 = [Xi]
ni−1Yi,Yi+1 = [Xi]

ni+αi−1Yi,

where αi = ri/|ri | = ±1. (iii) Then, the required unit cell is
up = Xk+1.

In a sense, k measures the degree of “fractallity” of
the crystalline state; for k = 0, unit cells have the form
X1 = n0, consisting of n0 − 1 down spins followed by one
up spin, e.g., X1 = 3 ≡↓↓↑. For k = 1, unit cells have the
form X2 = [X1]n1−1Y1, consisting of n1 − 1 repetitions of the
string X1 followed by the string Y1 = X1 ± 1, e.g., [3]3[4] =
[3][3][3][4] ≡↓↓↑↓↓↑↓↓↑↓↓↓↑. Similarly, for a given k the
unit cells Xk+1 consist of a number of repetitions of the string
Xk followed by the string Yk . To illustrate this construction we
display in Table I all fractions and corresponding unit cells for
n = 13.

D. Degenerate unit cells u p and u p′ at classical transitions

It is elementary to show that at transitions [between closest
fractions 0 � q/p < q ′/p′ � 1 with p,p′ � n + 1] k either
(i) remains constant, k = k′, or (ii) k − k′ = ±1, see Table I.
For transitions of type (i), we can write

{up,up′ } = {Xk′′ ,Yk′′ }, (B3)

where {Xk′′ ,Yk′′ } are given from Eq. (B2) evaluated for a third
fraction, q ′′/p′′ = (q + q ′)/(p + p′) with degree of fractallity
k′′ (which has the unit cell Xk′′Yk′′ , which is not stabilized for
the considered interaction range). For transitions of type (ii),
we may write {up,up′ } = {Xk+1,Xk}, where {Xk+1,Xk} are
given from Eq. (B2) evaluated for the (smaller) fraction q/p.
[In case (ii), it is sufficient to consider the case that k′ = k − 1].

E. Degeneracy of the sub-Hilbert space

We associate up (up′ ) with particles (empty sites) on a
fictitious lattice and set the magnetic field � to the transition
between the corresponding commensurate crystalline phases.
We need to show that at J⊥ = � = 0, states with arbitrary
sequences of up and up′ , corresponding to arbitrary particle
states in the fictitious lattice, are degenerate. Since the
condition of convexity is assumed, upon increasing � all
states with rational density of up spins become a ground
state (possibly degenerate) at some field. If the interaction
is of infinite range, then every fraction acquires a plateau.41

For finite range interaction, however, the two crystalline
states . . . upupupup . . . (maximal particle occupation) and
. . . up′up′up′up′ . . . (zero-particle occupation) become degen-
erate at their transition field also with an infinite set of
crystalline phases, e.g., . . . upup′upup′ . . . . The unit cells of
such periodic arrangement correspond via Eqs. (B1) and (B2)
to fractions in the open interval (q/p,q ′/p′), which might
have arbitrary large k values; these fractions necessarily have
a denominator > n + 1 and, hence, are not stabilized over a
finite range of longitudinal magnetic field �. Hence, for any
density of particles, there exist degenerate particle states. For
example, if k = k′, then we can construct states with arbitrary

TABLE I. Crystalline states stabilized for a finite-range interac-
tion, Eq. (6), with n = 13.

q

p
period Xk+1 = up unit cell k

1
14 14 [14] ↓↓↓↓↓↓↓↓↓↓↓↓↓↑ 0
1
13 13 [13] ↓↓↓↓↓↓↓↓↓↓↓↓↑ 0
1
12 12 [12] ↓↓↓↓↓↓↓↓↓↓↓↑ 0
1
11 11 [11] ↓↓↓↓↓↓↓↓↓↓↑ 0
1
10 10 [10] ↓↓↓↓↓↓↓↓↓↑ 0
1
9 9 [9] ↓↓↓↓↓↓↓↓↑ 0
1
8 8 [8] ↓↓↓↓↓↓↓↑ 0
1
7 7 [7] ↓↓↓↓↓↓↑ 0
2
13 13 [6][7] ↓↓↓↓↓↑↓↓↓↓↓↓↑ 1
1
6 6 [6] ↓↓↓↓↓↑ 0
2
11 11 [5][6] ↓↓↓↓↑↓↓↓↓↓↑ 1
1
5 5 [5] ↓↓↓↓↑ 0
3
14 14 [4][5]2 ↓↓↓↑↓↓↓↓↑↓↓↓↓↑ 1
2
9 9 [4][5] ↓↓↓↑↓↓↓↓↑ 1
3
13 13 [4]2[5] ↓↓↓↑↓↓↓↑↓↓↓↓↑ 1
1
4 4 [4] ↓↓↓↑ 0
3
11 11 [3][4]2 ↓↓↑↓↓↓↑↓↓↓↑ 1
2
7 7 [3][4] ↓↓↑↓↓↓↑ 1
3
10 10 [3]2[4] ↓↓↑↓↓↑↓↓↓↑ 1
4
13 13 [3]3[4] ↓↓↑↓↓↑↓↓↑↓↓↓↑ 1
1
3 3 [3] ↓↓↑ 0
5
14 14 [3]4[2] ↓↓↑↓↓↑↓↓↑↓↓↑↓↑ 1
4
11 11 [3]3[2] ↓↓↑↓↓↑↓↓↑↓↑ 1
3
8 8 [3]2[2] ↓↓↑↓↓↑↓↑ 1
5
13 13 [3]2[2][3][2] ↓↓↑↓↓↑↓↑↓↓↑↓↑ 2
2
5 5 [2][3] ↓↑↓↓↑ 1
5
12 12 [2][3][2]2[3] ↓↑↓↓↑↓↑↓↑↓↓↑ 2
3
7 7 [2]2[3] ↓↑↓↑↓↓↑ 1
4
9 9 [2]3[3] ↓↑↓↑↓↑↓↓↑ 1
5
11 11 [2]4[3] ↓↑↓↑↓↑↓↑↓↓↑ 1
6
13 13 [2]5[3] ↓↑↓↑↓↑↓↑↓↑↓↓↑ 1
1
2 2 [2] ↓↑ 0

low particle density of the form up(up′)n with any integer
n, or states with arbitrarily large particle density → 1 of the
form (up)nup′ . However, those states are very special as they
correspond to some periodic crystalline arrangement of the
spins.

To show that all particle configurations are degenerate, it
remains to be shown that one can start with one of those
periodic states and move particles around without any energy
change. The basic such process that we need to consider is
the single-particle hopping, . . . up′up · · · → . . . upup′ . . . . We
will consider transitions of type (i) between two states with
the same value of k, where up = Xk′′ and up′ = Yk′′ with k′′ =
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k + 1 = k′ + 1, see Eq. (B3). Case (ii) can be addressed along
the same lines. We start with the initial configuration

|i〉 = . . . Yk+1Xk+1 . . . = . . . 01 . . . , (B4)

which contains a Yk+1 string followed by an Xk+1 string,
surrounded by a particular configuration of either one of those
strings, hidden in the (. . . ), which is fixed to define the state,
but can be arbitrary, and we would like to arrive at the final
state

|f 〉 = . . . Xk+1Yk+1 . . . = . . . 10 . . . , (B5)

which coincides with the initial state except for the exchange
Yk+1Xk+1 → Xk+1Yk+1. Our purpose below is to show that
this exchange process consists of a single operation of J⊥, and
that it does not cost energy, independent of the unspecified (...)
configurations.

We use Eq. (B2) to express Xk+1 and Yk+1 in terms of Xk

or Yk . We obtain

|i〉 = . . . [Xk]mkYkXk[Xk]mkYk . . . ,
(B6)

|f 〉 = . . . [Xk]mkXkYk[Xk]mkYk . . . ,

for αk = −1, or

|i〉 = . . . [Xk]mkXkYk[Xk]mkYk . . . ,
(B7)

|f 〉 = . . . [Xk]mkYkXk[Xk]mkYk . . . ,

for αk = 1, where mi = ni − 1 + αi−1
2 = min{ni − 1,ni −

1 + αi}. Using Eq. (B2), we continue successively decom-
posing Xk and Yk into Xk−1 and Yk−1 until we reach the X1

and Y1 unit cells. The result is

|i〉 = . . . BY1X1A . . . ,
(B8)

|f 〉 = . . . BX1Y1A . . . ,

for
∏k

i=1(−αi) = 1, or

|i〉 = . . . BX1Y1A . . . ,
(B9)

|f 〉 = . . . BY1X1A . . . ,

for
∏k

i=1(−αi) = 1, where

A =
k∏

i=1

[Xi]
mi [Yi],

(B10)

B =
k−1∏
i=0

[Xk−i]
mk−i .

Furthermore, Y1X1 = [↓]m0 (↑↓)[↓]m0 ↑ if α0 = −1, or
Y1X1 = [↓]m0 (↓↑)[↓]m0 ↑ if α0 = 1, hence, we obtain

|i〉 = . . . B[↓]m0 (↑↓)[↓]m0 ↑ A . . . ,
(B11)

|f 〉 = . . . B[↓]m0 (↓↑)[↓]m0 ↑ A . . . ,

for
∏k

i=0(−αi) = 1, or

|i〉 = . . . B[↓]m0 (↓↑)[↓]m0 ↑ A . . . ,
(B12)

|f 〉 = . . . B[↓]m0 (↑↓)[↓]m0 ↑ A . . . ,

for
∏k

i=0(−αi) = 1. From Eqs. (B11) and (B12), we see that

〈i|H|f 〉 = 〈f |H|i〉 = −J⊥
2

, (B13)

where H is given in Eq. (3), namely, the hopping amplitude is
just that of flipping the two spins in parentheses, achieved by
a single operation of J⊥. We proceed with the proof that the
interaction energy of the initial and final states are equal.

The unspecified (. . . ) to the right in Eqs. (B4) and (B5) ei-
ther starts with Xk+1 = [Xk]nk−1Yk or Yk+1 = [Xk]nk−1+αkYk ,
therefore, it begins with [Xk]mk . Similarly, the undetermined
(. . . ) to the left must start with [Xk]mkYk . Thus we can display
more spins for the same state given in Eq. (B6),

|i〉 = . . . [Xk]mkYk[Xk]mk (XkYk)

[Xk]mkYk[Xk]mk . . . (B14)

(for αk = −1). We may, therefore, successively introduce in
the right side (. . . ) in Eqs. (B11) and (B12) the combinaiton
[Xk−1]mk−1 , then [Xk−2]mk−2 until [X1]m1 . Similarly, we succes-
sively add in the (...) to the left the strings [Xk−1]mk−1Yk−1, then
[Xk−2]mk−2Yk−2 until [X1]m1Y1. The result, for

∏k
i=1(−αi) = 1,

is

|i〉 = . . . AB[↓]m0 (↑↓)[↓]m0 ↑ AB . . . ,
(B15)

|f 〉 = . . . AB[↓]m0 (↓↑)[↓]m0 ↑ AB . . . .

The unspecified (. . . ) to the right in Eqs. (B15) either starts
with X1 = [↓]n0−1 ↑ or Y1 = [↓]n0−1+α0 ↓, hence, it begins
with [↓]m0 = ↓↓ . . . ↓︸ ︷︷ ︸

m0

. Similarly, the unspecified (. . . ) to the

left must end with [↓]m0 ↑. Hence, we obtain

|i〉 = . . . C(↑↓)C . . . ,
(B16)

|f 〉 = . . . C(↓↑)C . . . ,

for
∏k

i=0(−αi) = 1, or

|i〉 = . . . C(↓↑)C . . . ,
(B17)

|f 〉 = . . . C(↑↓)C . . . ,

for
∏k

i=0(−αi) = 1. Here,

C = [↓]m0 ↑ AB[↓]m0 . (B18)

What we have done in Eqs. (B16) and (B17) is to maximally
determine the spins to the left and right of the exchanged up and
down spins shown in parentheses, which physically follows
from the crystalline underlying interaction. The interaction of
the up spin in parentheses with all other up spins within the
string displayed in Eqs. (B16) and (B17) is equal for the final
and initial states. This follows because the string C is related
to itself by left-right inversion. This property, C = C̄, where
X̄ is the left-right inversion of a string X, follows from the
induction-proven set of identities

[↑]
i−1∏
j=1

YjXi = X̄i

i−1∏
j=1

Ȳi−j [↑], (B19)

[↑]
i∏

j=1

Yj =
i∏

j=1

Ȳi+1−j [↑], (B20)
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for any i � 1. Furthermore, due to the finite interaction
range, J

(n)
|r| = 0 for |r| > n, the up spin in parentheses does

not interact with any spin out of the displayed sequence in
Eqs. (B11) and (B12), as we now demonstrate. Denoting the
total number of spins (up or down) in a string X by LX,
we have |r| � LC + 1. Furthermore, LC = L[Xk+1][Yk+1] − 2,

which follows by comparing Eqs. (B11), (B12), and (B18).
Since a crystalline state with unit cell [Xk+1][Yk+1], corre-
sponding to fraction (q + q ′)/(p + p′), is not stabilized, we
have L[Xk+1][Yk+1] � n + 2. This implies that |r| � n + 1 hence
J

(n)
|r| = 0, completing our proof that the interaction energy in

the initial and final states are equal.
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