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We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR)
in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic
metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right
ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem,
taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation
law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived
as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the
developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be
explained; the simulation results are in good agreement with experimental data.
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I. INTRODUCTION

Spintronics is a rapidly developing branch of nanoscience
and nanotechnology, with many applications in electronics.
Ferromagnetic alloys are the natural media for electrons with
both kinds of spins and nonequal transport properties. The
resonant transparency of a double-barrier magnetic tunnel
junction (DMTJ) may occur at very different applied voltages
for the spin-up and spin-down electrons, due to high exchange
energy splitting of the electron conduction bands (in Fe,
FeCoB, and FeNi alloys). As a result, high spin filtering or spin
selection effects are expected in DMTJ. Assuming that during
the resonant tunneling process the electron spins are conserved,
the tunneling of spin-up and spin-down electrons can be
analyzed within the model of two conduction channels,1–3

where electrons originating from a particular spin state of the
left spin-polarized electrode tunnel into the empty states of
the right electrode (Fig. 1 and Fig. 2). It was shown4–7 that
DMTJ can provide the function of a memory cell (MRAM)
or spin-current diode, with possible applications in electronic
and spintronic devices.

DMTJs were studied experimentally with possible
applications4–12 and simulated theoretically in several
cases.13–20 Among the theoretical studies, combinations of
different materials for single- and double-barrier structures can
be found. For example, heterostructures with semiconductor
electrodes on both sides and a central semiconductor quan-
tum well (QW)13 or ferromagnetic and hybrid semiconduc-
tor/ferromagnetic DMTJ systems14,19 have been studied. Most
of these works are based on the Landauer-Büttiker formalism,
the tunnel Hamiltonian treatment, or the well-known free-
electron tunneling model of Tsu and Esaki,21 which for
the first time generalized a theory for multibarrier tunnel
structures. Based on Esaki’s model, Zhang et al.14 developed a
transfer-matrix treatment and a two-band model with dc bias.
However, the calculation of tunnel currents was limited to low
temperatures and a small thicknesses of insulating barriers
(around 5 Å).

Zhang14 and Kishi et al.15 were among the first who theoret-
ically investigated conductance and tunnel magnetoresistance
(TMR) properties for the DMTJ while taking into account
the electric field inside the insulators and with the ultrathin
ferromagnetic middle layer acting as a quantum well. They
pointed out that the tunneling conductance oscillates, showing
peaks at resonant voltages, which lead to an enhanced TMR
effect.

Important theoretical studies were made by Wilczynski
et al. in Ref. 16, where DMTJ was built with two ferro-
magnetic electrodes sandwiching the middle nonmagnetic
layer and studied within the free-electron approximation. It
was assumed that the sequential tunneling regime in such
structures could be realized; however, transmission coeffi-
cients (TC) through the left and right barriers were calculated
separately.

Previously, we developed a theory of electronic transport
through a nanosized domain wall between ferromagnetic
homo- and hetero-electrodes22 in a pointlike geometry. This
theory utilizes quasiclassical equations in order to describe
the transport phenomena in the ferromagnetic metals, and
quantum-mechanical equations for modeling the electron
domain wall, which is approximated by a slope potential. In
this work, we apply the previously derived equation for the
current22 to the case of electronic transport through the DMTJ
in a ballistic mode replacing the transmission coefficient of
the domain wall potential by the tunnel transmission coef-
ficient (which is calculated analytically for the DMTJ). The
inhomogeneous terms (responsible for the pointlike geometry)
were neglected due to their small contribution in the planar
ballistic case. Thus, the DMTJ theory is extended toward high
Fermi energies (∼5 eV), accounting for the dependence of the
electron transmission on the trajectory angle (Fig. 1) and the
conduction band spin splitting (Fig. 2), while assuming that
the electron spin is conserved during the tunneling process and
maintaining the traditional free-electron parabolic dispersion
relation. This provides an alternative view on the fundamental
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FIG. 1. (Color online) Schematic view of the planar DMTJ. Thick
red and blue arrows show possible magnetization directions of the
ferromagnetic layers. L1(2) are the insulator thicknesses, and LW is
the width of the middle ferromagnetic layer FMW. The black arrow
inside the cone within the solid angle �L indicates the direction of
the electron trajectory, which has the trajectory angle θL with the
z axis.

aspects of contemporary attempts to construct spin-valve
magnetic tunnel junction devices6,7 as well as a self-consistent
method for image detection in scanning tunnel microscopy
with ferromagnetic cantilevers.23,24
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FIG. 2. (Color online) Schematic energy diagram for the potential
profile of the FML/I1/FMW/I2/FMR DMTJ with applied bias Va ,
where V are voltage drops on the first and second barriers (Va = 2V ).
The UB1(2) are the heights of the barriers above EF. The enhanced
parabolic curves present dispersion relations for spin-up electrons (↑
arrows) and correspond to the spin-up majority conductance subbands
for the parallel (P) case. The small parabolic curves belong to the
spin-down minority subbands with spin-down electrons (↓ arrows).
The arrows inside the brackets of the middle layer show the electron
spin direction for the antiparallel (AP) case. The electron spin-
conduction channels passing through minority or majority subbands
are determined by the electron-tunneling trajectory with conserved
spin direction. They are shown at the bottoms of the subbands as
blue dash-dot-dotted lines and red dashed lines for the P case and as
dash-dotted and solid lines for the AP case.

II. TUNNELING CURRENT AND TRANSMISSION
COEFFICIENT FOR DMTJ

We consider a spin-dependent resonant and non-
resonant tunneling effect in a DMTJ consisting of
FML/I1/FMW/I2/FMR, where spin-dependent QW states
created in the ultrathin FMW layer provide different tunneling
conditions for P and AP cases. Upon derivations, it is assumed
that the Fermi energy of the conduction electrons in metals
EF, exchange energy Eex, barrier heights UB1(2), and applied
voltage eVa (see Fig. 2) are much larger than the thermal
energy kBT . The ferromagnetic layers FML, FMW, and FMR

can be made of different ferromagnetic metals characterized
by effective masses of conduction electrons, Fermi energies,
and spin polarizations of the conduction band.

The schematic potential diagrams with conduction band
locations for spin-up and spin-down electrons are shown in
Fig. 2. The z axis is perpendicular to the junction, and the
interface between the left electrode and the first barrier is
located at z = 0. Both barriers are supposed to be identical so
that the applied positive voltage 2V is divided equally between
barriers (see Fig. 2).

In the free-electron model of the spin-polarized conduction
electrons the tunnel current per unit area of a planar junction
for the conduction channel is proportional to the product of
the transmission coefficient and cosine of the incidence angle
θL,s of the electron trajectory, averaged over the solid angle
�L (Fig. 1) of the left electrode (the electron spin is assumed
conserved during the transmission through the DMTJ):25

J P(AP)
s = e2

(
kL
F,s

)2
Va

4π2h̄

〈
cos(θL,s)D

P(AP)
s

〉
�L

, (1)

where kL
F,s is the absolute value of the Fermi wave vector of

the electron in the left electrode for the spin channels s =↑ , ↓
for the P and AP cases. DP (AP)

s is the transmission coefficient
through the double barrier, which is a function of the applied
voltage Va = 2V and cos(θL,s). The angle θL,s is measured
from the normal to the contact plane, and the angle φ is in
the contact plane. The integration by solid angle in spherical
coordinates is

〈(...)〉�L
≡ 1

2π

∫
d�L(...)

= 1

2π

∫ θCR

0
sin(θL,s)dθL,s

∫ 2π

0
dφ(...), (2)

where θCR is the critical angle. It is defined by the conservation
law of the Fermi wave vector projection on the junction plane
(longitudinal component):

k
‖
L,s = kL

F,s sin(θL,s)

= kW
F,s(V ) sin(θW,s) = kR

F,s(V ) sin(θR,s). (3)

Here kW
F,s(V ) =√

(kW
F,s )2+cW V and kR

F,s(V ) =√
(kR

F,s )2+cRV are the
bias-dependent absolute values of the Fermi wave vectors
of the middle FMW and right FMR layers, where cW (R) =
2mW (R)e/h̄

2 are dimensional factors. For the sake of simplicity,
we denote this factor as cl = 2mle/h̄

2, where ml stands for the
effective masses of the electron in the five regions (Fig. 2)
labeled as FML, I1, FMW, I2, and FMR in Fig. 1. The angles
θl,s (l = L,W,R) in Eq. (3) are measured from the normal to
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the contact plane. The transverse components (parallel to the
z axis) of the wave vectors for each ferromagnetic layer are as
follows:

k⊥
L,s = kL

F,s cos(θL,s),

k⊥
W,s ′ = kW

F,s ′ (V ) cos(θW,s ′ ), (4)

k⊥
R,s = kR

F,s(V ) cos(θR,s),

where s and s ′ are the indices showing the type of the
spin subband (minority s =↓ , s ′ = ↓ , s =↓, or majority
s =↑ , s ′ = ↑ , s =↑), which contributes to the spin-current
channels; specifically, in the case of a P alignment of the
magnetization of the electrodes s =↑ (↓), s ′ = ↑ (↓), s =↑
(↓) and for the AP alignment s =↑ (↓), s ′ =↓ (↑), s =↑ (↓).

In order to execute averaging over the solid angle �L in
Eq. (1), it is necessary to express the cos(θW,s) and cos(θR,s) in
Eq. (4) in terms of the cosine of the left angle θL,s (see Fig. 1)
using the conservation law for the longitudinal projection of
the momentum (3):

cos(θW,s) =
√

1 − δ2
LW [1 − cos2(θL,s)],

(5)
cos(θR,s) =

√
1 − δ2

LR[1 − cos2(θL,s)],

where δLW = kL
F,s/k

W
F,s(V ), δLR = kL

F,s/k
R
F,s(V ) are the spin-

asymmetry parameters of the conductance channels for the first
and second barriers, respectively. Equations (5) determines
the value of the critical angle for θL,s . Thus, the value θCR

in Eq. (2) is taken as min{θ1,θ2} with θ1 = arccos(
√

|1−1/δ2
LW |)

and θ2 = arccos(
√

|1−1/δ2
LR |).

The transmission coefficient is defined in a standard way
as a ratio of the transmitted flux of probability density jR,s , in
FMR to the incident one in the FML, jL,s . Assuming that the
wave function amplitude in the FML layer equals unity, and
there is only the transmitted component of jR,s in FMR, the
transmission coefficient DP(AP)

s can be written as follows:

DP(AP)
s = mLk⊥

R,s

mRk⊥
L,s

(
�P(AP)

s �P(AP)∗
s

)
, (6)

where �P(AP)
s is the complex-valued amplitude of the wave

function of transmitted electron with spin s.
In this paper, we deduce an expression for �P(AP)

s by solving
the Schrödinger equations in the FML/I1/FMW/I2/FMR sand-
wich using a convenient matrix form proposed in Ref. 26. The
dependence of the transverse components of the wave vectors
on the angle θL,s is given by Eq. (4). The resulting expression
for �P(AP)

s is as follows:

�P(AP)
s = 4m1mWm2mRe−i [(L1+L2+LW )k⊥

R,s−LW k⊥
W,s ]ρ

P(AP)
1,s ρ

P(AP)
2,s k⊥

L,sk
⊥
W,s

Z
P(AP)
1,s + Z

P(AP)
2,s

, (7)

where

Z1 = [m1kL(i m1α1kW + mW γ1) + mL(m1 β1kW + i mWχ1)] [m2kR(i m2α2kW + mW γ2) + mR(m2 β2kW + i mWχ2)],
(8)

Z2 = [m1kL(m1α1kW + i mWγ1) − mL(mWχ1 + i m1β1kW )][m2kR(m2α2kW + i mWγ2) − mR(mWχ2 + i m2β2kW )]e2 i LW kW .

In Eq. (8), the indices P, AP, s, and ⊥ are suppressed for
simplicity. In addition to this, the following abbreviations are
used:

α1(2) = Ai(−q2(4))Bi(−q1(3)) − Ai(−q1(3))Bi(−q2(4)),

β1(2) = T1(2)[Ai′(−q1(4))Bi(−q2(3)) − Ai(−q2(3))Bi′(−q1(4))],

γ1(2) = T1(2)[Ai′(−q2(3))Bi(−q1(4)) − Ai(−q1(4))Bi′(−q2(3))],

ρ1(2) = T1(2)[Ai′(−q2(4))Bi(−q2(4)) − Ai(−q2(4))Bi′(−q2(4))],

χ1(2) = T1T2[Ai′(−q2(4))Bi′(−q1(3)) − Ai′(−q1(3))Bi′(−q2(4))],

(9)

where Ai(−qb) and Bi(−qb) are the Airy functions, while
Ai′(−qb) and Bi′(−qb) are their first derivatives. The index b

runs from b = 1 for the FML/I1 and b = 4 for the I2/FMR

interface. The arguments qb of the Airy functions are defined
as follows:

q1 = T1 zL1,

q2 = T1(L1 + zL1),
(10)

q3 = T2(L1 + LW + zL2),

q4 = T2(L1 + LW + L2 + zL2),

where L1(2) are the barriers’ thicknesses, and LW is the width
of the middle ferromagnetic layer. The other quantities T1(2)

and zL1(2) in Eq. (10) are given by

T1(2) =
(

c1(2)V1(2)

L1(2)

)1/3

, (11)

zL1 =
(
kL
F, Va=0

)2 − cLu1

cLV1
L1, (12)

zL2 =
(
kW
F, Va=0

)2 − cWu2

cWV2
L2 + L2 − L1 − LW, (13)

where V1(2) = V01(2) + V is the sum of the intrinsic volt-
age V0 at zero bias and the voltage drop V , and u1(2) =
(EF + UB1(2))/e is the potential barrier height. The voltage
V0 is rather small (0.01–0.1 V) and arises from the chemical
potential difference of the contacting electrodes. Now, with
Eqs. (6)–(13), we are ready to analyze the spin-dependent
current (1) as a function of the applied voltage, effective
masses, heights of the barriers, and exchange splitting of the
conduction band in the ferromagnetic electrodes. Compared to
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similar studies in Refs. 14,16 we also included explicitly the
dependence on the electron trajectory angle θL.

III. RESONANT TUNNEL MAGNETORESISTANCE
IN DMTJ

The TMR of DMTJ is defined as the change of the current
upon transition from P to AP alignment of the magnetization
of the middle ferromagnetic metal layer FMW in relation
to the fixed magnetizations of the left FML and right FMR

ferromagnetic electrodes,

TMR = J P − J AP

J AP
, (14)

where J P(AP) are the net current densities (J P(AP)
↑ plus J

P(AP)
↓ )

for the P (AP) cases.
For the numerical calculation, FML and FMR were assumed

to consist of the same ferromagnetic metals with identical
physical parameters. The conduction band spin asymmetries
in the left, right, and middle ferromagnetic electrodes are
determined as δL = kL

F,↓/kL
F,↑, δR = kR

F,↓/kR
F,↑, and δW =

kW
F,↓/kW

F,↑, respectively. For the middle FMW layer δW was
assumed to be different from δL and δR . Additionally, we
assumed that for the paramagnetic limit (when the conduction
band spin splittings vanish) the conduction subband bottoms
in all FM layers would have the same positions at Va = 0.
Two dielectric oxide layers (Al2O3 or MgO) with a lateral
size comparable with the mean-free paths of the conduction
electrons were considered as tunneling barriers. The potential
profile of the system under the applied voltage Va is shown
in Fig. 2, where UBl (l = 1, 2) are the barriers’ heights
above the Fermi energy. Symmetrical geometric structures
with L1 = L2 and UB1 = UB2 were considered in all our
calculations. However, due to a nonequal (compared with FML

and FMR) conduction band spin asymmetry for the FMW layer
the system is not symmetric in general.

First, the dependence of the transmission coefficient on the
angle θL,s of the electron trajectory was considered (see Fig. 3)
using the results of the previous section. The calculations
have been carried out with the Fermi energy EF = 3.75 eV
for all ferromagnetic metal layers. The values of the Fermi
wave vectors kl

F,s (l = L, R, W ) for the FM layers were set

to k
L(R)
F,↑ = 1.09 Å

−1
, k

L(R)
F,↑ = 0.42 Å

−1
and kW

F,↓ = 0.96 Å
−1

,

kW
F,↑ = 1.0 Å

−1
, respectively. The electron effective masses of

the FM layers were taken equal to the free-electron mass me,
while the electron effective masses in the insulating barriers Il
(l = 1, 2) were taken as m1(2) = 0.4me.27 Further parameters
were the middle layer thickness LW = 13.6 Å, the thickness
of the barriers L1 = L2 = 12 Å, and the barriers’ heights
UB1 = UB2 = 1.8 eV.

Figure 3 shows the plot of the transmission coefficient as a
function of the voltage for two fixed trajectory angles: θL,s =
0.0◦ (solid lines) and θL,s = 10◦ (dashed lines). The results
show that inclination of the electron trajectory considerably
influences the transmission coefficient.

At resonance, the values can increase significantly by
up to 7 orders in relation to the nonresonant states for the
whole range of the applied voltages. The resonant peaks,
which correspond to the first and third spin channels, are
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FIG. 3. (Color online) Transmission coefficients versus Va for
four configurations of the conduction channels at each of the P
and AP magnetic moment alignments and with two fixed trajectory
angles: θL,s = 0.0 ◦ (solid lines) and θL,s = 10 ◦ (dashed lines). The
parameters of the conduction bands’ spin polarizations are δL(R) =
0.38, δW = 0.96. Other parameters are as follows: L1(2) = 12 Å,
LW = 13.6 Å, UB1(2) = 1.8 eV, V01(2) = 0.1 eV, and m1(2) = 0.4me.

by four orders larger than the ones of the second and fourth
channels. Moreover, as θL,s increases to 10◦ the positions of the
peaks shift toward higher voltages. According to our results,
for the most inclined electron trajectories with large θL,s

[where tunneling conditions still apply, under conditions (5)]
there is a nonresonant voltage interval (NRVI) 0.0–0.12 V,
where the transmission coefficients are small in relation to their
peak values for all channels having values of 10−5 to 10−12 or
smaller. As the voltage increases, NRVI increases too.

The restrictions by the angle, which stem from the momen-
tum conservation law [see Eq. (3)], apply stringent conditions
for the transmission and determine the values of the tunnel
spin current.

It should be noted that TC depicted in Fig. 3 are particular
cases for corresponding LW , where there is at least one
resonant peak for all spin channels in the voltage range
0.0 < Va < 1.25 V. The resonant peaks will not arise in this
range of voltage if the DMTJ is simulated with another value
of LW . For example, for LW = 12.5 Å the NRVI increases to
0.0–1.22 V, which is much larger than for LW = 13.6 Å.

Thus, each spin-dependent conduction channel has its own
constriction and resonance conditions. These conditions are
most important for first and third channels, which provide the
significant part in the tunnel current. This is the main reason
for a giant TMR effect. Such tunneling is called spin-polarized
resonant tunneling.14

In Fig. 4, the TMR is shown as a function of the thickness
LW of the middle ferromagnetic layer in the case of Va = 0.5 V.
The other parameters are the same as in Fig. 3. Some resonant
features of the TMR curves are of particular interest: First,
the TMR as a function of LW shows well-defined peaks,
where the height of the peaks decreases monotonously with
increasing LW ; and second, the TMR between peaks increases
with increasing the electron effective masses m1(2) of the
insulating barriers. TMR peaks periodically repeat every 3.1 Å
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FIG. 4. (Color online) TMR as a function of the middle ferromag-
netic layer FMW thickness LW , calculated with the same parameters
as in Fig. 3. The four curves correspond to different electron effective
masses m1(2) of the insulating barriers.

corresponding to kW
F,↑ = 1.0 Å

−1
. The period of the peaks

mainly depends on the values of kW
F,↑: As kW

F,↑ decreases, the

period increases; for kW
F,↑ = 0.72 Å

−1
and kW

F,↓ = 0.69 Å
−1

(keeping the same peak width) the peak period increases from
3.1 Å to 4.0 Å. The width of the peaks mainly depends on
δW (for δW → 1 the peak width vanishes). Moreover, it should
be noted that the curve with m1(2) = me starting with the first
peak of the TMR ratio at 1300% has peaks with sharper edges
compared to the case when m1(2) = 0.1me. The sharpness of
the peak profile depends on m1(2), EF, and UB1(2).

Thus, abrupt periodic variation of the TMR with increasing
thickness LW is related both to the QW states formed in the
middle ferromagnetic layer and to resonant tunneling through
the whole structure. Similar results for a DMTJ structure
with left/right ferromagnetic electrodes but a nonmagnetic
middle layer have been shown previously.16 In this work the
periodicity of the TMR magnitude was investigated for the
first time, and it was found that TMR strongly correlates to
QW states in the middle layer. The same finding is reproduced
by our calculations.

FIG. 5. (Color online) Resonant, flat-dome TMR behavior for
different δL(R) (δR = δL) and fixed δW = 0.96, m1(2)/me = 0.4. The
other parameters are the same as in Fig. 3.

The flat-dome TMR behavior, originating from the reso-
nance tunneling, is shown in Fig. 5. Here, we investigate the
dependence of TMR on spin asymmetry of the conduction
band of the ferromagnetic layers when the thickness of the
middle layer corresponds to the center of the flat bump in the
TMR curve for m1(2) = 0.4me (see green line in the Fig. 4, and
vertical dashed line at LW = 13.6 Å).

Figure 5 shows the dependence of the resonant behavior
of the TMR on Va and δL(R). In the case of δL(R) = 0.38,
the resonance arises as a flat-dome peak between 0.22 <

Va < 0.72 V with a TMR value of 290% as compared to the
nonresonant value of 135%.

The beginning of the flat-dome TMR curve (δL(R) = 0.38)
depicted in Fig. 5 coincides with the location of the first
resonant peak of the TC for the first channel in the P case
for Va ≈ 0.22 V (Fig. 3). The back edge of this flat-dome step
localized at Va ≈ 0.72 corresponds to the AP resonant peak
location for the third channel (see Fig. 3). This proves that the
cause of the flat-dome shape is a result of resonant behavior of
the electron tunneling for the particular data of the DMTJ with
resonant width (which is one from the resonant width set; see
Fig. 4). Moreover, it should be noted that with increasing LW

the resonant TMR peaks may have a more complicated shape
showing several flat-dome loops, which build on each other.

The resonance conditions arise in the cases when UB1(2) >

1.35 eV for mL,W,R = me and UB1(2) > 2.8 eV for mL,W,R =
0.8me, while the TMR in NRVI is a result of coherent tunneling
of the electrons through the barriers. As shown in Fig. 3 the
TC dependencies in some range of the applied voltages are
very small having values of 10−5 to 10−12 or smaller that
are varying for different spin channels by several orders.
This difference between spin channels provides the significant
difference in the I-V characteristics between the P and AP
cases.

The same behavior of the TMR flat-dome peak (shown in
Fig. 5) was predicted previously,17 where it was shown that a
reduction of the dome width may occur with decreasing the
parameter of the electronic correlation. In our case, it can be
correlated with the barrier heights UB1(2), but approximately
the same effect can be achieved by a decrease of the spin
polarization of the left and right electrodes. It should be noted
that with decreasing the spin asymmetry of the conduction
bands (δL(R) > 0.74; see Fig. 5), the TMR flat dome becomes
split in two steps with reduced amplitudes due to an increase of
the peak values of the second and fourth channels. For δL(R) <

0.74, the spin-current terms of the first and third components
dominate in the step because the relative amplitudes of the
resonant peaks of the second and fourth channels are negligibly
small. Note that with decreasing the spin polarizations of
the conduction bands (δL, δR → 1) the difference in the
conduction channels decreases together with TMR.

It is obvious that the top of the flat-dome peaks will
decrease showing a steplike behavior with δL and δR increasing
in relation to δW . The TMR will take on minimal values
when δL = δW = δR (note that increasing δL, δW , δR until
unity results in decreasing of the spin-polarization value; i.e.,
magnetic material becomes nonmagnetic).

In conclusion, the shape of the TMR curve depends on
the tunneling current, which is a function of the electron
trajectories, the thickness of the barriers, and the different
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quantum states of the quantum well. Each conduction spin
channel has its own resonant conditions and constraints when
electrons move from the majority to the minority subband.
These factors are the main reason for the enhanced TMR.
Similar regimes of the DMTJ provide a strong spin-filtering
effect, which can be controlled by reversing the magnetization
of the middle ferromagnetic electrode.

IV. NONRESONANT TUNNEL MAGNETORESISTANCE
IN DMTJ

The results of the previous section are compatible with
earlier theoretical data in similar tunnel systems and are com-
plementing them with new effects. This motivated our attempts
to apply the developed model to describe experimental data.
Most of the experimental data presented in the literature8,11,12

correspond to the nonresonant case and do not satisfy the
resonant conditions determined in the previous section. The
nonresonant tunneling is characterized by the spin-dependent
electron transport through the core stack of the DMTJ but
without mixing with QW states in the middle layer. In this case
DMTJs can be modeled in two ways: (i) DMTJ with coherent
tunneling (CHT) and (ii) consecutive tunneling (COT), which
is a model that considers the DMTJ as two single-barrier
magnetic tunnel junctions (SMTJs) connected in series.

A. DMTJ in coherent tunneling regime

The normalized TMR–Va curves presented in Fig. 6
are determined by the equation TMR = (J P − J AP)/J AP ×
(TMR−1

max) with J P(AP) = J
P(AP)
↓ + J

P(AP)
↑ , where spin-up and

spin-down currents can be determined by Eq. (1) and TC is
calculated for the entire double-barrier structure by Eq. (6).
Equation (1) is applied for positive values of Va while the
solution for negative ones can be derived using symmetric
relations of the system; i.e., the parameters of the electronic
states of the contact electrodes must be reversed: k

L(R)
F↑maj →

k
R(L)
F↑maj, k

L(R)
F↓min → k

R(L)
F↓min.
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FIG. 6. (Color online) Bias voltage dependence of the normalized
TMR of DMTJs in the case of coherent tunneling. L1(2) = 25 Å,
LW = 10 Å, mL,W,R = 0.8 me, m1,2 = 0.4me.
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FIG. 7. (Color online) TMR versus voltage for single and double
barrier magnetic tunnel junctions in the case of consecutive tunneling
(SMTJs connected in series). Numerical parameters for SMTJ: UB =
2.8 eV, L = 23 Å; for DMTJ: SMTJ-1(2): UB1(2) = 2.7 eV, L = 25 Å,

m1(2) = 0.46 me, mL(R) = 0.76me.

Figure 6 shows examples of two possible behaviors of the
DMTJ with a very thin middle layer of LW = 10 Å where
coherent tunneling is realized (see numerical data 1 and
2). The effect of voltage asymmetry arises in the case of a
different initial set of kl

F,s for each layer while keeping the
condition of equal barriers (see curve 2). As shown, the TMR
effect can reach large values for certain values of the voltage.
In this small range of voltages, one of the spin channels (which
is the first one) has only one peaklike tunnel probability
while the other spin channels have no peaks, resulting in the
untypical behavior of J P in relation to J AP. The symmetric
case depicted by curve 1 occurs when the wave vectors of the
left and right layers are equal for the majority and minority
subbands (kL

F↑ = kR
F↑ and kL

F↓ = kR
F↓).

It is worth mentioning that in other cases, obtained by, e.g.,
varying L1(2),LW ,V01(2), effective masses, or kl

F,s , other behav-
iors for CHT can be observed. One of the TMR-Va curves with
strong asymmetric voltage branches for DMTJs was derived by
Nozaki et al.12 for Fe/MgO(20 Å)/ Fe(15 Å)/MgO(20 Å)/Fe
junctions. We suppose that their results can be classified as
CHT because the shape of the DMTJ curve has a similar pattern
to our numerical data 1 (see curve 1 in Fig. 6, and DMTJ curve
in Ref. 12). This case is difficult to reproduce numerically and
experimental data may correspond to mixed regimes of CHT
and COT at the same time and may contain an asymmetry
of the barrier’s heights and thicknesses. However, the shape
of the curves is different from those, which can be found in
the literature for typical TMR-Va behavior for DMTJ, e.g.,
Refs. 8,11. Therefore, the CHT representation is not a suitable
model to reproduce the most typical TMR-Va behaviors
including the asymmetry for positive and negative voltage.

B. DMTJ in consecutive tunneling regime

Important experimental results were published recently
in several papers8,28 in which asymmetric voltage behavior
(AVB) and the annealing effects of TMR dependencies in
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SMTJ and DMTJ were investigated. Feng et al.8 showed
experimentally that TMR asymmetry in DMTJ can be model
by a serial connection of SMTJs (consecutive tunneling).
At the same time the symmetric or nonsymmetric voltage
behavior can be used as criteria showing the quality of the
deposited layers.11

Figure 7 shows normalized TMR-Va curves for the SMTJ
and DMTJ where the DMTJ is modeled by junctions connected
in series. The results are in good agreement with experimental
ones obtained by Feng et al. Asymmetric voltage behavior
occurs in spite of the same type of the magnetic materials
for FML,FMW (LW = 30 Å), and FMR and equal barrier
thicknesses L1(2) = 25 Å. The criteria applied here for finding
the model parameters are the best fit of the normalized TMR
to the normalized experimental data as well as Va = Vhalf . The
voltages V SMTJ

half and V DMTJ
half , where the TMR ratio obtains half

of its maximum value, are estimated to be −0.63 V and +0.89
V for SMTJ and −1.0 V and +1.5 V for DMTJ, which are close
to experimental ones. The numerical values of the wave vectors
were estimated as follows: For SMTJ: kL

F↑ = 1.29 Å
−1

, kL
F↓ =

0.39 Å
−1

, kR
F↑ = 1.28 Å

−1
, kR

F↓ = 0.44 Å
−1

. For DMTJ: for
SMTJ-1, which is the first of the two SMTJs connected in series
and for the positive voltage (and for J

P(AP)
1 calculation): kL

F↑ =
1.3 Å

−1
, kL

F↓ = 0.5 Å
−1

, kR
F↑ = 1.028 Å

−1
, kR

F↓ = 0.36 Å
−1

;

and for SMTJ-2, the second SMTJ (for J
P(AP)
2 calculation):

kL
F↑ = 1.028 Å

−1
, kL

F↓ = 0.36 Å
−1

, kR
F↑ = 1.09 Å

−1
,

kR
F↓ = 0.27 Å

−1
. The initial value of the wave vectors

for the left side of SMTJ-2 is equal to the one on the right side
of SMTJ-1 due to the common middle FM layer. The definition
of the normalized TMR is calculated as in the previous case of
CHT except of the determination of the current components,
which can be written as follows for SMTJs connected in series:

J P(AP) = J
P(AP)
1 J

P(AP)
2 Va

Va2 J
P(AP)
1 + Va1 J

P(AP)
2

,

J P(AP)
n = J

P(AP)
n,↑ + J

P(AP)
n,↓ , where n = 1,2 is the number of the

SMTJ in the series connection, and Va1, Va2 are the voltage
drops for the first and second SMTJ, respectively. Considering
equal barriers we have Va1 = Va2 = Va

2 ≡ V and thus

J P(AP) = 2J
P(AP)
1 J

P(AP)
2

J
P(AP)
1 + J

P(AP)
2

.

The current densities J
P(AP)
1 and J

P(AP)
2 are found using

Eq. (1) but with the TC derived for a single-barrier structure
DSB

s . For stand-alone SMTJs it needs to be considered with
DSB

s and Va = V . In particular, if one of the barrier heights
or LW vanished in Eq. (6), it would represent the case of a
single-barrier structure (the same results would be achieved
if the TC were taken from Ref. 25, where DSB

s was found
separately).

Comparing CHT with COT (Fig. 6 and Fig. 7), it should be
noted that for the CHT LW is a parameter of strong influence
while it is not in the case of COT. However, it can be expected
that there is a mixed case of these two types of tunneling
which will be more complicated (for example, for the P case

tunneling could correspond to the coherent tunneling while for
the AP case could correspond to consecutive tunneling).

The approach of the presented model is obviously capable
of accurately describing the AVB in the case of SMTJs and
DMTJs and of classifying the type of tunneling. Unfortunately,
the model disregards possible leakages such as spin-flip
electron processes, charging effects, roughness, and disorder
of the junction surfaces and voltage drops at the electrodes. It
was found, for example, that factors such as spin-flip processes
or disorder17,29 can diminish the difference between the J P and
J AP suppressing TMR values.

We found that a precise fit of the numerical curves for COT
is only possible for either the positive or the negative TMR-Va

branch and not for both at the same time when keeping the
condition of the common middle layer. The fitted data shown
in Fig. 7 are compromise values for the initial parameters for
which both TMR branches show minimum deviations to the
experiment. Thus, the AVB may help to estimate the exact
values of Fermi wave vectors as well as the heights of the
barriers in real systems.

V. SUMMARY AND CONCLUSIONS

Based on the two-band model, we have presented a
quasiclassical approach together with quantum conditions for
the tunnel current in various tunnel systems such as SMTJ
and DMTJ. The TMR was studied in different regimes of
tunneling including resonance and nonresonance behaviors.
Our calculated data are largely in agreement with theoretical
and experimental results for DMTJs and SMTJs.

We found two methods to describe the nonresonant tunnel-
ing mechanisms for DMTJs: One is a DMTJ modeled as single
coherent tunneling system and the other one is a model that
describes a DMTJ as a consecutive tunneling system which
consists of two SMTJs connected in series. Both models (CHT
and COT) can reproduce asymmetrical voltage behavior of the
TMR. Moreover, asymmetric voltage behavior may help to
estimate the exact values of the Fermi wave vectors and the
heights of the barriers, as well as explain Vhalf values in real
systems. The values of the wave vectors applied for the model
are comparable with those that can be found in many exper-
imental or theoretical works. We also showed the importance
of zero bias shift V0 as well as the momentum conservation
law, which apply strict conditions to the electron transport.

One of the advantages of the DMTJ in the resonant tunnel-
ing regime is the high value of the resonant tunneling current,
which is achieved with rather large widths of both potential
barriers, due to QW states of the spin current components. For
appropriate voltages the increased TMR values of the stable
plateau of the flat-dome pattern can be used for applications.
In the case of the single-barrier structure with the same width,
the tunnel current and TMR values vanish rapidly.
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