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Quantum noise in ac-driven resonant-tunneling double-barrier structures:
Photon-assisted tunneling versus electron antibunching

Jan Hammer and Wolfgang Belzig
Quantum Transport Group, Universität Konstanz, D-78457 Konstanz, Germany

(Received 23 May 2011; revised manuscript received 29 July 2011; published 23 August 2011)

We study the quantum noise of the electronic current in a double-barrier system with a single resonant level.
In the framework of the Landauer formalism, we treat the double barrier as a quantum coherent scattering region
that can exchange photons with a coupled electric field, e.g., a laser beam or a periodic ac bias voltage. As a
consequence of the manifold parameters that are involved in this system, a complicated steplike structure arises
in the nonsymmetrized current-current autocorrelation spectrum and a peaklike structure in the cross-correlation
spectrum with and without harmonic ac driving. We present an analytic solution for these noise spectral functions
obtained by assuming a Breit-Wigner line shape. In detail, we study how the correlation functions are affected
by photoassisted tunneling events and discuss the underlying elementary events of charge transfer, where we
identify distinct contributions to the individual shot noise. This enables us to clarify the effects of noncentered
irradiation of such a structure with light in terms of contributions originating from different sets of coherent
scattering channels. Moreover, we show how the noise is influenced by acquiring a scattering phase due to the
complex reflection amplitudes that are crucial in the Landauer approach.
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I. INTRODUCTION

As a striking consequence of charge quantization, shot
noise can be used to characterize electron transport in
mesoscopic systems.1–4 In ballistic electron transport5,6 par-
titioning of the scattered quasiparticles7 is the mechanism
defining the statistics of charge fluctuations in the two
leads. Indeed, the principle of counting individual charges
leads to the full counting statistics approach8 which has
been successfully applied to tackle a variety of problems,
e.g., superconducting heterostructures,9,10 electron transport in
multiterminal conductors,11 zero-frequency noise in multilevel
quantum dots,12 or frequency-dependent noise in interacting
conductors.13 This formalism has also been incorporated to
characterize the elementary events of current-current corre-
lations for energy-independent scattering at zero frequency
but with finite ac driving voltage.14,15 Such a harmonic
voltage dependence can be induced by irradiating the struc-
ture with light,16 e.g., a laser beam.17 Ongoing effort in
improving the detection of current-current correlations at high
frequencies18–20 and coupling such structures to light fields
or ac bias voltages21–30 offers an interesting playground to
examine quantum charge transport or light-matter interaction
in mesoscopic systems both for noninteracting electrons and
including Coulomb interaction. Within recent years con-
siderable progress in ac transport has been achieved. For
example, the irradiation-induced opening of a dynamical gap
has been calculated31 in a two-dimensional (2D) electron gas
when spin-orbit interaction is present. The current and noise
through long, ac-driven molecular wires,32–35 various aspects
about ac-driven carbon-based conductors,36–40 photoassisted
noise in the fractional quantum Hall regime,41 low-frequency
current noise in diffusive conductors,42 noise in adiabatic
pumping,43–45 and the influence of electron-phonon interaction
have been studied.46 Even more works have investigated the
influence of Coulomb repulsion on the transport through
a quantum dot.42,47–53 Electron-electron interactions can be
included within a Green function formalism or generalized

master-equation approach. Interestingly, quantum noise
spectra are symmetrized by performing a Markov
approximation.54–56 To obtain the symmetrized noise spectrum
directly, one can make use of the MacDonald formula and
calculate the noise of a quantum dot system with ac bias
voltages up to a Born approximation, as shown recently in
Ref. 57.

It has been shown recently in experiment18–20,58–60 and
theoretically3,4,54,55,61–67 that the current in a two-terminal
device, as for a coherent scattering double-barrier structure,
leads to an asymmetric noise spectrum in the quantum regime.
Since current operators at different times do not commute one
could argue that, in order to get physical results, the shot-noise
spectrum should be symmetrized in the frequency � in analogy
to the classical noise.16 Indeed, such a quantity describes
experiments in the classical detection regime correctly.61,68–71

Nevertheless it has become clear during recent years that
asymmetric noise can be measured if a detector discriminates
between the absorption and emission of energy quanta h̄� from
or to the system.62–64 Then the positive (negative) frequencies
of the noise spectra correspond to energy quanta h̄� transferred
from (to) the radiation field to (from) the charge carriers in the
quantum dot. The negative-frequency part of the spectrum, the
emission branch, should be measured by an active detector
setup,64 since at low enough temperature the energy transfer
from the quasiparticles to the radiation field is forbidden
otherwise. The detected current fluctuations are described
by a combination of the “pure” correlators of two currents
at different times. Fourier transformation to the frequency
domain defines the asymmetric noise spectrum, which might
in addition depend on some harmonic driving in the leads
eVac cos(ωt), as

Sαβ(�,�′,ω) =
∫ ∞

−∞
dtdt ′Sαβ(t,t ′,ω)ei�t+i�′t ′ . (1)

The nonsymmetrized shot noise correlates currents at two
times:

Sαβ(t,t ′,ω) = 〈�Îα(t)�Îβ(t ′)〉 (2)

085419-11098-0121/2011/84(8)/085419(12) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.085419


JAN HAMMER AND WOLFGANG BELZIG PHYSICAL REVIEW B 84, 085419 (2011)

with variance �Îα(t) = Îα(t) − 〈Îα(t)〉. Experimentally acces-
sible are the fluctuations averaged over a time scales large
compared to the one defined by the driving frequency ω.
Thus, as in Ref. 16, we introduce Wigner coordinates t =
T + τ/2 and t ′ = T − τ/2 and average over a driving period
2π/ω. Then the noise spectrum is defined by the quantum
statistical expectation value of the Fourier-transformed current
operator Îα(�) via Sαβ(�,�′,ω) = 2πδ(� + �′)Sαβ(�,ω) =
〈Îα(�)Îβ(�′)〉. Sαβ(�,ω) is just the Fourier transform of
Sαβ(τ,ω). Similarly, in the case without ac driving the noise
is only a function of relative times τ = t − t ′. In order to
keep notation short, in the dc bias limit we write Sαβ(�) :=
Sαβ(�,ω = 0).

As we show in this paper, the finite-frequency current noise
can be interpreted by splitting it into contributions which are
emanating from reservoir α = L,R and being scattered into
terminal β = L,R. This motivates us to study the individual
autoterminal and cross-terminal current-current correlators,
the “building blocks” of the possible noise spectra measured
in experiments.3,18–20,58–60 The paper is organized as follows:
Below we describe the basic properties of the driven quantum
dot. In Sec. II we provide the basic formulas in the scattering
formalism. The main results are discussed in Secs. III and IV
about the auto- and cross-correlation noise spectra. We relate
features of the calculated plots to possible scattering events
and compare the spontaneous photoassisted tunneling (PAT)
events at finite dc bias without driving with those induced by
the ac voltage. Where possible we connect our approach to
known cases. Section V is devoted to interpreting the results
in terms of elementary events of charge transfer. The results
are summarized in the last section of this paper.

For resonant tunneling with energy-dependent transmission
through the scattering region, e.g., as in many quantum dots or
molecules, the scattered particles have to be in resonance with
the available energy levels of the scatterer. In the case of a
single resonant level at least one of the chemical potentials
of the reservoirs has to be aligned with this energy level.
Alternatively a quasiparticle in the leads has to absorb or
emit suitable energy quanta to bridge the energy gap between
the chemical potential and the resonance.25,26 This can be
achieved via absorption or emission of photons stimulated by
an external electric field, typically a microwave or laser beam.
In the Tien-Gordon theory16,72 such an illumination with light
corresponds to an oscillating voltage in either one or both leads.
Depending on the way the light field is coupled to the electronic
circuit, it has to be treated as either symmetric or asymmetric
in the amplitudes of the harmonic ac driving in the left and
right leads.73,74 This could also constitute a way to measure the
difference between current correlators on the left and the right
sides of the junction. A spatial asymmetry in the illumination
could additionally introduce different temperatures in the
two leads and thus create thermocurrents.28 If the driving
is asymmetric there can be a photocurrent even when no
bias voltage is applied. For the noise, asymmetry effects
in terms of enhancement or reduction of the ac drive in a
terminal α can be related to the corresponding correlator and
so to the kind of scattering events described by its integrand.
We neglect interactions and disregard charging effects by
assuming metallic structures with perfect screening. In general

one should treat charging effects in a self-consistent manner
via a dynamical conductance,16,75–77 which has been recently
confirmed experimentally.78

II. SCATTERING APPROACH TO RESONANT
TUNNELING WITH ac DRIVING

Following the work of Pedersen and Büttiker,16 we take
the ac voltage Vm(t) = Vac,m cos (ωt) at contact m = L,R

into account by redefinition of the reservoir operators via
âm(ε) = ∑

l â
′
m(ε − lh̄ω)Jl (αm). Here the Jl are the Bessel

functions of the first kind. The dimensionless parameters
αL = a+1

2 α and αR = a−1
2 α define the strength of the ac drive

in the contacts via α = eVac
h̄ω

and the asymmetry parameter
a ∈ [−1,1]. Vac denotes the amplitude of the ac bias coupling
to the double-barrier system and ω the corresponding driving
frequency. In order to write down the current one has to
integrate the expression for the current operator and replace the
statistical averages of the creation and annihilation operators
by their equilibrium values. For the Fermi function in lead
m the abbreviation f e

m(ε) = {exp [βm(ε − μm)] + 1}−1 with
βm = 1/kBTm is used. Unoccupied states, in other words
occupied holelike states, are denoted by f h

m(ε) = 1 − f e
m(ε).

We treat our setup as a Fabry-Pérot-like double-barrier
system, for which the transmission probability T (ε,εr ) =
t†(ε,εr )t(ε,εr ) is well known.79 Incoming and outgoing scat-
tering states are related by the energy-dependent scattering
matrix (s matrix) via b̂n(ε) = ∑

m smnâm(ε). The s matrix is of
the form

s(ε,εr ) =
(

r(ε,εr ) t ′(ε,εr )
t(ε,εr ) r ′(ε,εr )

)
. (3)

For a resonant level we can use the Breit-Wigner expression to
define the matrix elements and thus the transmission through
the scattering region via

smn(ε,εr ) = δmn − i

√
γmγn

ε − εr + i
γ

2

, (4)

where γ = ∑
m γm is the half-width of the resonance and εr

is the resonance energy of the level. In general the barrier
strength γn could also depend on energy, which we neglect
here for simplicity. Furthermore we assume symmetric barriers
γL = γR = γ /2 and call the setup symmetric if the resonance
is at the Fermi energy (εr = 0) and −μL = μR = eV/2.

If the s matrix does not depend on energy, quantum noise
generated by the current partitioning at the scattering region
can be traced down to fluctuations in the electronic occupations
of the contact with the emission of carriers from left and right
leads.80 These fluctuations are the sum of variances of the
possible current pulses of incident (or empty) wave packets at
left and right contacts times their weight factors. An incident
wave packet can either be transmitted, with probability T ,
or reflected, with probability 1 − T . It has been shown that
in this limit completely closed (T = 0) or open (T = 1)
channels cannot produce any noise, since either no charge
is transferred or there is no partitioning at the scatterer. For
intermediate values of T the quantum noise in this regime
consists of four linear contributions, two contributions with
initial and final states related to the same terminal with
onsets at � = 0 and two contributions with initial and final
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states at opposite terminals and onsets at h̄� = ±eV . This
limit is approached in the spectrum of Fig. 1 for γ � eV .
Thus, at zero temperature the asymmetric noise spectrum
is nonzero if h̄� > −eV and exhibits kinks at frequencies
h̄� = 0,eV . In the zero-frequency limit some contributions
will be absent due to the Pauli principle. This is, e.g., the
case for current pulses incident from the right and left leads
where one is transmitted and the other one reflected, the whole
process being proportional to T (1 − T )f e

α (ε)f e
β (ε), because

then f e
α (ε) = f e

β (ε). However, at finite frequency and with
additional ac driving it is in general not possible to express
the noise in terms of transmission or reflection probabilities
but one has to interpret the different products of s matrices
involved in the four contributions to the noise. The weight of
these contributions is given by the Bessel functions Jn (α) that
describe a photon emission or absorption processes of order
n at driving strength α. The noise spectral density is defined
as

Sαβ(�,ω) =
(

e2

2πh̄

)∫
dε

∑
γ δ,lkm

Jl

(
eVγ

h̄ω

)
Jk

(
eVδ

h̄ω

)
Jm+k−l

(
eVδ

h̄ω

)
Jm

(
eVγ

h̄ω

)

× Tr{Aγ δ(α,ε,ε + h̄�)Aδγ [β,ε + h̄� + (m − l)h̄ω,ε + (m − l)h̄ω]}f e
γ (ε − lh̄ω)f h

δ (ε + h̄� − kh̄ω) (5)

with the so-called current matrix Aγ δ(α,ε,ε′) = δαγ δβδ −
s∗
αγ (ε)sβδ(ε′) which connects incoming and outgoing states via
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FIG. 1. (Color online) Top: Zero-temperature autocorrelations for
a centered resonance (top) where each curve belongs to a different
resonance width γ . The curves are for symmetrically applied dc
bias (−eV/2 = μl = −μr ). With increasing resonance width γ the
steplike structure of the noise spectrum gets washed out. With
increasing γ the noise at negative frequencies is reduced while
the spectrum exhibits the typical linear frequency dependence for
energy-independent scattering. In the limit of a sharp resonance,
the Fano factor is given by F = 1/2,1,1 + sgn� for h̄|�| 	 γ ,
γ < h̄|�| < e|V |/e, and h̄|�| > e|V |/2, respectively. Bottom: The
four contributions to the noise spectrum SLL(�,L)α→β for resonance
positions εr/eV = −0.3,0,0.3 and γ /eV = 0.01 are shown. Shifting
the resonance or the potentials will change the positions of the steps
and the impact of the contributions.

the s matrices at different energies. If one of the frequencies
involved is zero at least some correlators can be written in
terms of T (ε) and R(ε). But in general this is not the case
due to the special role of the complex reflection amplitudes.
In equilibrium (eV = 0,α = 0) these amplitudes lead to finite
noise even if no transmission through the system is possible.81

We will emphasize their special role concerning the noise
spectral function if finite bias voltages are applied. Therefore
we separate the dc noise spectrum into a sum of states which
are scattered from terminal α to terminal β:

SLL(�,ω) :=
∑

α,β=L,R

Cα→β(�,ω). (6)

The four correlators contributing to the autocorrelation
noise without time-dependent voltages (ω = 0) are then
determined by

CL→L(�) = e2

2πh̄
�(h̄�)

∫ μL

μL−h̄�

dε |r∗(ε)r(ε + h̄�) − 1|2,
(7a)

CR→R(�) = e2

2πh̄
�(h̄�)

∫ μR

μR−h̄�

dε T (ε)T (ε + h̄�), (7b)

CL→R(�) = e2

2πh̄
�(h̄� − eV )

∫ μL

μR−h̄�

dε R(ε)T (ε + h̄�),

(7c)

CR→L(�) = e2

2πh̄
�(h̄� + eV )

∫ μR

μL−h̄�

dε T (ε)R(ε + h̄�).

(7d)

Here the correlator of Eq. (7a) cannot explicitly be written
as a product of probabilities. Rather we find a term with
states scattered from and back to lead L describing the
two-particle quantum interference of coherently scattered
quasiparticles with the occupied states in the lead where
current fluctuations are measured. The quasiparticles in the
lead can interfere either with a reflected quasielectron that
absorbs a quantum h̄� or with a quasihole propagating along
the inverse path and emitting a photon with energy h̄�.
In terms of probabilities CL→L(�) acquires a finite scat-
tering phase (ε,�) = Arg [r∗(ε)r(ε + �)] via its integrand
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that can be written as {1 + R(ε)R(ε + h̄�) − 2[R(ε)R(ε +
h̄�)]1/2 cos[(ε,�)]}f e

L(ε)f h
L (ε + h̄�). Moreover, it is this

contribution that can produce noise even for vanishing trans-
mission, in analogy to the equilibrium problem. For our choice
of chemical potentials the only nonvanishing correlator at zero
frequency is given by Eq. (7d).

Without ac bias voltages but at finite frequency the
autocorrelations are real and the cross correlations at opposite
terminals are the complex conjugates of each other, so they
obey the symmetries

S∗
LL(�) = SLL(�), (8)

S∗
LR(�) = SRL(�). (9)

In addition, if � = 0, the well-known symmetry Sαα(� =
0) = −Sαβ(� = 0) is recovered, so the sum of all current
correlations vanishes,

∑
α,β=L,R Sαβ(� = 0) = 0; see also

Refs. 2,67. In order to develop an intuitive interpretation for
products of two s matrices s∗

αβ(ε)sα′β ′(ε + h̄�) we express
them in terms of probabilities. If both s matrices have the same
indices α′ = α and β ′ = β, we introduce the transmission and
reflection functions

T (ε,ε + h̄�) = t∗(ε)t(ε + h̄�), (10)

R(ε,ε + h̄�) = r∗(ε)r(ε + h̄�). (11)

In terms of the usual probabilities T (ε) and R(ε) we find

T (ε,ε + h̄�)

= T (ε)

(
ε + h̄� T (ε + h̄�)

ε + h̄�
+ ih̄� T (ε + h̄�)

γ

)
, (12)

R(ε,ε + h̄�)

= R(ε)

(
ε + h̄� T (ε + h̄�)

ε
+ ih̄�(ε + h̄�)T (ε + h̄�)

εγ

)
.

(13)

For � → 0 these expressions reproduce the probabilities T (ε)
and R(ε). At finite � they illustrate nicely how an imaginary
part and at the same time an additional contribution to the real
part are acquired, both proportional to h̄� T (ε + h̄�). At the
same time contributions proportional to the probability T (ε)
are modified by a factor ε/(ε + h̄�). Depending on the value
of �, this can lead to a reduced or enhanced transmission
function for those processes. The imaginary part can be seen
as a finite scattering time in the Fabry-Pérot setup where the
corresponding time scale is given by the inverse resonance
width 1/γ . If we allow arbitrary pairings of s matrices at
energies separated by the frequencies �,ω, as they appear
in Eq. (5) for the noise spectral function with finite ac bias
voltage, we find the transmission functions

T (�m,ωn) := s∗
LR(�m)sLR(ωn)

= T (�m)T (ωn)

(
1 + εmεn

γ 2
+ i

ωn − �m

γ

)
,

(14a)

R(�m,ωn) := s∗
LL(�m)sLL(ωn)

= R(εm)R(εn)

(
1 + γ 2

εmεn

+ i
γ (ωn − �m)

εnεm

)
,

(14b)

M(�m,ωn) := s∗
LL(�m)sLR(ωn)

= R(�m)T (ωn)

(
ωn − �m

εn

+ i
ε2
n + γ 2

γ εn

)
.

(14c)

Above we used the shorthand notations ωm(�m) = mh̄ω(�)
and εn(m) = ε + ωn(�m), with integer m,n.

Since we consider only symmetric coupling to the leads
(γL = γR), the s matrices are invariant when the reservoir in-
dices L and R are exchanged. Then the noise is also symmetric
under exchange of the indices L,R if the dc bias is reversed.
Therefore we deal only with the autocorrelation and cross-
correlation noise SLL(�,ω) and SLR(�,ω). Consequently we
also give the formulas in terms of t(ε) = sLR(ε) = sRL(ε) as
well as r(ε) = sLL(ε) = sRR(ε).

III. CURRENT-CURRENT AUTOCORRELATIONS

The description in terms of initial and final states defined
by the Fermi function products is supported by expressing the
noise spectrum with the help of Fermi’s golden rule63,64:

Sαα(�) = 2π
∑
i,f

Pi |〈i|�Îα|f 〉|2δ(εi − εf − h̄�), (15)

where Pi is the probability that the initial state is filled,
here described by the grand-canonical ensemble. The system
absorbs photons h̄� from an electric field and tunnels from
the initial state |i〉 = |i,n〉 with n photons to the final state
|f 〉 = |f,n + 1〉 containing n + 1 photons. In the same way
the substitution � → −� describes emission of photons with
final states containing n − 1 photons. Then the sum of emission
and absorption processes can be used to relate the noise
spectrum to the ac conductivity. For a Breit-Wigner line shape,
Eq. (4), the noise spectral density can be calculated analytically
at kBT = 0. In the dc limit integration of Eqs. (7) yields

CL→L(�,V ) = �(�)f (�)[1 + (�/γ )2]F (μL − εr ,�),

(16a)

CR→R(�,V ) = �(�)f (�)F (μR − εr ,�), (16b)

CL→R(�,V ) = �(� − eV )f (�) G(ε − εr ,�)|μL

μR−� ,

(16c)

CR→L(�,V ) = �(� + eV )f (�) G(ε − εr ,�)|μR

μL−� ,

(16d)

where we used the definitions provided in the appendix,
Eqs. (A1)–(A13). The result for CR→L(�,V ) is identical to
that for CR→L(�,V ) when we interchange the reservoir indices
L,R and thus replace eV by −eV in the prefactor. When the
setup is symmetric the result for the cross-terminal contribu-
tions is defined by the replacements G(ε − εr ,�)|μL

μR−� →
H (−V/2,�) and G(ε − εr ,�)|μR

μL−� → H (V/2,�). Obvi-
ously, the unique fingerprint of the terminal L, where the
fluctuations are probed, is given by the additional frequency
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dependence in the prefactor. Moreover, at � = 0 the noise
power is defined by SLL(0,V ) = CR→L(0,V ) where

CR→L(0,V ) = e2γ

4h̄

[
arctan

(
μR−εr

γ

)
−arctan

(
μL−εr

γ

)

+ γ

(
μR−εr

(μR − εr )2+γ 2
− μL−εr

(μL − εr )2+γ 2

)]
.

(17)

Thus, at −μL = μR = eV/2 and with γ 	 eV we have
CR→L(0,V ) = e2γπ/2h̄. This results in the well known sub-
Poissonian Fano factor F ≡ SLL(� = 0,ω)/eI = 1/2. In the
opposite limit, when h̄� � eV , the correlators approach the
values

CL→L(� → ∞,V ) = e2πγ

2h̄
, (18a)

CR→R(� → ∞,V ) = 0, (18b)

CL→R(� → ∞,V ) = e2γ

2h̄

[
π − 2arctan

(
eV

2γ

)]
, (18c)

CR→L(� → ∞,V ) = e2γ

2h̄

[
π + 2arctan

(
eV

2γ

)]
, (18d)

in agreement with Fig. 1. For large bias voltages CL→R(� →
∞,V ) = 0 whereas CR→L(� → ∞,V ) and CL→L(� →
∞,V ) both contribute unity to the frequency-dependent Fano
factor. Thus, for large frequencies the Fano factor approaches
F = 2. Due to the lengthy expressions that occur when finite
ac bias is applied, we provide the analytical results in the
Appendix, Eqs. (A13). Then Fano factors F > 2 are possible
since the average dc current can be suppressed by the ac bias
voltage. In addition to the onsets of the correlators and their
interpretation in terms of absorption (� > 0) and emission
(� < 0) of photons by the scattered quasiparticles, there is
a second important ingredient that determines the current
fluctuations. Namely, if the energy is provided there has to exist
a scattering channel so a quasiparticle can contribute to the
current and current noise. This is determined by the integrand,
the distance of the resonant level from the chemical potentials
of the reservoirs, and the resonance width. The interplay of
these features will be discussed in the following in detail.

A. Effect of finite frequency

In the noise spectrum of Fig. 1 the first step of SLL(�) is
determined by states contributing to CR→L(�). For a centered
resonance the distance of the resonance from the chemical
potential of the left reservoir is −eV/2, so the step is at the
corresponding frequency. If we increase the distance from
the reservoir of the final state the step is shifted to smaller
frequencies so the plateau gets wider. This behavior can be
understood by an argument provided by the structure of the
product of s matrices that is involved (Fig. 2). This product
exhibits a single peak at εr − h̄� that is only probed by
the noise if it is inside the energy window μL − h̄� · · · μR

and a small shoulder for energies larger than h̄�. It is clear
from the above arguments that the step width is 2γ . Since
for frequencies −eV/2 < h̄� < eV/2 no further scattering
paths exist, the noise stays constant in this regime apart from
the dip around � = 0. This sub-Poissonian Fano factor can
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FIG. 2. (Color online) Examples of the integrand real parts for
finite eV without (top) and with (bottom) ac driving. We show the
integrands Mn→n′ (�,ω) with (n,n′) = (L,L), (L,R), (R,L) and (R,R) as
a function of ε for a centered resonance (εr = 0). The lines show the
integrand while the filling denotes the integration interval. Top: No
ac driving, so at negative frequency only R → L contributions are
present, as indicated by the shaded region. The L → R term is similar
to the other cross-terminal contribution; both have a single peak,
located at ε = εr or at ε = εr − h̄�. If � → 0 these terms interfere
destructively leading to a double-peak shape with maximal values
of 1/4 around the local minima at ε = 0, − h̄�. The autoterminal
contributions have a double-peak structure at the same energies. For
� → 0 the L → L term can be gretaer than 1, but it is not probed for
a centered resonance. Its significant contributions are at h̄� � eV/2
and not shown in the example. Bottom: Integrands of the ac-driven
setup with h̄�/γ = 30, h̄ω/γ = 65, and l = 1; other parameters as
above. Due to the complex s matrices negative values are possible.

be understood as the effect of electron antibunching. Since
incoming wave packets hit the scattering region with a rate
1/eV and have a temporal extension proportional to 1/γ , a
frequency h̄� ∼ γ cannot probe the correlation between them.
This picture is supported by the fact that at frequencies of the
order of the resonance width the two correlated events, which
are suggested by the Fermi functions, are both in resonance,
namely, an electronlike state f e

R(ε) transmitted with probability
T (ε) at energy ε from right to left, and a hole state f h

L (ε + h̄�)
reflected at the left terminal at energy ε + h̄� with probability
R(ε + h̄�). So the integrand in CR→L is suppressed by a
factor of 2 (we have a second resonant path) in terms of the
interferencelike dip around ε = 0. In the mentioned regime the
transmission can still be aligned with the resonance energy,
leading to the same charge transfer as for higher frequencies,
whereas the reflected path is strongly suppressed since R(ε) →
0 as ε → εr , so the ratio S/eI should be suppressed. A similar
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discussion of the other contributions is straightforward. The
main aspects are as follows: The dominating contributions
are those where the final state is related to the measurement
terminal. This is also the terminal to which charge is effectively
transferred. If the energy transferred via PAT events matches
the distance of the resonance energy εr from the chemical
potential μL = −eV/2, then the interferencelike term CL→L

leads to the second step, located at � = eV/2 in the noise
spectrum. Assuming a centered resonance, the integrand for
this term exhibits peaks at ε = 0, − h̄�. Those peaks unite
to a single one when h̄� � 2γ [see the black curve in
Fig. 2(a)] and show destructive interference corresponding
to the aforementioned antibunching of the quasiparticles. If
μL = μR = 0 this behavior is the origin of a small overshoot
in the autocorrelation spectrum at frequency � � γ before the
spectrum saturates (not shown in the plots).

If a finite dc bias is applied, then the peak around ε = 0 is
outside the integration window. But the center of the second
peak comes into play when h̄� � eV/2; thus we find a step
there. The smallest impact on the noise comes from CR→R(�)
and CL→R(�) since they probe the tail of the resonance only.
The latter naturally has only a small impact on current-current
correlations because a quasiparticle needs to be provided
with an energy quantum h̄� � eV in order to overcome the
potential difference. Therefore the resonance position, as long
as it is inside the bias window, does not affect the onset of the
contribution, but modifies the impact on the noise.

Ω -

0

0

+

+

-

ω

fh
L( Ω,−k) fe

R( 0,−l)

μL

μR

F

FIG. 3. (Color online) Elementary events of Cα→β (�,ω). We
have chosen (α,β) = (R,L) and εr = 0 as an example. The frequency
is fixed close to the step at h̄� = −eV/2 in the noise spectrum.
A higher frequency would shift the lower bound of the integration
window (colored region around the resonance) and the holelike
final states downward toward μL. The filling of the left and
right reservoirs refers to the applied dc and ac bias voltages.
The available free and occupied states are defined by the Fermi
functions for electrons f e

L/R(ε�,k) = fL/R(ε + h̄� + kh̄ω) and for
holes f h

L/R(ε�,k) = 1 − fL/R(ε + h̄� + kh̄ω). Arrows indicate the
possible mechanisms which are suggested by the products of s
matrices that appear in the integrands. We show the contributions up
to first order in the driving nh̄ω, so n = 0, ± 1. The colored region
between the barriers denotes the integration interval when n = 0.

B. Influence of harmonic ac driving

Here we have to distinguish between differently coupled
light fields: whether the ac drive is applied at both terminals
or one terminal only. The ac bias voltage opens additional
scattering paths as illustrated in Fig. 3 for CR→L(�,ω) with
arbitrary a. There, PAT events induced by the ac bias are
considered up to first order. When a = 1 all contributions to
the autoterminal noise except CL→L(�,ω) are given by the set
of scattering paths determined by the s matrices without ac
drive. In that case the two Bessel functions corresponding to
the undriven terminal generate a Kronecker δ which assures
that the two remaining Bessel functions of the other terminal
have the same indices. So the product of all Bessel functions
is positive by definition. Furthermore, the arguments of the
s matrices are independent of the driving frequency because
only the energies (m − l)h̄ω with m − l = 0 are allowed. Thus,
for scattering events where one of the two states is related to
a driven reservoir, either the initial or the final one, the ac
driving enters only via the kh̄ω or lh̄ω terms in the argument
of the Fermi functions but leaves the integrand unchanged.
Consequently, PAT events that are stimulated by the ac bias
voltage show up in all correlators even if the initial and final
states are not related to the driven terminal. But the number of
features that can be identified in the noise spectral function
increases when |a| �= 1. Now let us take a closer look at
Fig. 4, where eV = 0 and � = 0: Starting the analysis with
the curve for a = 1, one can identify the minima and maxima
of SLL(�,ω) with the zeros of the Jn(α) when n = 0,1. The
surprising fact that the oscillations have minima when J1

vanishes is due to the n = 0 term, which has no contribution
to the noise because it does not probe the peak of the
integrand involved. But for frequencies larger than γ the n = 1
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FIG. 4. (Color online) Zero-dc-bias auto correlations with finite
ac bias. Top: Noise vs driving for different values of the asymmetry
parameter a. Other parameters are h̄ω/γ = 50, α = 1.86, eV,� = 0.
Bottom: Some examples for different asymmetries of the drive
(a = 0,0.5,1) of the four contributions to the noise vs. the driving
strength α. Here n,n′ ∈ L,R refer to the initial and final states and
i �= f to the events including both terminals (R → L and L → R

give the same contribution). For a → 1 (Vac,R = 0) the R → R

term vanishes (bottom). Then SLL(h̄� = 0,eV = 0) oscillates around
smaller values in comparison to the a = 0 configuration.
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term does and therefore dominates the charge transport and
fluctuations. The same reasoning leads to the maxima when J0

has minima and thereby reduces the weight of the zero-order
terms. Because of the completeness of the Bessel functions
the higher-order terms, which are nonzero if m = l > 0, have
a stronger weight and the noise is enhanced. In this example
the ac-generated PAT contributions to the noise are related
to the left reservoir—the oscillating one—so the correlations
CR→R(�,ω) vanish. The oscillatory behavior of the Bessel
functions is clearly visible for contributions CL→L(�,ω) and
for the two cross contributions to SLL(� = 0,ω). These are
identical and exhibit even more pronounced oscillations, with
a maximal contribution of Cα→β(�,ω)/eI = 0.125. That is
why the two limiting cases a = 1 and a = 0 have maximal
values of 0.5 and 0.375. If the asymmetry in the driving is
reduced, as was done above (meaning that we increase the
amplitude of the driving with opposite sign at the second
reservoir), the contributions CR→R(�,ω) are finite. As an
example we analyze the curve for a = 0.5. This means that
in the left reservoir we have an effective driving of the order
of 0.75α while at the right reservoir the driving is of the order
of 0.25α. Consequently, we find maxima for CL→L(�,ω)
where Jn(0.75α) has minima and for CR→R(�,ω) where
Jn(0.25α) has minima. Since we are analyzing a situation
where εr = 0 (symmetric setup) the two cross contributions
Cα→β(�,ω) (α �= β) to the autocorrelation noise are identical
at eV = 0, showing minima at intermediate positions between
the expected minima related to αL and αR . The results are
analogous for the cross-correlation spectrum at � = 0 as a
function of the driving. The curve starts at SLR(α = 0) = 0
and oscillates around negative values between −1/2 and −3/8
(a = −1 to 1). At finite voltage the curves start at ±1/2 and
still show the oscillations due to the Bessel functions. But,
e.g., for the autocorrelator in our setup, contributions scattered
into the left reservoir (the driven one) are again dominant.
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FIG. 5. (Color online) Autocorrelation (top) and cross-correlation
(bottom) noise spectral density with ac driving (α = 1.86, h̄ω/γ =
35, a = 1). The coincidence of steps in the autoterminal and peaks
in the cross-terminal noise spectra is only partial, since the integrand
in dominating contributions probes peaks at different energies. The
(local) minimum at h̄� = 0 of the (auto-) cross-terminal noise
translates for the chosen parameters into a Fano factor F = (+) −0.5.

Then the CR→L(�,ω) term is the one giving the finite value at
zero driving, consistent with the dc noise spectra. The second
dominant contribution at � = 0, CL→L(�,ω), is switched on
by the driving voltage. When an additional ac bias voltage is
applied, the noise spectral function as plotted in Fig. 5 acquires
additional steps due to PAT events related to the driving.
The height of the steps is nonuniversal and determined by
the Bessel functions. Since the arguments αL/R stay constant,
the step height decreases for large n and oscillates as a function
of α. It vanishes at nodes of the Bessel functions, analogously
to the limit of energy-independent scattering as studied for
ac-biased junctions in Ref. 21. For vanishing ac drive, only
the zero-order Bessel function should contribute; thus we find
a step height proportional to J0(0) = 1. In addition to the dip
around � = 0 one now expects further features in the noise at
frequencies h̄� = μα − εr ± nh̄ω with α = L,R.

IV. CURRENT-CURRENT CROSS CORRELATIONS

In this section we focus on the cross-correlation noise
spectral function. Again we write contributions to the zero-
temperature noise explicitly as a sum:

SLR(�,ω) =
∑

α,β=L,R

Ccross
α→β(�,ω) (19)

determines the cross-correlation noise spectrum, where the
Ccross

α→β(�) are in general complex quantities. If α = β the cor-
relators Ccross

α→α(�) ∈ R at � = 0 in the dc limit. Accordingly,
at finite frequency these terms acquire a phase factor. The
different contributions in the dc limit read

Ccross
L→L(�) = e2�(h̄�)

2πh̄

∫ μL

μL−h̄�

dε

× t∗(ε + h̄�)t(ε)[r∗(ε)r(ε + h̄�) − 1], (20a)

Ccross
R→R(�) = e2�(h̄�)

2πh̄

∫ μR

μR−h̄�

dε

× t∗(ε)t(ε + h̄�)[r∗(ε + h̄�)r(ε) − 1], (20b)

Ccross
L→R(�) = e2�(h̄� − eV )

2πh̄

∫ μL

μR−h̄�

dε

×r∗(ε)t(ε)r∗(ε + h̄�)t(ε + h̄�), (20c)

Ccross
R→L(�) = e2�(h̄� + eV )

2πh̄

∫ μR

μL−h̄�

dε

×t∗(ε)r(ε)t∗(ε + h̄�)r(ε + h̄�). (20d)

The onsets of the Ccross
α→β(�) are the same as before. As

shown in Fig. 6, the finite-frequency cross-correlation noise
spectrum can be positive as is also the case in supercon-
ducting systems.82,83 Steps in the autocorrelation spectrum
now translate into peaks at negative and into dips at positive
frequencies as can be seen in Fig. 6. To shine light on
this difference it is again fruitful to study the shape of the
integrands involved. In comparison to autocorrelations, cross
correlations exhibit a different symmetry in the pairing of s
matrices. The cross contributions to Sαβ (�,ω) are similar to
the autocorrelation contributions to Sαα(�,ω), and vice versa.
In detail, the main contribution now originates from Ccross

R→L.
Similar to the integrand shown in Fig. 2 for autocorrelation
noise with ac driving, the integrand and thus the correlator
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FIG. 6. (Color online) Frequency dependence of the zero-
temperature current-current cross correlations for εr = 0. The min-
imum at � → 0 is given by SLR = −SLL|�=0. Dominating terms
inside the integration intervals originate from the cross-terminal
contribution. The inset shows a zoom into the autoterminal terms,
which are identical (εr = 0) and orders of magnitude smaller than
the cross-terminal ones due to the sharp resonance considered. Now
a peaklike structure can be observed instead of the steplike behavior
observed in the autocorrelation spectrum.

itself can be negative. At frequencies h̄� � γ the correlations
between opposite terminals are negative by definition, due
to the unitarity of the s matrix. In this regime the integrand
takes negative values whereas for energies h̄� � γ a positive
contribution emerges due to PAT. An off-centered resonance
splits the peak at h̄� = −eV/2 in Ccross

R→L symmetrically, in
analogy to the shifting of the step position in the current-
current autocorrelation spectrum, Fig. 1. If εr > |eV/2| these
two peaks at h̄� = −eV/2 ± εr move toward � = −eV,0,
where they vanish and the noise spectrum becomes negative
along the whole emission branch (� < 0). As for the auto-
correlation noise spectrum, at kBT = 0 the cross-correlation
noise spectrum can be calculated analytically by assuming
a Breit-Wigner line shape, Eq. (4). Integration of Eqs. (4)
yields

Ccross
L→L(�) = �(�)f (�)(1 + i�/γ )F (μL − εr ,�), (21a)

Ccross
R→R(�) = �(�)f (�)(1 − i�/γ )F (μR − εr ,�), (21b)

Ccross
L→R(�) = −�(� − eV )f (�) K(ε − εr ,�)|μL

μR−�, (21c)

Ccross
R→L(�) = −�(� + eV )f (�) K(ε − εr ,�)|μR

μL−�, (21d)

where the functions F (ε,�) and K(ε,�) are defined in the
Appendix; see Eqs. (A1)–(A12). As for the autoterminal
noise, the correlator Ccross

R→L(�) is equal to Ccross
L→R(�) when the

reservoir indices L,R are interchanged, and thus the voltage
in the Heaviside � function changes sign, too. Ccross

R→R(�) is
equal to Ccross

L→L(�) if we take the complex conjugate of the
prefactor (1 + i�/γ ). Overall the solutions are very similar
to those for the autoterminal noise spectral function; the most
prominent difference is the imaginary part occurring in the
prefactors. Again the results can be simplified for a symmetric
setup, leading to the replacements K(ε − εr ,�)|μR

μL−� →

−2K(V/2,�) and K(ε − εr ,�)|μL

μR−� → 2K(V/2, − �). At
� = 0 the noise power is given by SLR(0) = Ccross

R→L(0) with

Ccross
R→L(0) = −e2γ�(eV )

4h̄

(
γ (μL − εr )

γ 2 + (μL − εr )2

− γ (μR − εr )

γ 2 + (μR − εr )2
+ arctan

[
μR − εr

γ

]

− arctan

[
μL − εr

γ

])
. (22)

Assuming γ 	 μL/R − εr , this results in Ccross
R→L(0) = − e2γπ

2h̄
and thus a Fano factor F = −1/2. At � = 0 the sum of all
correlations vanishes, SLR(0) + SLL(0) + SRL(0) + SRR(0) =
0, since in this limit all s matrices are probed at the same
energy. In the limit |h̄�| � |eV | all correlators that contribute
to the cross-correlation noise spectrum vanish.

Now we switch on the ac bias voltage and set �,εr = 0.
Then the autoterminal contributions to the cross-correlation
spectrum are real and can therefore be described by the product
of two transmission probabilities. Cross-terminal contributions
are related by complex conjugation. In this limit we can use
the transmission functions introduced in Eq. (14) to express
the integrands defined by Eq. (5) in an intuitive way as

Mcross
L→L(ωm−l ,0) = Mcross

R→R(ωm−l ,0)

= T (ε)T [ε + (m − l)h̄ω], (23a)

Mcross
L→R(ωm−l ,0) = [

Mcross
R→L(ωm−l ,0)

]∗

= T [0,ε + (m − l)h̄ω]R(0,ωm−l). (23b)

We give our analytical results for the cross-correlation
noise spectral function when a finite ac bias is applied in
the Appendix, Eqs. (A14). Corresponding noise spectra are
presented in Fig. 5 for different values of a.

V. ENERGY-INDEPENDENT SCATTERING AND
ELEMENTARY CHARGE TRANSFER PROCESSES

In the scattering approach without interaction it is straight-
forward to go from the single-level setup that we have
concentrated on to two or more energy levels. If there is
no internal coupling of the levels, the current as well as the
current noise through the involved resonances are just the
sums of the independent contributions. Crossover from an
energy-independent scattering to the multilevel case turns the
straight line shapes of the noise power discussed before into a
sequence of steps at the resonance energies. If the energy levels
are internally coupled the difficulty is to find the corresponding
s matrix. For two coupled levels at zero bias voltage,
the frequency dependence of shot noise has been studied
recently.66 Although the fingerprint of the resonant levels in the
spectra gives a lot of benefits when interpreting the data and
identifying scattering channels, its energy dependence also
brings many complications. In particular, the events cannot
be defined by transmission and reflection probabilities, which
connect occupied and unoccupied states in the reservoirs. If
one drops this energy dependence, Imry et al.64 have shown
that the four contributions to the noise are proportional to the
Bose distribution function nB(ε). Interestingly this originates
from the product fα(ε)[1 − fβ(ε + h̄�)], which can also be
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written as [nB(�) + 1][fα(ε) − fβ(ε + h̄�)]. Integration over
all energies yields h̄�[nB(�) + 1], which is again proportional
to the photon distribution. In this way the four contributions are
proportional to Mβ→αxαβ[nB(xαβ) + 1], with xLL = xRR =
h̄�, xLR = h̄� − eV , and xRL = h̄� + eV .

In Refs. 14 and 15 the noise power has been studied for
systems with time-dependent voltages as an interplay between
unidirectional and bidirectional events of charge transfer.
Those events can be related to the four correlators of the
shot-noise spectrum, even with energy-dependent scattering
(see also Fig. 3). Let us first set eVac,h̄�,kBT = 0. Then
current fluctuations are determined by CR→L(�,ω) and are
a pure source of unidirectional events. If there is a free state
in reservoir L an electron in R is either reflected back to
reservoir R or transmitted to L. Thus, the whole process
is proportional to T (ε)R(ε)f e

R(ε)f h
R (ε). For symmetric bias

μL = −μR < 0, the analogous holelike process is equivalent
and describes effective electron transfer from R to L with
the same probability. At finite � the correlator CR→L(�,0)
is proportional to T (ε)R(ε)f e

R(ε)f h
L (ε + h̄�). In terms of

electronlike events this can be written with the help of
the photonic distribution nB(ε) = 1/[exp(ε/kBT ) − 1] as
T (ε)R(ε)[nB(�) + 1][f e

R(ε) − f e
L(ε + h̄�)]. Thus, we probe

photonic fluctuations due to a virtual electron-hole pair created
by the frequency in lead L, with one partner being transmitted
and the other one being reflected. CL→R(�,0) describes
the equivalent process with electron-hole pair generation
in terminal R with effective charge transfer to the right.
CL→L(�,0) couples electron and hole paths during reflec-
tion in the scattering region via r∗(ε)r(ε + h̄�), what also
introduces a finite scattering phase as discussed in Sec. II.
CR→R(�,0) then probes the difference in the transmission of
electron-hole excitations incident from the right, described
by f e

R(ε) − f e
R(ε + h̄�). Although autoterminal correlators

depend on a single chemical potential, rather than the bias
voltage, the interplay with PAT processes gives rise to
photoassisted unidirectional events of charge transfer. Now
we finally examine the case of finite ac bias eVac,L cos(ωt)
at h̄�,kBT = 0. Then both cross contributions still describe
unidirectional (l = 0) and bidirectional (l �= 0) events via

Suni+bi
LL (ω) = e2

2πh̄

∑
l

J 2
l (αL)

∫ ∞

−∞
T (ε)[1 − T (ε)]dε

× [
f e

R(ε)f h
L (ε−lh̄ω)+f e

L(ε−lh̄ω)f h
R (ε)

]
. (24)

For example, the first term refers to events that are propor-
tional to T (ε)T (εm−l)[nB(lh̄ω) + 1][f e

R(ε) − f e
L(ε − lh̄ω)],

with electron-hole pair creation in the driven (L) terminal for
l �= 0. Autoterminal contributions are given by

Sac
LL(ω) = e2

2πh̄

∑
β;k,l,m

Jl(αβ)Jk(αβ)Jm(αβ)Jl+k−m(αβ)

×
∫ ∞

−∞
dε T (ε)T (εm−l)f

e
β (ε−l)f

h
β (ε−k), (25)

where β = L,R and εn ≡ ε + nh̄ω. Since we set αR = 0,
the term with β = R vanishes at kBT = 0. This purely ac-
induced contribution cannot be interpreted using bidirectional
events. If β = L, virtual electron-hole pairs are generated
in the left reservoir. Thus, the two particles are incident

from the left, but now both species are transmitted with
different probabilities and the whole process is proportional to
T (ε)T (εm−l). Therefore, the correlator describes events where
both particles move in the same direction. In this way both
autoterminal contributions refer to ac-induced unidirectional
charge transfer events scattered toward the measurement
terminal. If the resonance is very narrow (γ 	 eV,h̄ω), the
product T (ε)T (εm−l) will be very small if m �= l. Then the
main contributions from Eq. (25) are expected when l = m.
By assuming energy-independent scattering, the correlators
can be expressed in terms of the photonic distribution as

CL→L = e2

2πh̄
T 2

∑
k,l,m

Jl (αL) Jk (αL) Jm (αL) Jl+k−m (αL)

×{nB[(l − k)h̄ω] + 1} (l − k)h̄ω, (26a)

CL→R = e2

2πh̄
T (1 − T )

∑
Y

J 2
l (αL) (lh̄ω − eV )

× [nB(lh̄ω − eV ) + 1] , (26b)

CR→L = e2

2πh̄
T (1 − T )

∑
l

J 2
l (αL) (eV − lh̄ω)

× [nB(eV − lh̄ω) + 1] , (26c)

CR→R = e2kBT
2πh̄

T 2, (26d)

where we have assumed a = 1 and identical temperaturesT
in both reservoirs. We have also dropped the arguments on the
left hand side for a more compact notation. On one hand, dc-
induced unidirectional events are determined by the the cross-
terminal contributions. On the other hand, bidirectional events
are due to photonic fluctuations and the associated electron-
hole pairs induced in the driven terminal. This terminal (L)
affects three out of the four correlators. If both distribution
functions refer to the ac-biased terminal, as in CL→L(ω), we
have ac-induced unidirectional events.

VI. CONCLUSIONS

In summary, we have interpreted the asymmetric noise
spectra of a coherent-scattering double-barrier system with
a single resonant level. We calculated an analytical solution
for the photoassisted noise spectral function for autoterminal
and cross-terminal current-current correlations at kBT = 0 by
assuming a Breit-Wigner line shape for the resonance. At finite
frequency or finite ac bias, shot noise is produced by parti-
tioning of electron-hole pairs. As a consequence, this simple
system shows a noise spectrum sensitive to many parameters.
It exhibits the signature of quantum-coherent current-current
correlations as a sub-Poissonian Fano factor around the reso-
nance energy. This antibunching of electrons is in competition
with the PAT events, stimulated by the ac driving (nh̄ω) or
a static electric field (h̄�). At frequencies h̄� � εr + eV/2
we find a super-Poissonian Fano factor for the autoterminal
noise and positive values for the cross-terminal noise when
h̄� � γ . Furthermore, we have shown how the scattering
events can be assigned to the four different combinations of
final and initial electronic states. Cross-terminal contributions
to the autocorrelation noise spectral function can be related
to the unidirectional and bidirectional elementary events of
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charge transfer identified in a recent microscopic derivation.14

But the scattering approach also reveals an additional kind
of process where the ac bias voltage induces unidirectional
events directed toward the measurement terminal. In the limit
h̄� → 0 we expressed the photoassisted noise in terms of
the photonic distribution function. The scattering formalism
gives insight into the connection between the different regimes
discussed throughout this paper. Moreover, it also allows us to
connect the interpretation of shot noise obtained via different
approaches, e.g., by full counting statistics or by a discussion
in terms of wave packets via Fermi’s golden rule. The steps and
dips of the noise spectra can be used in experiments to extract
information about the resonance position, effective chemical
potentials, or in general to get insight into the coupling of the
laser field to the system in terms of PAT.
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APPENDIX: ANALYTIC SOLUTION

By the help of the definitions below we can write the
analytic solutions for the nonsymmetrized noise spectrum in a
compact way. If only dc bias voltages are present, it turns out
to be convenient to introduce the prefactor

f (�) = e2γ 3

2(4γ 2 + �2)
. (A1)

Furthermore, we use the expressions

F (ε,�) = arctan

(
ε + �

γ

)
− arctan

(
ε − �

γ

)

− γ

�
ln

[
(γ 2 + ε2)2

[γ 2 + (ε + �)2][γ 2 + (ε − �)2]

]
,

(A2)

G(ε,�) =
[

3 +
(

�

γ

)2 ]
arctan

(
ε + �

γ

)
− arctan

(
ε

γ

)

+ γ

�
ln

[
γ 2 + ε2

γ 2 + (ε + �)2

]
, (A3)

H (ε,�) =
[

2 +
(

�

γ

)2 ] [
arctan

(
ε + �

γ

)
+ arctan

(
ε

γ

)]

+2
γ

�
ln

[
γ 2 + ε2

γ 2 + (ε + �)2

]
(A4)

for auto- and cross-terminal noise. To achieve a compact
notation for the cross-terminal noise we also need the definition

K(ε,�) = arctan

(
ε + �

γ

)
+ arctan

(
ε

γ

)

+γ 2 + �2/2

γ�
ln

[
γ 2 + ε2

γ 2 + (ε + �)2

]
. (A5)

If additional ac bias voltages are present it is reasonable to
make use of the prefactor

f̃ (�) = e2γ 4

4
(A6)

and the shorthand notation

D1 = [(2iγ + �)(2iγ + ω)(� + ω)]−1 , (A7)

D2 = [(2iγ + �)(−2iγ + ω)(� − ω)]−1 , (A8)

D±
3 = 2γ (iγ ± � + ω), (A9)

D±
4 = 2(γ ± i�)(iγ + ω). (A10)

Finally we complete the set of functions with

A±(ε,�,ω) = 2iarctan

(
ε + � + ω

γ

)

± ln[γ 2 + (ε + � + ω)2], (A11)

B±(�,ω) = 2(γ + i�)(±iγ + � + ω), (A12)

where A±(ε,�,ω) defines the basic shape of the results for
ac-biased systems and B±(�,ω) is needed for the description
of the cross-correlation spectrum. Below we present the results
for the photoassisted noise spectral density of autoterminal
and cross-terminal current-current correlations. We assume a
Breit-Wigner line shape (4) for the resonant level and perform
the energy integration in Eq. (5). The results are plotted as
a function of frequency in Fig. 5. Due to the cumbersome
expressions we use the shorthand notation defined above as
well as the notation ω̃ ≡ (m − l)h̄ω and set h̄ = 1. For the
autocorrelation function we then find

CL→L(�,ω) = f̃ (�)[1 + (�/γ )2]
∑
lkm

�(� + (l − k)ω)Jl (αL) Jk (αL) Jm+k−l (αL) Jm (αL)

× [−D1A
−(ε,0,0) + D2A

−(ε,�,0) − D∗
2A

−(ε,�,ω̃) + D∗
1A

−(ε,0,ω̃)]ε=μL+lω

ε=μR−�+kω, (A13a)

CR→R(�,ω) = f̃ (�)
∑
lkm

�(� + (l − k)ω)Jl (αL) Jk (αL) Jm+k−l (αL) Jm (αL)

× [D1A
+(ε,0,0) + D∗

1A
−(ε,0,ω̃) − D∗

2A
−(ε,�,0) − D∗

2A
+(ε,�,ω̃)]ε=μR+lω

ε=μR−�+kω, (A13b)

CL→R(�,ω) = f̃ (�)
∑
lkm

�(� + (l − k)ω − eV )Jl(αL)Jk(αR)Jm+k−l(αR)Jm(αL)[B+(0,ω̃)D1A
+(ε,0,0)

+B−(�,ω̃)D∗
1A

+(ε,�,ω̃) + B−(−�,ω̃)D2A
+(ε,�,0) + B+(0,ω̃)D∗

2A
−(ε,0,�)]ε=μL+lω

ε=μR−�+kω, (A13c)
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CR→L(�,ω) = f̃ (�)
∑
lkm

�(� + (l − k)ω + eV )Jl (αR) Jk (αL) Jm+k−l (αL) Jm (αR) [B+(0,ω̃)D1A
−(ε,0,0)

+B−(−�,ω̃)D2A
−(ε,�,0) + B+(0,ω̃)D∗

2A
+(ε,0,�) + B−(�,ω̃)D∗

1A
+(ε,�,ω̃)]ε=μL+lω

ε=μL−�+kω. (A13d)

Using the same notation, the solution of the cross-terminal correlations can be cast in the form

Ccross
L→L(�,ω) =

∑
lkm

�(� + (l − k)ω)Jl (αL) Jk (αL) Jm+k−l (αL) Jm(αL)

× [D1A
+(ε,0,0) − D∗

1A
+(ε,�,ω̃) − D2A

+(ε,�,0) + D∗
2A

−(ε,0,ω̃)]ε=μL+lω

ε=μL−�+kω, (A14a)

Ccross
R→R(�,ω) =

∑
lkm

�(� + (l − k)ω)Jl (αR) Jk (αR) Jm+k−l (αR) Jm (αR)

×[D1A
+(ε,0,0) − D∗

1A
−(ε,�,ω̃) − D2A

−(ε,�,0) + D∗
2A

+(ε,0,ω̃)]ε=μR+lω

ε=μR−�+kω, (A14b)

Ccross
L→R(�,ω) =

∑
lkm

�(� + (l − k)ω − eV )Jl (αL) Jk (αR) Jm+k−l (αR) Jm (αL)

× [D+
3 D1A

+(ε,0,0) + (D+
3 )∗D∗

1A
−(ε,�,ω̃) + (D+

4 )∗D2A
+(ε,�,0) + D+

4 D∗
2A

−(ε,0,ω̃)]ε=μL+lω

ε=μR−�+kω,

(A14c)

Ccross
R→L(�,ω) =

∑
lkm

�(� + (l − k)ω + eV )Jl(αR)Jk(αL)Jm+k−l(αL)Jm(αR)

× [D−
4 D1A

−(ε,0,0) + (D−
4 )∗D∗

1A
+(ε,�,ω̃) + (D−

3 )∗D2A
−(ε,�,0) + D−

3 D∗
2A

+(ε,0,ω̃)]ε=μR+lω

ε=μL−�+kω.

(A14d)

In the dc limit these expressions simplify to Eqs. (16) for autocorrelation noise and Eqs. (21) for cross-correlation noise.
Obviously, the additional ac bias introduces a complicated scattering phase via the imaginary parts in the above expressions. The
noise spectrum is plotted for different asymmetry parameters a in Fig. 5. ac bias voltages introduce additional peaks and dips
related to the driving frequency ω. By varying a, such PAT-induced peaks in the cross-correlation noise spectra can turn into
dips, and vice versa.
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76M. Büttiker and T. Christen, in Quantum Transport in Semiconduc-

tor Submicron Structures, edited by B. Kramer (Kluwer, Dordrecht,
1996), p. 263.
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