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Scaling properties of induced density of chiral and nonchiral Dirac fermions in magnetic fields
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We find that a repulsive potential of graphene in the presence of a magnetic field has bound states that are
peaked inside the barrier with tails extending over £(N + 1), where £ and N are the magnetic length and Landau
level index. We have investigated how these bound states affect scaling properties of the induced density of
filled Landau levels of massless Dirac fermions. For chiral fermions, we find, in strong coupling regime, that
the density inside the repulsive potential can be greater than the value in the absence of the potential, while in
the weak coupling regime, we find negative induced density. Similar results also hold for nonchiral fermions.

As one moves from weak to strong coupling regimes, the effective coupling constant between the potential and
electrons becomes more repulsive, and then it changes sign and becomes attractive. Different power laws of
induced density are found for chiral and nonchiral fermions.
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I. INTRODUCTION

Nonrelativistic massless Dirac electrons exist in two-
dimensional graphene layers near K and K’ Brillouin
points.'™ Energy dispersions form Dirac cones with conduc-
tion and valence bands meeting at the Dirac point. The wave
function has two components: the first component gives the
probability amplitude of finding the electron on A carbon
atoms, while the second component gives the amplitude of
finding it on B carbon atoms. In the presence of a magnetic
field, the Dirac cones split into Landau levels with some
unique features.>® A Landau level with zero energy that
is independent of magnetic field develops with chiral wave
functions. Other nonchiral Landau levels of conduction and
valence bands have opposite energies but their wave functions
are identical except for phase factors.”!? The energies of these
Landau levels depend nonlinearly on magnetic field

Ey =sgn(N)En+/2|N|, ey

where the energy separation between these Landau levels
(LLs) is set by E,, = F“l’#.“’lz Valence band LLs are labeled
N =—-1,—-2,—3,... with decreasing energy, while con-
duction band LLs are labeled N = 1,2,3, ... with increasing
energy. The zero energy LL has N = 0.

These unusual graphene LLs respond rather differently
to the presence of potentials'*~!® in comparison with LLs
of ordinary semiconductors. Confinement and deconfinement
transitions'? and bound states forming inside an antidot'
through complete Klein tunneling are predicted. Here we
consider the electron density in the presence of a rotationally
invariant and repulsive potential V(r) with strength V and
range R. The electron density of the N'th filled LL is given by

an(ry= Y.

J efilled Landau level

[ (), )

where eigenstates \I-f]{,(r) and eigenvalues Ey(J) are labeled
by LL index N and half-integer angular momentum quantum
number J. In the absence of a localized potential the dimen-
sionless density takes the value £2ny(r) = ﬁ We define the
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induced density as the difference between densities with and
without the potential

2 2 _ L
Any(@r) =Lny(r) o 3)

Graphene barrier has a natural energy scale, E. F“’F Ctis
interesting to note that the ratio between this energy scale and
the energy scale of LLs is given by the ratio between two
length scales of the problem:

E R

=2 )

E, L
We find that the correct scaling function of the induced density
has the form

V R
CAny(r) = sy (; i E) )

It is different from the scaling function of ordinary LLs where
one would expect that appears instead of - Y. In graphene,

V does not contain nonpenurbatwe effects of the formation of
bound states in the barrler and it cannot be used instead of - Y
Moreover, the variable - is inappropriate since it becomes
infinitely large at zero magnetlc field (note E,, = 0 at B = 0),
which leads to the unphysical result that the scaling function
is independent of V.

The value of the dimensionless electron density at the center
of the potential (» = 0) gives a good indication of how strong
the effective coupling constant between the repulsive potential
and electrons is. We will thus call this dimensionless induced
density at r = 0, with sign change, the effective coupling
constant

VR _ 2 Any(0) = 0 V R (6)
ME 7)™ IV =TS E T )

As one moves from weak to strong coupling regimes, the effec-
tive coupling constant becomes increasingly more repulsive,
and then starts to decrease, passing through zero, and becomes
attractive (see Figs. 1 and 2). The strong, intermediate, and
weak coupling regimes correspond to % <1, % ~ 1, and
% > 1, respectively. In the strong coupling regime a repulsive

©2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.84.085405

P.S. PARK, S. C. KIM, AND S.-R. ERIC YANG

@ A Ta’ (0
S \\/
R

FIG. 1. (Color online) We have schematically plotted electron
density for a filled Landau level. The electron density in the
absence of the potential is ﬁ, represented by the dashed horizontal
line. In graphene LLs, under certain conditions, induced density
can be positive (a), in contrast to the usual case, where it is

negative (b).

potential can effectively attract electrons, making the induced
density positive. The physical origin of this effect is the
formation of bound states that are peaked inside the barrier
with tails extending over £(N + 1). We stress that these states
are not resonant states of the repulsive potential in graphene at
B = 0,719 since the extent of the wave functions is finite and
their energies form discrete spectra, unlike resonant states.

In the limit V/E, < 1, we find the following power laws:

2 A%
£ Any(0) ~ I gn(R/0), @)

c

with 8y =2 for chiral®®* N =0 LL, but with 8y = 1 for
nonchiral N = 1 LL. We find that go(R/¢) changes sign near
1. A plot of go(R/£) is shown in Fig. 2.

This paper is organized as follows. In Sec. II we present
probability wave functions of bound states in weak, interme-
diate, and strong coupling regimes. Using these probability
wave functions we investigate scaling properties of induced
densities for chiral and nonchiral fermions in Sec. III. We also
compute the boundary between positive and negative values
of induced densities in the parameter space. A summary and
discussions are given in Sec. IV.
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FIG. 2. Y axis represents values of go(g) obtained by data
collapse for N =0 and EL < 0.7. Note that this quantity is pro-

portional to —ay ( E%, ). Values (£, E%) used in the data collapse are
shown in the inset. Note that the induced density changes sign near
R/¢ = 1. Crosses represent the results obtained by treating V (r) in
the second-order perturbation theory. These results demonstrate that
perturbative methods cannot be applied in the intermediate and strong

coupling regimes.
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FIG. 3. Single-particle energy spectrum of massless Dirac
fermions in the presence of repulsive potential and magnetic field.
Energies of five Landau levels are shown for N = -2, — 1,0,1,2.
Dashed lines represent unperturbed energies, and those that deviate
from these are energies of bound states (at B =20 T, R = 10 nm,
R/ =174and V =0.1eV).

II. MODEL CALCULATIONS OF EXACT WAVE
FUNCTIONS

The electron density of a filled LL is computed from single
electron wave functions [see Eq. (2)]. These wave functions
are chosen to be eigenstates of the following model potential:

V, r<R
V(r):{O r > R.

In the strong coupling regime, states with small values of |J|
are peaked near r = 0 and are particularly relevant for the
density inside of the potential.

®)

A. Energy spectrum

We compute eigenenergies Ey(J) as a function of J by
solving Dirac equations. We choose the magnetic vector poten-
tial as A = g(—y,x,O). The two-component wave functions
of massless Dirac electrons obey the following Hamiltonian:

H =5 - (,3 n §A> + V@), )

where the Fermi velocity is vy and the Pauli spin matrices are
6 = (oy,0y). Eigenstates W ,{,(?) are also eigenstates of angular
momentum operator

. o;

Jo=—idy + > (10
where o, is a Pauli spin matrix and 6 is the polar angle. Since
J, commutes with Dirac, Hamiltonian eigenstates of Nth LL
must have the following form:

WL (r,0) = &1/ (xZ?r()re)"> , an

with half-integer values of angular quantum number J. For
each N, allowed values of J are displayed in Table I. Some
eigenenergies are shown in Fig. 3. Although this spectrum
resembles the spectrum of ordinary LLs,?! the wave functions
of the eigenstates are rather different.
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TABLE I. Eigenstates are labeled by
two quantum numbers: LL index N and
angular momentum quantum number J.
Possible values of N and J are listed.

N J
31 1 3 5
2 3537375 T3
1 1 1 3 5
2T T
1 3 5
0 —T T
1 113 s
22 2 2 2°
30113 s
2 22 2 2 2’

B. Solutions in strong coupling regime

It is instructive to study properties of probability wave
functions in the strong coupling limit, where R/¢ — O.
Eigenstates (x4, xp) are determined by the pair of coupled
first-order differential equations

1 1 1
—10,xa +1 [; (J - —) + —X] XA = €(X)xB,

2 2 (12)
. 1 1 1
—idxp—i|—|J+ <)+ x| xB=€Xx)xa,
X 2 2

where x = r/{ is the dimensionless coordinate and e(x) =
[E— V()] /Epy.

For r >> R the effect of the potential is negligible, and
solutions'? are

¢|n|,m(7)

Here n and m are integers with m > 0. We define sgn(n) =
—1,0,1 forn < 0,n =0, and n > 0. The normalization con-
stant C, = 1 for n = 0 and C, = 1/+/2 for n # 0. Applying
an angular momentum operator to Eq. (13) and comparing
with Eq. (11), we find that the quantum numbers J and (r,m)
are related to each other through

W) = Yum@ = C, (_Sgn(")"p"l""'"(r)) e

J=Inl—m—1)2. (14)

For a given value of J there are infinitely many possible
values of (n,m), and we will order them with an index i. How
(J,i) are related to (n,m) is given in Table II. In Eq. (13) the
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FIG. 4. (Color online) Bound states of strong coupling limit:
|W,2(r)? for V/E. =182, R/£ =001, R=1nm, V=12 eV,
and £ = 0.009 eV. Inset: A (B) component is dashed (dotted) line.

wave functions ¢, ,,(F) are the Landau level wave functions of
ordinary two-dimensional systems??

2

- . r r =
Gun(F) = Anm XD (l@ —me - w) (7)

lm—n| r?
X Ly tm—m—n) 2 (272) ) (15)

where A, ,, are normalization constants.

To find solutions that are valid for all », we solve the
Dirac equations numerically using confluent hypergeometric
functions.!> The obtained numerical results are shown in
Fig. 4. Near x > R/{ the value of the eigenfunction ¥ (r)
is approximately equal to I//iJ(R), given by Eq. (13). Both A
and Bcomponents of the eigenfunction vary rapidly forr < R.
For J = 1/2 the A component of the wave function x4(x) is
peaked at x = 0, while B component is peaked at x = R/Z.
These peak values of both x4 and xp approach finite values
in the limit R/¢ — 0. However, as V/E, increases, they also
increase. The amount of jump between O and R is, consistent
with Eq. (12),

R/t
—iAxa = —i[xa(R) — xa(0)] = 6(0)/ dx xp, (16)
0

with xp(0) =0 and €(0) = (E — V)/E,,. For J = —1/2 the
properties are the opposite to those of J =1/2: the B
component of the wave function x g (x) peaked at x = 0, while

TABLE II. How 1//1-1 and v, ,, are related to each other. For a given J, some possible values of (n,m) are

listed. Empty boxes indicate that (n,m) do not exist.

J(ni,m;) (n_3,m_3) (n_o,m_5) (n_y,m_y) (ng,mo) (ny,my) (na,my) (n3,m3)
2 (=3,1) (=2,0) (2,0) (3.1)
% (-3,2) (=2,1) (-1,0 (1,0) 2,1 (3,2)
—% (-3,3) (=2,2) (=101 (0,0) (1,1) 2,2) (3.,3)
—% (=34 (=2,3) (-1,2) 0,1) (1,2) 2,3) (3.4)
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FIG. 5. (Color online) Strong coupling regime: the parameters
are E. =0.1316 eV, E,, = 0.0395eV, V =0.26 eV, V/E. = 1.98,
and R/€ =0.3. (a) Solid line is for N =0 and E = 0.017 eV.
Dashed line is for N = 1 and £ = 0.061 eV. Inset: B component of
|W, "*(r)|? and A (dashed) and B (solid) components of |W; "/*(r)[2
in the absence of potential. (b) Solid line is for N=2 and E =
0.083 eV. Dashed line is for N =3 and E = 0.101 eV. Inset: A
and B components of |¥, /*(r)|> and [W; "/*(r)|? in the absence of
potential.

the A component is peaked at x = R /€. The amount of jump

between 0 and R is

R/C
—iAxp & 6(0)/ dx xa. a7
0

In the strong coupling regime R/{¢ < 1 probability wave
functions can be significant inside the potential (see Fig. 5).
These states are peaked inside the potential range R and have
tails extending over the length of order (N + 1). Examples
of such states with N = 0, 1, 2, and 3 are displayed in Fig. 5.

As N increases the extend of |\IJ,\_,1/ 2(r)|2 outside the potential
increases approximately as £(N + 1). However, the strength
of peak within the range R decreases with increasing N. We
stress that these states are not resonant states of the repulsive
potential since the extend of the wave functions is finite and
their energies form discrete spectra, unlike resonant states.
States shown in Fig. 5 contribute to a positive induced charge
since the probability of finding an electron inside the potential
has increased compared to the probability in the absence of the
potential. This is a nontrivial effect of the interplay between
effects of quantization of LL and Klein tunneling.’>**

C. Solutions in intermediate and weak coupling regimes

We show how probability wave functions change as R /¢
changes from weak to intermediate coupling regimes. In the
perturbative regime R/f >> 1, the exact probability wave
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FIG. 6. (Color online) (a) Weak coupling regime: |¥, 1/ 2(r)|2
for R/ =2.0,V/E.=2.172, R=11nm, V =0.13 eV, and E =
0.110 eV. A (B) component is solid (dashed) line. Inset: dashed
line is without potential and solid is with potential. (b) Intermediate
coupling regime: [W, "/*(r)[? for R/€ = 0.6, V/E.=0.607, R =
Snm, V =0.08¢eV,and E = 0.013 eV.

function at » = 0 is smaller than that of the unperturbed
probability wave function, as shown in Fig. 6(a). Note that
cusps in the wave functions are negligible. Figure 6(b)
displays the exact probability wave functions [, 172 (r)|*inthe
intermediate regime of R/¢ ~ 1. Both A and B components of
it have cusps at = R. Note that at » = 0 the exact probability
wave function is larger than that of the unperturbed probability
wave function.

III. SCALING FUNCTION OF ELECTRON DENSITY

We have performed an extensive numerical evaluation of
the electron density. The dimensionless induced density for
N =0 filled LL, IZzAno(r/R), is plotted in Fig. 7 for various
values of (%, Elr). For R/¢ < 1 the induced density inside the
barrier is positive, which is in sharp contrast to what usually
happens in a barrier. The formation of bound states inside the
barrier, as discussed in Sec. II B, is responsible for this effect.
Note the induced density oscillates as a function of r/R. We
have tested that the total integrated density is equal to the total
number of electrons in the LL. The induced density satisfies
the following two-parameter scaling function:

Cany(r/R) =50 (5om 2 (18)
no(r =so| =, =)
0 \RE.¢

As R/¢ increases, the sign of Any(0) changes sign from
plus to minus, which is shown in Fig. 7. Physically this means
positive induced density changes to negative induced density.
For El < 0.7, our numerical results display data collapse and

¢

085405-4



SCALING PROPERTIES OF INDUCED DENSITY OF ...

r/R

FIG. 7. (a) £2n(r) for N =0 and R/¢ < (Z’E ) =(1,1.215)
(solid), (z VB Yy = (0.60,0.607) (dashed), and( _) =(0.30,0.334)
(dotted). Dashed-dotted line is £2a(r) in the absence of the poten-
tial. (b) For N=0 and R/¢ > 1: (Z’E ) = (1.74,2.582) (solid),

(z VE: ¥y = (1.50,1.823) (dashed), ([ ' E ) = (1.22,1.063) (dotted).

are consistent with the following power law:

5 V\> (R
CAng(0) ~ (E) % (?) (19)

(see Fig. 2). For a larger range of -~ 7= < 2.5 an approximate
data collapse can be obtained (see Fig. 8).

The second-order perturbative calculation in V(r) agrees
with the scaling result when R/¢ > 2.5, but disagrees when
R/ < 2, as shown in Fig. 2. It is noteworthy that go(R/¢)
takes the minimum value near R/¢ ~ 1.5. This implies that
the electron density is depleted most strongly for R/¢ ~ 1.5.
However, further decrease in R/f has the opposite effect
of increasing more penetration of electrons into the barrier.

asy
~ 2
—_— ° e o o e o o o o o
O [3)
w o w
S H > 1

L @ H H H -
EO.M i i ;
o o Sectained . o
= y I R S e
c R/
< °
N_OOO—.WQ—O—O—O—

o 1 2 3 4 5

R/

FIG. 8. Approximate data collapse of go( ) is obtained for a
larger range of than the one used in Fig. 2. Values of ( . ) used
are shown in 1nset

PHYSICAL REVIEW B 84, 085405 (2011)

negative

2
R/l
FIG. 9. N =0 LL states must not overlap with N = & 1 LLs.
Induced density at r = 0 is positive for R/¢ < 1.

Near R/¢ = 1 the scaling function go(R/¢) changes sign. For
R/¢ < 1, electrons accumulate in the barrier and the density
becomes greater than the density of the unperturbed LL. This
dependence on R/ is thus strongly nonlinear. For larger
values of V/E,. the boundary between positive and negative
induced densities is displayed in Fig. 9.

The induced density for N = 1 filled LL shown in Fig. 10
satisfies a similar scaling relation as that of N = 0 LL,

2 r r V. R
Cam (L) =5 (%m7 ) (20)

R R E. ¢
At the origin r = 0 we find, for El < 1, the following scaling

result:
22 An;(0) AN R (1)
n(0)~ [ — -,
! E.) '\

where §; = 1. This result is obtained in the range V/E, < 0.1
by data collapsing numerical data points (see Fig. 11). The
dependence of the induced density on R/¢ is again strongly
nonlinear: g;(R/{) takes the minimum value near R/¢ = 0.7.
For larger values of l the boundary between positive and
negative induced densmes is displayed in Fig. 12. As E—
increases, the range of R/¢, where the induced density is
positive, expands. Note that for small values of R/¢, for
example, 0.01, the value of £ at B=1 T is 257 A and
R becomes comparable to the lattice constant so that Dirac
equations break down. In this case smaller values of B must
be used so that R can take larger values.

0.20} .
Eo—e /—‘—\\ e
~_ 7 N -
~ 015F oL T DN
e /.
™~ X2
- ]
Co.10f / -
/
Ve
0.05F ~ _
0 1 2 3 4 5
r/R

FIG. 10. (Color online) £*n(r) for N = 1. (e s E V) = (1.5,3.038)
(dashed), (z E Yy = (0.6,0.607) (dotted), and (£ T E Yy = (0.01,0.607)
(dashed dotted). Solid line is £2n(r) in the absence of the potential.
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FIG. 11. g;(R/¢) is obtained by data collapse for N =1 and
E% < 1. Values of (EL(, Ry used are shown in inset.

It can be shown from perturbative analysis that, for chiral
fermions, the first-order correction of V(r) is absent, but
the second-order correction is present and is negative. The
absence of the linear terms in EL for the chiral N =0 LL
is a consequence of the symmetric properties of conduction
and valence band LLs. However, for nonchiral fermions the
first-order correction is present. These results are consistent
with nonperturbative scaling results given by Egs. (19)
and (21).

We now mention some general properties of the induced
density of LLs. It has a critical point y. ;, where

asy(0,x,y)

=0 (22)
ay Y=Je.1

(x =4 and y = ). We find that y.; ~ 1. The scaling
function takes the global minimum at y.;: as y decreases
the induced density becomes most negative at y = y.; and
then it increases, in contrast to the lowest-order perturbative
result in V, which suggests that it becomes increasingly more
negative as y decreases. Below this critical point, perturbative
methods are inapplicable, and it separates strong and weak
coupling regimes. The sign of the induced density changes at

the second critical point y. , where

sn(0,x,9)]y=y., =0. (23)

As y decreases below y = y. i, the induced density changes
sign at y = y.» and begins to take positive values.

6 : T
overlap
o 4—" ]
1] positive
—
>
2 negative ]
0 Il Il
0 1 2
R/l

FIG. 12. N =1 LL states must not overlap with N = 0,2 LLs.
The range of R/¢, where the induced density at » = 0 is positive,
increases with increasing V/E..
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IV. SUMMARY AND DISCUSSIONS

We find that a repulsive potential of graphene has bound
states that are peaked inside the barrier with tails extending
over £{(N + 1). The properties of these bound states change
as R/{ varies, and affect the induced density of filled LLs
inside the barrier in a nontrivial way as a function of R/¢. As
R/ ¢ decreases, the induced density inside the barrier becomes
more negative, but as it reaches a critical value, the induced
density reaches an extremum value. Upon further decrease of
R /¢ the value of the induced density reaches zero, and, after
this, it becomes positive. These changes are strongly nonlinear
in R/¢, and one moves successively from weak, intermediate,
and strong coupling regimes as R/{ decreases. The condition
V/E. < 1 is not sufficient for treating V(r) perturbatively,
and in addition to this, one must require R/¢ > 1 for both
chiral and nonchiral fermions.

For filled LLs electron-electron interactions may be well
approximated by a Hartree-Fock (HF) method.> The electron
density in the HF method is given by the sum of unrenor-
malized single electron probability wave functions, just as in
Eq. (2). So our calculation of the induced density is actually
a HF result. However, our single electron energies are not
the renormalized HF result. This will affect somewhat our
numerical estimate of the boundary between overlapping LLs
of Figs. 9 and 12. The discontinuity in the potential of Eq. (8)
can couple states in K and K’ valleys, which is ignored in our
approach. However, our tight-binding calculations show that
this coupling is small.'®

There is a symmetry'® between repulsive and attractive
potentials V(r) and —V (r) so that the induced densities of
these potentials are identical. In the presence of a repulsive or
attractive potential, both charge accumulation and depletion
occur, depending on the value of R/¢ (see Figs. 9 and 12).
The appearance of a charge accumulation near a repulsive
potential, for example, could be explained by introducing an
attractive potential via the transformation V(r) — —V (r), but
this same transformation would fail to explain charge depletion
since electrons would pile up around the transformed attractive
potential. Thus charge depletion and accumulation cannot be
explained simultaneously in either perspective of repulsive or
attractive potential. In addition, the critical points R/{ = y. |
and y,. », where the scaling function takes the global minimum
and where it changes sign, cannot be explained by application
V(r) — —V(r). It would be desirable to construct an analytic
theory for them.

Properties of the bound states of the potential barrier may
be observed as follows. A localized potential may be created
by a circular gate placed on graphene sheet. When this gate is
sufficiently close to the edge of the sample, coupling between
bound states and edge states may be induced, and the trans-
mission coefficients of edge states may reveal properties of the
bound states. Also, these bound states may play an important
role in the transport and magnetic properties of graphene.
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