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Theory of light scattering from self-affine surfaces: Relationship between surface morphology and
effective medium roughness
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Using Rayleigh-Rice scattering theory we have studied the influence of surface morphology on the optical
response of self-affine surfaces. We have established a mathematical relationship between the surface roughness
(d) as determined by spectroscopic ellipsometry (SE) using the effective medium approximation (EMA) and the
parameters controlling the morphology of the surface: root-mean-square roughness (w), correlation length (ξ ),
and roughness (Hurst) exponent (α). These three parameters affect the roughness value measured by ellipsometry.
However, when the correlation length is smaller than the wavelength, the dependence is contained in a single
parameter wδ that is proportional to the product of the surface roughness and the local slope δ = w/ξα . The fact that
the local slope of a surface increases only very slowly during growth explains the linear dependence experimentally
found between w as measured by scanning-probe microscopy and the vertical roughness determined by the
effective medium approach.
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I. INTRODUCTION

The morphology of material surfaces, i.e., roughness, plays
a crucial role in a wide variety of optical, electronic, chemi-
cal, and mechanical properties. Surface morphology evolves
during the vapor-phase deposition or etching of materials.
Surfaces tend to roughen because of the random arrival of
incident flux as well as shape instabilities caused by curvature-
dependent attachment rates, shadowing effects, and other
factors.1–4 Surfaces also tend to smoothen because of surface
diffusion or re-emission of adspecies.1,5,6 The competition
between these mechanisms produces the net evolution in
roughness, which generally increases with film thickness.
The desire to understand and control the morphology has
motivated the development of spectroscopic ellipsometry (SE)
as a real-time, quantitative probe.7–14 Ellipsometry data are
most often transformed into the optical properties, and the
thicknesses of the layers present using Fresnel reflection
and transmission coefficients in combination with multilayer
models. Surface (and interface) morphology is modeled
indirectly using an effective medium approximation (EMA)
in which the physical roughness is represented by a flat layer
whose optical properties are a volume-weighted average of
the two media; for a surface, these are the film material (the
hills of roughness) and the ambient (the empty space between
the hills).15,16 In order to model the optical properties of
this roughness layer, Bruggeman’s model is frequently used.
This model assumes that the layer is composed of a random
mixture of void and solid material, and that the characteristic
size of the homogeneous region is much smaller than the
wavelength. Although the model can be written to account for
shape anisotropy in the regions, normally the isotropic case is
used in the modeling of surface roughness. The morphology
is thus reduced to two parameters, the volume fraction of
solid material f and the thickness of the EMA layer ds . As a
simplifying heuristic, most researchers set the volume fraction
f = 0.5 and treat the EMA-roughness layer as a one-parameter
fit, the thickness. While there is no fundamental justification
for the choice f = 0.5, we will present several results using this
value to facilitate comparison with the literature.

In contrast, studies using atomic force microscopy (AFM)
or other scanning probe methods reveal that actual surface
morphologies are very complex, even in the absence of effects
such as crystallographic faceting and columnar growth.17–20

A common statistical measure is the power spectral density
(PSD), defined as S(q) = 〈�

h(q,t)
�

h(q,t)∗〉, where
�

h(q,t) is the
Fourier transform of heights and q is the wavenumber in the
plane of the surface, i.e., the inverse of the lateral range. As a
consequence of Parseval’s theorem

∫
S(q)dq = w2, where w

is the rms surface roughness; this is a value usually reported in
the literature. Many thin films examined using AFM exhibit a
self-affine characteristic: over a threshold wavenumber 2π/ξ ,
where ξ is the correlation length, the PSD asymptotically
approaches S(q) = 〈�

h(q,t)
�

h(q,t)∗〉|q|=q ∼ q−(2α+2), where α

is roughness (Hurst) exponent. Consequently, the morphology
of self-affine surfaces must be described using three param-
eters: the rms roughness w, the correlation length ξ , and the
roughness exponent α. In thin-film growth, dynamic-scaling
theory suggests links between the values of the roughness
exponent and different prevalent growth mechanisms; how-
ever, systems whose growth cannot be described by the
dynamic-scaling theory often also exhibit the same power
dependence on the PSD described above.1

Previous authors have correlated the thickness of the
EMA roughness layer with the rms roughness detected by
AFM.8,9,12,16,21–26 As noted above, the roughness generally in-
creases during the deposition of thin-film materials as the result
of competing mechanisms. Thus, thin-film growth provides an
important means to test the effect of surface morphology on the
optical response. For example, in the growth of hydrogenated
amorphous silicon (a-Si:H) films on smooth substrates, several
groups have found a linear relationship between ds and
w, but each reported a different proportionality constant
despite the use of comparable measurement conditions in SE
and AFM.8,21,24 We previously explored a modified growth
situation: a thin, highly rough a-Si:H layer was deposited onto
a flat substrate using intentionally “bad” growth parameters,
followed by the growth of a thick film using growth parameters,
which normally afford very smooth films.10 The result was
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striking: SE indicated that the surface became smoother
upon deposition of the thick film, whereas AFM revealed
continuous roughening. Thus, the correlation between SE and
AFM measurements is not unique but must be a function of
morphological details beyond the rms roughness.

This work examines two fundamental questions. First,
what is the optical response of a self-affine surface in terms
of the three parameters of the PSD? We derive the result
using Rayleigh-Rice theory. We show that the solution can
be separated into mathematical terms that depend only on
the morphology and terms that depend only on the optical
constants of the material. Thus, the dependence on morphology
is described by a formalism that is independent of the materials
system.

Second, in what respects can (or cannot) an EMA, with
only a single free parameter, model the characteristics of
surface morphology as detected by AFM? We show that
a linear relationship between d and w is generally not
expected. However, in cases that obey dynamic-scaling theory,
the surface roughness, correlation length, and the roughness
exponent are strongly coupled: when the local surface slope
δ ∼ w/ξα remains constant with time, a linear relationship
occurs. Thus, we explain on theoretical grounds the varying
experimental results found in the literature. When a linear
correlation exists but the slope is different, it must be the
case that the surfaces in question have different local slopes;
when a departure from linearity occurs, it must be the case that
dynamic scaling does not hold, e.g., by the use of discontinuous
film-growth conditions.

II. MODEL

Our approach27 proceeds as follows. First we calculate
the optical response of a self-affine surface using scattering
theory as a function of the three parameters that are needed to
describe the surface morphology. Second we cast that result
in terms of the optical function measured by SE. Third we
apply the Bruggeman EMA with a volume fraction f = 0.5 to
calculate the thickness of the roughness layer (later we will
discuss the influence of the fraction). Finally we compare the
rms roughness of the self-affine surface with the thickness
of the EMA layer to determine the functional relationship
between them. In all cases we assume that the surface layer
sits on top of an optically opaque bulk layer, i.e., we do not
complicate the analysis by including the reflection of beams
from an underlying interface.

A. Scattering model

In thin-film growth both the vertical extent of surface
roughness (as quantified by w) and the lateral extent (as
quantified by ξ ) are typically much smaller than the wave-
length of the incident light λ. These conditions fall within the
domain of the Rayleigh-Rice formalism, in which Maxwell’s
equations are solved considering a series expansion of the
electromagnetic fields on the small parameter w/λ. Franta
and Ohlı́dal presented a model for the scattering of light
by statistically rough surfaces up to second order using the
Rayleigh-Rice formalism.28 They obtained a closed expression

FIG. 1. Comparison of an experimental PSD of a surface deter-
mined by AFM, the self-affine (4), and Gaussian parameterizations.

for the change of the reflection Fresnel coefficient attributable
to surface roughness given by

�rp,s =
∫ ∞

−∞

∫ ∞

−∞
fp,s(qx,qy)S(qx − n0k0 sin θ0,qy)dqxdqy

(1)

where S(qx,qy) is the surface PSD and fp,s(qx,qy) are two
functions that determine the optical response of the system in
p and s polarizations. These depend on the optical properties
of the two media forming the interface, the wavenumber of the
radiation k0 = 2π/λ, and the angle of incidence θ0.

The functions fp,s(qx,qy) are given by

fp(qx,qy) = Ap + {B31pq2(b − c) − B32pqx

+B61pqx[q2(b − c)2 + (q2 + bc)2]

+B62p(b − c)(q2
y + bc)}/(q2 + bc) (2)

and

fs(qx,qy) = As + B5s

(b − c)
(
q2

x + bc
)

q2 + bc
(3)

where b =
√

n2
0k

2
0 − q2 and c =

√
n2

1k
2
0 − q2.

In these expressions n0 and n1 are the complex refraction
indices of the incident and reflecting medium and the Ai , Bi

coefficients depend on the optical properties of the interface
materials and the angle of incidence. Their expressions are
given in the Appendix.

Franta and Ohlı́dal applied this model to study the scattering
and ellipsometric response of thin films characterized by a
Gaussian PSD.29 However, the assumption of a Gaussian
fails to reproduce the PSD measured in most experimental
systems, which are self-affine; in particular the Gaussian
model significantly underestimates the contribution at high
wavenumbers (Fig. 1).

We have chosen a parametrization of the PSD that is able to
reproduce the asymptotic behavior characteristic of self-affine
surfaces,30,31

S(q) = αw2ξ 2

π

1

(1 + ξ 2q2)α+1
, (4)
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where w, ξ , and α are the rms roughness, correlation length,
and the roughness exponent previously defined. We further
assume that S(q) = 0 over a certain cut-off wavenumber q >

qc. This limits the self-affine regime to distances greater than
the lattice constant (or interatomic spacing) of the material.
Experimental AFM spectra will generally cut off at a shorter
wavenumber because of the finite radius of the probe tip, which
limits the resolution. The normalization of the PSD given by
Parseval’s equation is preserved as long as qcξ � 1.

B. EMA model and fitting procedure

The optical properties of simulated surface roughness layers
nEMA (Sect. III.A.) are analyzed in terms of the isotropic
Bruggeman EMA based on the optical constants of the bulk
layer n1 and a chosen value of f, here equal to 0.532

f
n2

0 − n2
EMA

n2
0 + 2n2

EMA

+ (1 − f )
n2

1 − n2
EMA

n2
1 + 2n2

EMA

= 0. (5)

The thickness ds of the EMA layer is then extracted as
the sole-fitting parameter using the goodness-of-fit function
defined in the literature.33 Fits are carried out both using
commercial software for the acquisition and analysis of SE
data (WASE and EASE from J. A. Woollam Co., Inc.) and our
own software routine. Nearly identical values are obtained in
all cases.

III. RESULTS

A. Model system: a-Si:H

The vapor-phase growth of a-Si:H has been extensively
studied by real-time SE, so we consider this material as a
model system. As mentioned in the Introduction, for growth
on smooth substrates a linear relationship between w and ds is
often found.16,21,24 (This does not include the morphologically
complex stage of film nucleation and coalescence on a foreign
substrate, where ds rapidly increases then decreases, followed
by the slow increase of ds during steady-state film growth.)34

We begin by simulating the ellipsometric response of the
a-Si:H surface as a function of the three parameters contained
in the PSD, then transforming the output into the EMA
roughness. The n1 for a-Si:H is modeled using a well known
Tauc-Lorentz model.35,36 For various choices of α and ξ ,
thickness of the EMA layer increases with roughness but
as w2 rather than as w (Fig. 2), in apparent disagreement
with experiment. When w and α (ξ ) are held constant and
ξ (α) is varied, the EMA thickness changes by a factor up
to ∼3 (Fig. 2), again indicating the strong sensitivity of the
EMA result to the details of the surface morphology. Similar
variations are found if a value of f other than 0.5 is used.

Interestingly all the data presented in Fig. 2 coalesce into
a single line when plotted as a function of a single-scaling
parameter w2/ξα . The resulting fit (Fig. 3) is ds = (3.5 ± 0.1)
w2/ξα + (0.37 ± 0.05). Thus, the parameter w2/ξα contains
all the relevant information that affects the scattering of light
from a self-affine surface.

An interpretation of this parameter can be obtained begin-
ning with the average local slope of the surface δ = 〈(∇h)2〉1/2.
In the case of a self-affine surface, it can be shown that δ

is proportional to w/ξα .37 Thus, the measurement of EMA

FIG. 2. Influence of surface roughness, roughness exponent, and
correlation length on the thickness of the roughness layer for a-
Si:H as obtained from the fitting of the Rayleigh-Rice scattering
model.

roughness depends on the product wδ. Each parameter offers
information of a different nature: while w accounts for the
interface width, i.e., characteristic vertical variations, δ is
related to the waviness of the surface, i.e., the characteristic
horizontal length over which the height variations occur.
Interestingly the dependence of the optical properties on the
wδ product is not limited to self-affine surfaces: Franta and
Ohlı́dal observed the same dependence for (unphysical) model
surfaces characterized by a Gaussian PSD, which have values
of δ = √

2w/ξ and yielded linear relationships between ds/w
and w/ξ .29 Hence, they found ds ∝ w2/ξ for Gaussian PSDs,
which again implies ds ∝ wδ.

The scaling relationship between ds and w2/ξα automati-
cally provides an explanation for the linear relationship found
experimentally between the optical and rms roughness. The
mechanisms leading to the formation of self-affine surfaces
and the time evolution of the three parameters in the PSD
have been amply studied.1,19,38–40 Many systems undergo
kinetic roughening that behaves according to dynamic-scaling
theory. In these systems the long-scale roughness evolves with
time as w ∼ tβ , with β termed the growth exponent, whereas
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FIG. 3. Scaling of the thickness of the EMA roughness layer with
the single parameter w2/ξα for a-Si:H.

the correlation length changes as ξ ∼ t1/z ∼ tβ/α , where z =
α/β is named the dynamic exponent. The exponents remain
constant with time. A characteristic feature of such systems is
that the average slope δ, which is proportional to w/ξα , does
not change with time. Under this condition the change in the
ellipsometric roughness becomes proportional to the change
of the surface roughness, unlike the nonlinear predictions of
Fig. 2. Provided that δ is approximately constant (changes
only very slowly) during the growth of a-Si:H films, the linear
correlation is now fundamentally understood. Differences in
the coupling constant can therefore be attributed to differences
in the local slope.

Explicit reports of the evolution of δ obtained from
scanning probe microscopies are largely absent from the
a-Si:H literature. However, plots of S(q), the height-difference
correlation function H (r) = 〈[h(x) − h(x + r)]2〉, or w as a
function of the lateral dimension of the measurement L provide
some insight into how δ might change during deposition. If δ

is constant (stationary growth), one would expect a series of
S(q) plots for various deposition times to overlap at high q.
Similarly, plots of H(r) or w(L) should overlap for r << ξ or
L << ξ , respectively.41 By examining the limited published
data, we find some reports where a-Si:H film growth appears
to be stationary.9,42 In these cases our analysis shows that one
should expect ds ∝ w. However, the proportionality constant
between ds and w would contain δ, so one would not expect
a universal constant that applies to all deposition systems and
all deposition conditions.

There are also reports where a-Si:H deposition appears to
be nonstationary.13,43,44 In other nonstationary film growth sys-
tems, the dynamic behavior of δ is often found to be relatively
slow compared to w, and a logarithmic function is found:
δ(t) ∼ √

ln t .45 In this case ds will become nearly proportional
to w for long deposition times since the logarithmic function
is much slower than w ∼ tβ . In other cases a power law is
found (anomalous scaling): δ(t) ∼ tκ .13,46 If this occurs, both
early- and late-stage growth should yield ds ∼ tβ+κ . Therefore,
using roughness data derived from ellipsometry to address
detailed physical models (e.g., to obtain β)7,9,11,14 requires

FIG. 4. Scaling of the real and imaginary parts of the Fresnel-
reflection coefficient for the p (white circles, full circles) and s (white
squares, full squares) polarizations with the parameter w2/ξα for
different materials obtained with the full Rayleigh-Rice scattering
model (λ = 500 nm).

extensive measurements of surface topology to examine δ and
its dynamics.

B. Generalization to other materials

The scaling behavior obtained in Fig. 3 is an intrinsic
feature of the nature of the scattering of rough surfaces and
applies equally well to different materials. Solving Eq. (3) for
a single wavelength and different values of surface roughness,
correlation length, and roughness exponent, we confirm that
the change in Fresnel coefficient also scales with w2/ξα . This
is true for any chosen wavelength. The change in the real and
imaginary parts of the Fresnel reflection coefficients for p and s
polarizations is calculated for poly-Si, GaN, CdS, and Cu using
the Rayleigh-Rice scattering model of (1) (Fig. 4). Optical
constants provided in Ref. 47 were used. The dependence
on the single parameter w2/ξα holds for all these materials.
Consequently the scattering equation itself must contain the
underlying reason for the results presented in the previous
section.

To elucidate the nature of the scattering, we carried out
an analytical approximation to the integral (1) in the limit
where the wavelength of light is much larger than the surface
correlation length λ � ξ . This limit is obeyed in high-quality
thin-film surfaces. To first order in the k0ξ parameter, we have

S(qx − n0k0 sin θ0,qy) = S(qx,qy)

×
[

1 − 2(α + 1)n0 sin θ0
ξqx

(1 + ξ 2q2)α
(k0ξ ) + O(k0ξ )2

]
.

(6)

Because q � k0 in most of the integration range of (1), we
can use the asymptotic limit of the optical response functions
fp,s given in (2) and (3). If

b = iq

[
1 − 1

2

n2
0k

2
0

q2
+ O

(
k0

q

)4
]
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and

c = iq

[
1 − 1

2

n2
1k

2
0

q2
+ O

(
k0

q

)4
]

,

the reflection Fresnel coefficients can be written as

�rp = w2Ap + 2iαw2ξ−2α n2
0 − n2

1

n2
0 + n2

1

× (B62p − 2B31p)
∫ qc

0

q2dq(
q2

ξ + q2
)α+1

+ 2αw2ξ−2αk0 sin θ0
k2

0n
2
0n

2
1B61p − B32pk−2

0

n2
0 + n2

1

(7)

and

�rs = w2As + 2iαw2ξ−2α n2
0 − n2

1

n2
0 + n2

1

B5s

∫ qc

0

q2dq(
q2

ξ + q2
)α+1 ,

(8)

where qξ = 1/ξ .
According to (7) and (8) the change in the Fresnel reflection

coefficients is the sum of two contributions, one that depends
only on the interface roughness (long-range roughness) and a
second that also depends on the correlation length, roughness
exponent, and the cutoff wavenumber (short-range features of
the surface). The fact that in the full model the optical response
scales with the parameter w2/ξα indicates that the short-range
contribution dominates with respect to the long-range one.
This is consistent with previous experimental deductions that
SE data are most sensitive to short-range roughness.10,13,48

The results of the full model (1) can be compared with the
approximations given by (7) and (8); we consider realistic
parameters w = 2 nm, ξ = 20 nm, α = 0.7 and qc = 2π/

0.2 nm−1, refraction indices n0 = 1 and n1 = 2 + 2i, and an
angle of incidence of 70 degrees. Both approximations tend
to the exact result in the long wavelength limit, and for λ >

400 nm they provide good approximations to the more rigorous
result (Fig. 5).

When the short-range terms in (7) and (8) become dom-
inant, the optical- and surface-morphology contributions to
�rp,s can be separated, so that

�rp,s = Cp,s(n0,n1,k0,θ0)F (w,ξ,α,qc), (9)

where we have defined F (w,ξ,α,qc) as

F (w,ξ,α,qc) = αw2ξ−2α

∫ qc

0

q2(
q2

ξ + q2
)α+1 dq (10)

and

Cs(n0,n1,k0,θ0) = 2i
n2

0 − n2
1

n2
0 + n2

1

B5s (11)

Cp(n0,n1,k0,θ0) = 2i
n2

0 − n2
1

n2
0 + n2

1

(B62p − 2B31p). (12)

When Eq. (9) holds, the scattering from self-affine surfaces
is determined by F (w,ξ,α,qc) regardless of the optical
properties of the material. Thus, we obtain a universal behavior
where the optical properties of the material only determine the

FIG. 5. Comparison between the real (full circles) and imaginary
(open squares) part of the Rayleigh-Rice p and s Fresnel reflection
coefficients and the analytic approximation given by (7) and (8) (full
lines). See text for details.

amplitude of the perturbation of the Fresnel coefficients for a
given self-affine surface.

We can further manipulate Eq. (10) to obtain a closed
expression. After a change of variables, we obtain that

F (w,ξ,α,qc) = αw2

2ξ
B

(
b;

3

2
,α − 1

2

)
, (13)

where B(x; n,m) is the incomplete Beta function and

b =
√

(ξqc)2

1 + (ξqc)2
.

The dependence of F/w2 with ξ and α, calculated from
Eq. (13), is presented in Fig. 6 for qc = 2π/0.2 nm−1, ξ in
the 10–50 nm range, and selected values of the roughness
exponent α. When F/w2 is plotted against the parameter α/ξ

for different values of the roughness exponent, the curves do
not coalesce to a single plot (Fig. 6, top). However, when
plotted against the scaling parameter ξ−α , the curves coalesce
to a single trend (Fig. 6, bottom).

The influence of the cut-off parameter qc is neg-
ligible as long as ξqc � 1. In this case b → 1 and
limb→1B(b; 3

2 ,α − 1
2 ) = B( 3

2 ,α − 1
2 ). This is only possible

for α � 0.5 because the incomplete Beta function does not
converge to a finite value for α < 0.5. Under these conditions
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FIG. 6. Scaling of the function F with the single parameter w2/ξα .

the contributions of wavenumbers close to the cutoff cannot be
neglected and the scaling behavior breaks down. The influence
of ξqc � 1 in the scaling behavior can be demonstrated for
α = 1. In this case the integral in Eq. (10) has an analytic
solution and, assuming ξqc � 1, F (w,ξ,α,qc) = w2

2ξ
B( 3

2 , 1
2 ) ∼

wδ. This result is consistent with the general scaling behavior
proposed in the previous section and the same as that obtained
in the Gaussian case, differing only on the magnitude of the
proportionality constant. If the condition ξqc � 1 does not
hold, the F ∼ wδ scaling breaks down.

Finally, from Eq. (13) it is possible to determine the
sensitivity of light scattering to the variation of each surface
parameter. For a surface roughness of 2 nm, correlation length
of 10 nm, and roughness exponent α of 0.8, a 10% variation
in w, ξ , or α separately causes a change in F of 20%, 7%, and
10%, respectively.

C. Limits of the scaling behavior: Influence of the correlation
length

The two requirements for the Rayleigh-Rice theory to be a
good approximation of the scattering process are that both
surface roughness and correlation length must be smaller
than the light wavelength. Moreover, a necessary condition
for the dependence with w2/ξα is that the high-wavenumber
contribution to the integral of the scattering equations

FIG. 7. Surface wavenumber influence on the Rayleigh-Rice
scattering of an a-Si:H self-affine surface (w = 2 nm, α = 0.8) for
p (full line) and s (dashed line) polarizations. Top left: ξ = 10 nm,
λ = 620 nm; top right: ξ = 10 nm, λ = 310 nm; bottom left: ξ =
30 nm, λ = 620 nm; bottom right: ξ = 30 nm, λ = 310 nm.

must be dominant. Otherwise, the ellipsometric response
would be independent of the structure of the PSD at high
wavenumbers.

In Fig. 7 we present the calculated contribution of each
wavenumber to the optical response of the surface for four
different conditions. When the correlation length is much
smaller than the wavelength of the light, the most important
contributions are from wavenumbers of the order of the
correlation length. Under this condition the scaling behavior
of Figs. 3 and 4 is fulfilled. When the correlation length is
comparable to the wavelength, the contribution of the long
wavenumbers decreases, and a secondary contribution (peak)
appears at a wavenumber corresponding to that of the incident
radiation. This additional contribution is a consequence of
a resonance in the kernel of the scattering equations of the
Rayleigh-Rice model. Both the results presented in Fig. 7
and the breakdown of the analytic approximation derived
in the previous section at low wavelengths indicate that the
scaling behavior depicted in Figs. 3 and 4 holds whenever
the correlation length is shorter than the wavelength of the
light, a situation that is often found in high quality thin
film systems. Because the Rayleigh-Rice approximation is no
longer correct as ξ → λ, it is very difficult to ascertain whether
the breakdown of the scaling behavior and the resonance
depicted in Fig. 7 have a physical origin or are an artifact of
the theory as the correlation length approaches the wavelength
of the incident radiation.

IV. CONCLUSIONS

We have studied the influence of surface morphology on
the optical response of self-affine surfaces, in particular, how
the parameters of correlation length ξ and roughness exponent
α affect the thickness of the EMA surface-roughness layer
obtained using SE. In general, optical theory predicts that
the EMA roughness should not be a linear function of the
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rms roughness extracted from AFM measurements. However,
we show that when the average surface slope δ changes
only slowly with film thickness, then a linear relationship is
restored. We further show that this result holds independent of
the optical properties of the surface in question. These results
rationalize the apparently inconsistent results in the literature
for surface roughness of a-Si:H: differences between studies
can be interpreted in terms of differences in the local slope of
the roughness.
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APPENDIX

In this section we include the definitions of the Ai , Bi

coefficients in the fp,s(qx,qy) kernels defined in (2) and (3).
They only depend on the optical properties of the interface

media, the wavelength, and the incident angle:

Ap = k2
0n0n

2
1X/D

B31p = k0n
2
0n

2
1 sin θ0W/D

B32p = k3
0n

2
0n

2
1 sin θ0X/D

B61p = n0n1 cos θ1W/(k0D)

B62p = k0n0n1 cos θ1X/D

As = −2k2
0n1 cos θ1n0 cos θ0r

0
s

B5s = −2k0n0 cos θ0r
0
s ,

where

D = (n0 cos θ0 + n1 cos θ1)
(
n2

0 sin2 θ0 + n0 cos θ0n1 cos θ1
)

X = (
n2

0 − n2
1

)
cos θ1t

0
p

W = (
n2

1

/
n2

0 − 1
/
n1

)
n0 sin θ0t

0
p

and r0
s and t0

p are the Fresnel reflection and transmission
coefficients for the s and p polarizations, and θ1 is defined
from the complex Snell’s law n0 sin θ0 = n1 sin θ1.
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