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Probing plasmons in graphene by resonance energy transfer
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We theoretically propose an experimental method to probe electronic excitations in graphene—a monoatomic
layer of carbon—by monitoring the fluorescence quenching of a semiconductor quantum dot (or a dye molecule)
due to the resonance energy transfer to the graphene sheet. We show how the dispersion relation of plasmons in
graphene can be accurately extracted by varying the back-gate voltage and the distance between the quantum dot
and graphene.
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I. INTRODUCTION

Many appealing properties of graphene—a monoatomic
crystalline sheet of carbon—stem from its unique electronic
structure.1 Specifically, its honeycomb lattice combined with
the conjugation of π electrons over the entire sheet results
in the electronic spectrum of a zero-gap semiconductor
with “ultrarelativistic” electrons and holes.2 Already this
makes graphene enormously appealing from both basic and
application standpoints. What makes graphene even more
attractive is the possibility to tune these properties in a wide
range by patterning, chemical functionalization, doping, etc.
For example, shifting the Fermi level away from the charge
neutrality (Dirac) point by applying the back-gate voltage, and,
therefore, changing the graphene’s electrical conductivity, can
become useful in graphene-based electronics.1,3

The improved electrical conductivity of a back-gated
or chemically doped graphene sample leads to qualitative
changes in its optical properties. In particular, collective
excitations (plasmons), rather then single-particle excitations
(electron-hole pairs), are expected to define an electronic
response of graphene to a low-frequency optical perturbation.
Plasmons in graphene are of great interest from the basic
perspective, as collective excitations in a two-dimensional
electron gas with very peculiar properties. Besides, the
graphene plasmonics holds promise for, e.g., photonic and
optoelectronic devices, as well as metamaterials.4,5 Plasmons
in graphene have been predicted and studied theoretically6–12

but experimental studies of this phenomenon are still very
sparse.13–15

In this paper we propose an experimental technique to probe
plasmons in graphene. The technique is based on the Förster
resonance energy transfer between a fluorescent semiconduc-
tor quantum dot (or a dye molecule) and a nearby graphene
layer. Efficient energy transfer between a dye molecule and
graphene has been theoretically predicted by Swathi and
Sebastian16–18 and later confirmed experimentally.19 How-
ever, Swathi and Sebastian described electronic excitations
in graphene on the single-particle level, which is accurate
only for a nearly undoped (charge-neutral) graphene. In this
paper, electronic excitations are treated more accurately by
adopting the random-phase approximation, which allows for

recovering the collective electronic behavior. We demonstrate
that electronic excitations in graphene, both single-particle
and collective, can be sensitively probed by studying the
fluorescence quenching of the quantum dot due to the energy
transfer to graphene. Specifically, we show how the plasmon
dispersion can be extracted from experiment.

The expected advantage of the proposed technique over the
typically used electron energy loss spectroscopy (EELS)13–15

is its intrinsic locality, i.e., plasmons are proposed to be
probed locally by a semiconductor quantum dot (typically
a few nanometers in diameter). In contrast, EELS averages
the plasmonic response over a certain portion of a graphene
sample, thus adding the inhomogeneous broadening due to,
e.g., charge puddles20 to experimental observables.

The paper is organized as follows. The general theory of
quantum dot fluorescence quenching due to the resonance
energy transfer to graphene is given in Sec. II. The analysis of
quenching efficiency within the single-particle and random-
phase approximation levels is provided in Secs. III and IV,
respectively. Section V concludes the paper.

II. FÖRSTER RESONANCE ENERGY TRANSFER

Förster resonance energy transfer (FRET) refers to
the transfer of electronic excitation energy between
chromophores21 mediated by the nonradiative Coulomb
coupling.22 This process consists of deexcitation of an initially
(optically) excited donor chromophore and the simultaneous
excitation of an acceptor chromophore. An example of such
a process is the energy transfer between a semiconductor
quantum dot (QD) and a nonfluorescent organic molecule
as an acceptor chromophore.23 As the energy transfer to the
nonfluorescent “dark” molecule (i.e., quencher) competes with
the intrinsic fluorescence of the “bright” QD, the FRET rate
can be assessed through the effective decrease (quenching)
of the QD fluorescence quantum yield, and/or through the
shorter apparent fluorescence lifetime, measured by time-
resolved fluorescence spectroscopy. Specifically, the apparent
fluorescence lifetime is given by τ = 1/(τ−1

0 + kq), where τ0 is
the lifetime of the isolated QD and kq is the FRET (quenching)
rate. Accordingly, the decreased fluorescence quantum yield

085401-11098-0121/2011/84(8)/085401(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.085401


KIRILL A. VELIZHANIN AND ANATOLY EFIMOV PHYSICAL REVIEW B 84, 085401 (2011)

in the presence of FRET is given by τ/τ0. Therefore, kq can
be extracted provided τ and τ0 are known from experiment.

The efficiency of FRET is strongly affected by parameters
of the acceptor’s excitation spectrum. A trivial example
is a vanishing FRET rate in a system where an acceptor
chromophore does not have excitations resonant to the lowest
excited state of a donor chromophore. This allows one to use
FRET as a spectroscopic tool to probe an electronic structure
of a system of interest. An advantage of this method is the near-
field regime of the donor-acceptor interaction, which allows for
probing excitations forbidden in the far-field (optical) regime
due to, e.g., the large wavelength mismatch between optical
photons and material electronic excitations. Short-wavelength
character of electronic excitations in graphene, especially
that of plasmons,6–8 hinders the study of these excitations
by standard far-field optical techniques. We propose to use
FRET between QD and a graphene sheet to probe electronic
excitations in graphene. The theoretical framework for FRET
in the QD-graphene complex is developed in the rest of the
section.

A. Fluorescence quenching efficiency

We define the wave functions of the excited and the ground
states of QD as |e〉 and |g〉, respectively. The true many-body
ground state and excited states of graphene are denoted by
|0〉 and |n〉, respectively. The quenching rate kq for the energy
transfer from QD to graphene is given by Fermi’s golden rule
as

kq = 2πh̄−1
∑

n

|〈n|〈g|V̂ |e〉|0〉|2δ(ε − En), (1)

where V̂ is the operator of Coulomb interaction between
fluctuating charge densities of QD and graphene

V̂ =
∫

dr V (r)(|e〉〈g| + |g〉〈e|)ρ̂(r). (2)

The operator of graphene charge density is given by −eρ̂(r) =
−eϕ̂†(r)ϕ̂(r), where operators ϕ̂†(r) and ϕ̂(r) create and
destroy an electron at position r within the graphene sheet,
respectively. The absolute value of the electron charge is
denoted by e = |e|. The excitation energies of QD and
graphene are denoted by ε and En, respectively. Vector
variables are denoted in bold.

For the rest of the paper, we adopt the dipole approximation
for QD, which results in V (r) = −e(d · r)/r3. The transition
dipole of QD is given by d. This approximation is accurate
if z � D, where z is the distance between QD and graphene,
and D is the QD diameter. The validity of this approximation
for the realistic case of PbSe QD is discussed in Sec. IV.

The quenching rate in Eq. (1) can be rewritten through
the retarded polarization operator of graphene �r (q,ε) as (a
detailed derivation is given in the Appendix)

kq = −2πe2h̄−1(d2
‖ + 2d2

⊥)
∫ ∞

0
qdq Im[�r (q,ε)]e−2qz,

(3)

where d‖ and d⊥ are the projections of the QD transition
dipole d onto the graphene plane and the normal to this plane,
respectively. If we ignore for simplicity that the population

of the QD excited state depends on the angle between the QD
transition dipole and the polarization of the initial QD-exciting
laser pulse, we simply need to average over all the possible
orientations of d with respect to the graphene plane which
yields 〈d2

‖ 〉/2 = 〈d2
⊥〉 = d2/3 resulting in

kq = −8πe2d2

3h̄

∫ ∞

0
qdq Im[�r (q,ε)]e−2qz. (4)

We define the quenching efficiency (QE) as ϕq = kq/kr , where
kr is the fluorescence rate for the isolated QD24

kr = 4ε3

3h̄4c3
d2. (5)

Substituting Eq. (5) into Eq. (4), one obtains for QE

ϕq = −2πh̄3c3e2

ε3

∫ ∞

0
qdq Im[�r (q,ε)]e−2qz. (6)

FIG. 1. Density plot of (a) Im[�r
0(q,ε)] and (b) Im[�r

RPA(q,ε)]
in units of μ

h̄2v2
f

. Checkerboard pattern emphasizes regions where the

imaginary part of the polarization operator vanishes exactly.
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B. Massless Dirac fermions approximation

Polarization operator �r (q,ε) for graphene can be obtained
at various levels of theory. At zeroth-order approximation
with respect to the electron-electron Coulomb interaction
within the graphene sheet, it can be evaluated adopting the
free massless Dirac fermions (MDF) approximation. At this
level, the polarization operator, denoted by �r

0(q,ε), is a
bare polarization bubble describing a single noninteracting
electron-hole pair in graphene. Within this approximation,
�r

0(q,ε) has been evaluated previously6–8 for arbitrary doping
level and its imaginary part is shown in Fig. 1(a). This figure is
valid for any level of doping, defined by the chemical potential
μ, measured relative to the Dirac point, since due to the
linear dispersion relation of massless fermions in graphene, the
polarization operator does not change with doping, if measured
in units of μ

h̄2v2
f

and plotted against unitless coordinates q/kf

and ε/μ, where vf ≈ 0.4 is the Fermi velocity in atomic units
and kf = μ/h̄vf .25

With respect to the wave number q, the MDF approximation
is only valid when q 	 a−1, where a ≈ 2.46 Å is the
lattice constant of graphene. Because of the factor e−2qz

in the integrand of Eq. (6), this condition is equivalent to
restricting z � a, i.e., to considering the quenching efficiency
ϕq only at large QD-graphene distances compared to the lattice
constant of graphene. However, because of the adopted dipole
approximation, we are already restricted to z � D, where the
typical QD diameter D is on the order of a few nanometers.
Thus, setting z � a because of the MDF approximation does
not restrict the range of applicability of Eq. (6) any further
compared to the one set by the dipole approximation. With
respect to the excitation energy, the MDF approximation has
been shown to be valid for ε � 1 eV.10

The key features of Im [�r
0(q,ε)] include (i) the singularity

along the ε/μ = q/kf line, which corresponds to single-
particle excitations with the (q,ε) vector lying within the
surface of the Dirac cone, and (ii) the absence of single-particle
excitations, i.e., Im[�r

0(q,ε)] ≡ 0, in regions A and B, marked
by checkerboard patterns in Fig. 1(a). Equation (4) with
�r

0(q,ε) substituted in is very similar26 to the result of Swathi
and Sebastian16,17 for the fluorescence quenching of a dye
molecule due to single-particle excitations in graphene.

The polarization operator within the bare bubble approx-
imation does not include the graphene’s polarization self-
consistently which can become crucial at nonzero doping
levels (μ > 0), where the finite carrier density at the Fermi
level leads to the efficient Coulomb screening within the
graphene sheet. To correct for this, we evaluate the polarization
operator within the random-phase approximation (RPA) as7,8

�r
RPA(q,ε) = �r

0(q,ε)

1 − W (q)�r
0(q,ε)

, (7)

where W (q) = 2πe2/κ̃q is the two-dimensional Fourier trans-
form of the Coulomb potential within the graphene plane. The
effective dielectric constant of the environment is denoted by
κ̃ . A free-standing graphene sheet in vacuum corresponds to
κ̃ = 1. For graphene lying on top of a half-space dielectric
substrate with dielectric constant κ , the effective constant is
given by κ̃ = (κ + 1)/2.27,28 For example, for a SiO2 substrate
(κ=4) the effective dielectric constant is κ̃ = 2.5. In the rest

of the paper, except for results shown in Fig. 4, the vacuum
conditions (κ̃ = 1) are assumed.

The imaginary part of �r
RPA(q,ε) is depicted in Fig. 1(b).

It is seen that the “single-particle” singularity ε/μ = q/kf

is gone and the new singularity at ε ∝ q1/2 appears instead.
This emergent singularity corresponds to the collective elec-
tronic excitation, i.e., plasmon, in graphene.6–8 It is rather
pedagogical to see exactly how this singularity appears from
Eq. (7). The naive substitution of �r

0(q,ε), shown in Fig. 1,
into Eq. (7) results in Im[�r

RPA(q,ε)] vanishing exactly in
the entire region A since both �r

0(q,ε) and W (q) are real
in this region. However, the more careful analysis reveals
that the imaginary part of �r

0(q,ε) is not exactly zero in A,
but infinitesimal instead due to the usual small imaginary
constant in the denominator of the Lindhard function, which
preserves causality. The infinitesimal imaginary part of the
bare polarization operator can be safely neglected if �r

0(q,ε)
is analyzed by itself. However, when 1 − W (q)Re[�r

0(q,ε)]
vanishes in the denominator of Eq. (7), this small imaginary
part yields singularity (δ function) in Im[�r

RPA(q,ε)], i.e.,

Im
[
�r

RPA(q,ε)
] ∝ δ(q − qp(ε)), (8)

where the plasmon dispersion relation is given by qp(ε) ≈
ε2

2e2μ
at small ε, i.e., at ε/μ 	 1, and obtained numerically at

higher excitation energies.8 Therefore, the general prescription
to assume all the infinitesimal parameters finite until the very
end of calculations proves to be critical in this case.

It is important to note that since there is no single-particle
excitation in region A, the plasmon lifetime is infinite [δ
function in the imaginary part of �r

RPA(q,ε)] within this
region.29 Once plasmon “leaves” region A (q/kf � 0.65), it
acquires the finite lifetime due to the Landau damping and
soon disappears.

In the following Secs. III and IV, we discuss the efficiency
of the QD fluorescence quenching due to unscreened excita-
tions in graphene, described by �r

0(q,ε), as well as screened
excitations in graphene, described by �r

RPA(q,ε), respectively.

III. QUENCHING BY UNSCREENED EXCITATIONS

QE due to unscreened single-particle excitations in
graphene can be obtained from Eq. (6) by substituting
�r (q,ε) with �r

0(q,ε). This approximation is accurate if
either (i) the effective dielectric constant of a substrate is
high, and, therefore, the effective electron-electron Coulomb
interaction within graphene is greatly reduced, or (ii) ε � μ,
i.e., graphene becomes effectively undoped. In both cases,
the screening within the graphene layer becomes ineffective,
yielding �r

RPA(q,ε) ≈ �r
0(q,ε).

Four different regimes of the asymptotic dependence of
QE on the QD-graphene distance z are shown schematically
in Fig. 2. At large distances, exponent e−2qz in the integrand
of Eq. (6) decays rapidly with q, which guarantees that at
fixed excitation energy ε the dominant contribution to QE
comes from lowest possible q where the imaginary part of
the polarization operator is still nonzero. The two qualitatively
different cases are (i) “gapless,” where the imaginary part of the
polarization operator is already nonzero even at infinitesimally
small q > 0, and (ii) “finite gap,” where Im[�r

0(q,ε)] becomes
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FIG. 2. (Color online) Regimes of asymptotic dependence of
quenching efficiency on the QD-graphene distance z, at z → ∞
(regimes I, II and III) and at z → 0 (regime IV).

nonzero only at some finite q, i.e., at q > q∗ with finite q∗ > 0.
The typical power-law dependence of �r

0(q,ε) on q at q → 0
in the gapless case

�r
0(q,ε) ∝ qα, (9a)

and
�r

0(q,ε) ∝ (q − q∗)α, (9b)

at q → q∗ + 0 in the finite-gap case, yield

ϕq ∝ z−(α+2), (10a)
and

ϕq ∝ z−(α+1)e−2q∗z, (10b)

at z → ∞, respectively. In what follows, we consider three
different asymptotic regimes of QE at z → ∞ (regimes I, II,
and III). The asymptotic behavior of QE at z → 0 (regime IV)
is described subsequently.

Regime I. At high excitation energies (ε/μ > 2), the
imaginary part of �r

0(q,ε) is seen in Fig. 1(a) to correspond to
the gapless case. Further, it can be shown that Im[�r

0(q,ε)] ∝
q2 at small q [see Eq. (12) in Ref. 7 for the long wavelength
limit of the polarization operator], which is then combined
with Eq. (10a) to give

ϕq ∝ 1/z4. (11)

This power-law dependence is shown as regime I in Fig. 2.
The asymptotic behavior in Eq. (11) is satisfied at ε/μ >

2, and, therefore, also at ε � μ, where μ can be treated as
zero, i.e., the graphene sheet becomes effectively undoped.
The asymptotics of 1/z4 for the fluorescence quenching by
single-particle excitations in undoped (and also weakly doped)
graphene was first predicted by Swathi and Sebastian.16,17

Generally, the asymptotic dependence 1/z4 is rather
expected since QE due to the energy transfer from a
chromophore to a quencher accompanied by the interband
excitation of single electron-hole pairs in an N -dimensional
quencher typically scales as zN−6, where z is the distance
between the chromophore and the quencher. FRET to 0d

quencher (e.g., small organic molecule) corresponds to N = 0,
naturally resulting in 1/z6.30 Nanowire as a quencher (N = 1)
leads to 1/z5 asymptotics.31 Excitation of single-electron holes
in a dipole-to-surface configuration, i.e., when a quencher
occupies the half-space (N = 3), yields 1/z3 asymptotics.32

The graphene sheet is a 2d object, which naturally leads to
1/z4 dependence of QE at large z.

Regime II. At 1 < ε/μ < 2, the imaginary part of �r
0(q,ε)

vanishes exactly at q < q∗, where the threshold value of
q∗/kf = 2 − ε/μ marks the onset of interband single-particle
excitations. It can be shown that in this finite-gap case,
Im[�r

0(q,ε)] is proportional to (q − q∗)3/2 at q → q∗ + 0,
which yields [by virtue of Eq. (10b)]

ϕq ∝ z−5/2e−2q∗z, (12)

which is marked as regime II in Fig. 2.
Regime III. At low excitation energies, ε/μ < 1, the finite-

gap case is again realized with q∗/kf = ε/μ, which is the
onset of intraband single-particle excitations. In this regime,
Im[�r

0(q,ε)] ∝ (q − q∗)−1/2, resulting in

ϕq ∝ z−1/2e−2q∗z, (13)

depicted as regime III in Fig. 2.
Regime IV. Finally, at a fixed excitation energy there are

no single-particle excitations with q/kf > 2 + ε/μ, i.e, in
region B in Fig. 1. This introduces the natural high-q cutoff for
integration in Eq. (6). If, at certain (small) z, exponent e−2qz

is still ≈ 1 at q approaching this cutoff, then QE becomes
constant with respect to z. This is depicted as regime IV
in Fig. 2. However, we expect this regime to be hardly
accessible experimentally. For example, at ε = 0.8 eV and
μ = 0, the realization of this regime requires z < 5 Å. At
such small distances photoinduced charge transfer from QD to
graphene can become the dominant mechanism of fluorescence
quenching, prohibiting the analysis of the relatively less
efficient energy transfer channel.33 Besides, at such distances
both dipole and MDF approximations are likely to break down.

IV. QUENCHING BY SCREENED EXCITATIONS

To evaluate QE in the case of screened excitations in
graphene, one has to substitute �r (q,ε) in Eq. (6) with
�r

RPA(q,ε) given by Eq. (7). First, we consider regime I in
Fig. 2. In this regime, the product W (q)�r

0(q,ε) becomes
proportional to 1/q × q2 = q at q → 0, which results in the
approximate equality �r

RPA(q,ε) ≈ �r
0(q,ε) at small q. Thus,

the asymptotic behavior of ϕq(z) at large z is the same for
screened and unscreened excitations in regime I; i.e., taking
screening into account does not lead to qualitative changes in
QE. This can be easily understood for ε � μ, where graphene
becomes effectively undoped, and, therefore, the small free
carrier density renders screening within graphene inefficient.

The situation is different in regime III (ε/μ < 1), where
taking Coulomb screening into account within RPA leads
to the emergence of the new (plasmon) singularity in the
polarization operator, as is shown in Fig. 1(b), region A.
Equation (8) implies that Im[�r

RPA(q,ε)] vanishes exactly at
q < q∗ = qp(ε); i.e., the finite-gap situation is realized with
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(a)

FIG. 3. (Color online) (a) Dependence of the quenching effi-
ciency ϕq on the QD-graphene distance z. (b) The filled area shows
where ϕq (z) is between 1000 and 1 at a given excitation energy ε/μ.
The red (left) and black (right) circles mark ϕq (z)=1000 and ϕq (z)=1
contour lines, respectively.

q∗ defined by the plasmon dispersion relation. Substituting
Eq. (8) into Eq. (6), one obtains

ϕq(z) ∝ e−2qp(ε)z. (14)

The absence of the power-law multiplier in front of the
exponent, which was universally present in the finite-gap
situations in the previous section, is related to a δ functional
instead of a power-law singularity of the polarization operator.

The asymptotic behavior, given by Eq. (14), is correct
even outside regime III, since the plasmon branch in Fig.
1(b) remains singular up to ε/μ ≈ 1.3, i.e., well within what
used to be regime II in the case of unscreened excitations.
For 1.3 � ε/μ < 2 the imaginary part of �r

RPA(q,ε) scales
as (q − q∗)3/2 at q → q∗ + 0 with the q gap defined by
q∗/kf = 2 − ε/μ, which yields ϕq(z) ∝ z−5/2e−2q∗z, i.e., the
large-z asymptotics is identical to that of regime II in the case
of unscreened excitations.

To examine how accurately large-z asymptotics for ϕq(z)
reproduce exact solutions at finite z, we numerically evaluate
the integral in Eq. (6) for the realistic case of PbSe QD
with the excitation energy of ε = 0.8 eV. At this energy, the
fluorescence quantum yield of the isolated PbSe QD can be
as high as 70–90% with fluorescence lifetimes up to 1 μs,34,35

suggesting that QE can be directly extracted from experiment,
since the observable fluorescence quantum yield is given by
1/(1 + ϕq) in the presence of FRET.36

Numerically evaluated ϕq(z) for several values of chemical
potential in the range μ = 0.2–1.6 eV is shown in Fig. 3(a).
The smallest value of chemical potential adopted corresponds
to regime I since ε/μ = 4. The corresponding ϕq(z), depicted
by black circles, is expected to show 1/z4 dependence at large
z, and, indeed, demonstrates slowly decaying nonexponential
tail.

All the other values of chemical potential give ε/μ < 2,
and, therefore, are expected to give ϕq(z) ∝ e−2qp(ε)z and
ϕq(z) ∝ z−5/2e−2q∗z at large z for ε/μ � 1.3 and 1.3 � ε/μ <

2, respectively, with q∗ defined by q∗/kf = 2 − ε/μ. As

0 0.5 1 1.5 20

0.5

1

1.5

2

FIG. 4. (Color online) QE decay rate q∗ plotted vs ε/μ. Circles
(black), squares (red), and triangles (blue) correspond to single-
particle approximation, RPA for free-standing graphene (vacuum)
and RPA for graphene on substrate (SiO2, κ=4), respectively.

expected, all ϕq(z)’s, except for the one corresponding to the
lowest value of chemical potential (μ = 0.2 eV), demonstrate
the nearly exponential decay at large z. The filled area in
Fig. 3(b) shows the range of QD-graphene distances, where
QE is between 1 and 1000—somewhat loosely chosen range
where the accurate experimental measurement of QE is still
possible. QE is seen to decay the fastest with z (lowest z at
fixed ϕq) where the q gap is the largest, i.e., at ε/μ ≈ 1.3, as
seen in Fig. 1(b).

The rate of the exponential decay of QE at ε/μ < 2 directly
reflects the specific structure of Im[�r

RPA(q,ε)] at small q,
i.e., the width of the finite q gap. Therefore, the large-z
behavior of QE can be used to extract the valuable information
about electronic excitations in graphene, e.g., the plasmon
dispersion. To illustrate how the plasmon dispersion can be
extracted, we plot q∗ against ε/μ in Fig. 4, where q∗ is the
decay rate of QE at large z, obtained by fitting the large-z
QE decay with ϕq(z) ∝ e−2q∗z. Specifically, q∗ is plotted for
the case of unscreened excitations (black circles), as well
as for screened excitations in free-standing graphene (red
squares) and graphene laying on top of the SiO2 substrate (blue
triangles). Scanning through the range of values of chemical
potential using the back-gate, we are able to extract the
dispersion relation of singularities of the imaginary part of the
polarization operator. As is seen, the linear dispersion relation
of single-particle excitations (black circles at ε/μ < 1) as
well as that of the plasmon in the free-standing graphene (red
squares at ε/μ � 1.3) in graphene is accurately recovered.

As discussed in the beginning of Sec. III, electronic
excitations in graphene are effectively single-particle either
if (i) there is a strong substrate-induced dielectric screening
or (ii) the excitation energy is high, i.e., ε � μ. The first case
is illustrated by the plasmon dispersion for graphene on the
SiO2 substrate (blue triangles), which is closer to the single-
particle excitations (black circles) than that corresponding to
the free-standing graphene (red squares). The second case
is effectively realized at ε/μ � 1.3, where dispersions of
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electronic excitations with and without accounting for the
in-graphene screening are nearly identical.

The proposed method to extract the plasmon dispersion
requires an accurate control over the distance between PbSe
QD and the graphene sheet. This can be accomplished by
either using the core-shell type-1 structures37 or by growing a
dielectric layer on top of graphene by atomic layer deposition
with the controllable thickness and then depositing QDs on
top of that dielectric layer. The first approach can be based
on PbSe/CdSe core-shell structures, where the large bulk
band gap of CdSe (∼1.7 eV) as compared to that of bulk
PbSe (∼0.28 eV) guarantees the confinement of both electron
and hole within the PbSe core (type-1 structure).38 This
confinement guarantees that the shell serves only as an inert
spacer between the PbSe core and the graphene layer. Recent
advances in core-shell structure fabrication techniques allow
one to control the thickness of the shell with the monolayer
(subnanometer) precision.37 Atomic layer deposition provides
an alternative strategy for controlling the distance between QD
and graphene with subnanometer resolution.39

Finally, we wish to discuss the effect of the finite plasmon
propagation length on the applicability of the proposed
method. So far, we assumed that the plasmon has infinite
propagation length within region A in Fig. 1(b). However,
additional damping channels, not accounted for in RPA
(e.g., defect scattering and electron-phonon coupling), can
“broaden” the plasmon in region A. It follows from Eq. (6), that
if the plasmon width in the q domain, δq, is less then 1/z, then
Im[�r

RPA(q,ε)] can still be treated as a δ function, resulting
in Eq. (14). Accordingly, deviations from the exponential
dependence are expected at z � δq−1 ∼ l, where l is the
plasmon propagation length.

Our numerical tests show that the exponential decay of QE
is typically already established at z comparable with the plas-
mon wavelength λ. On the other hand, estimations by various
authors suggest that the plasmon propagation length could be
as high as 10–100 λ.11,40 Therefore, we expect QE to decay
exponentially at z � λ, thus allowing for extraction of plasmon
dispersion. The onset of deviations from this exponential decay
at larger QD-graphene distances, z � l, naturally provides a
good estimate for the plasmon propagation length.

V. CONCLUSION

Based on the detailed analysis of fluorescence quenching
efficiency in the QD-graphene complex, we have proposed
a method of probing and studying electronic excitations in
graphene. The method has been demonstrated to be sufficiently
sensitive to allow the extraction of the dispersion relation
of plasmon in graphene. We hope that this study will
stimulate experimental efforts in this direction, especially
because the proposed method is based on the QD-graphene
complex which can be of interest not only as a means to
probe electronic excitations in graphene, but also on its
own merit as a key component of hybrid nanostructures
with promising properties. For example, the ability to excite
plasmon locally in graphene using a semiconductor quantum
dot can become of great use in graphene plasmonics. Another
recently proposed use of QD-graphene complexes is in
photovoltaics.41

The RPA-based description of electronic excitations in
graphene, adopted in this paper, does not include such many-
body effects as exchange and correlation, impurity and defect
scattering, or electron-phonon coupling. These effects can
affect the plasmonic response of graphene in two ways. First,
there can be deviations of the actual plasmon dispersion
relation from the one shown in Fig. 1(b). Second, additional
channels of plasmon damping can appear, as discussed in
the previous section. The proposed experimental technique
is capable of assessing both the dispersion relation and the
damping and, thus, is expected to stimulate the development
of beyond-RPA theoretical methods by providing a necessary
experimental validation.

ACKNOWLEDGMENTS

This work was performed, in part, at the Center for Inte-
grated Nanotechnologies, a US Department of Energy, Office
of Basic Energy Sciences user facility. K.A.V. acknowledges
support by the Center for Nonlinear Studies (CNLS), LANL.

APPENDIX: DERIVATION OF QUENCHING RATE

Evaluating explicitly the QD part of the matrix element in
Eq. (1), one obtains

kq = 2πh̄−1
∑

n

∣∣∣∣〈n|
∫

g

dr V (r)ρ̂(r)|0〉
∣∣∣∣
2

δ(ε − En). (A1)

This can be rewritten as

kq = h̄−1

(2π )3

∑
n

∫
drdr′

∫
dqdq′ V ∗(q)e−iq·rV (q′)eiq′ ·r′

× ρ0n(r)ρn0(r′)δ(ε − En), (A2)

where ρn0(r) = 〈n|ρ̂(r)|0〉 and V (r) = 1
(2π)2

∫
dq V (q)eiq·r.

Further, the δ function can be substituted using the identity
δ(ε − En) = h̄−1

2π

∫
dt ei(ε−En)t/h̄ yielding

kq = ih̄−1

(2π )4

∫
drdr′

∫
dqdq′ V ∗(q)e−iq·rV (q′)eiq′ ·r′

×
∫

dt �>(r,r′; t)eiεt/h̄, (A3)

where �>(r,r′; t) = −ih̄−1 ∑
n ρ0n(r)ρn0(r′)e−iEnt/h̄ is the

“greater” polarization operator for graphene in the Lehmann
representation. At sufficiently large distances between the
quantum dot and the graphene layer, V (r) varies smoothly
within the graphene plane. This makes it possible to average
the polarization operator over the unit cell with respect to
both r and r′. After this averaging, the polarization operator
becomes insensitive to variations of electronic density on the
scale of the graphene’s unit cell and, therefore, acquires the
isotropy and the continuous translational symmetry instead
of the discrete one, leading to a possibility to substitute
�>(r,r′; t) → �>(|r − r′|,t). Then, integrations over r, r′,
and t can be interpreted as spatial and time Fourier transforms,
respectively, resulting in

kq = ih̄−1

(2π )2

∫
dq |V (q)|2�>(q,ε), (A4)
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where

�>(q,ε) =
∫

dr
∫

dt �>(|r|,t)e−i(qr−εt/h̄). (A5)

Using the relations between real-time correlation and response
functions at equilibrium,42 which at zero temperature yields
�> = 2iIm[�r ], we obtain

kq = − 2h̄−1

(2π )2

∫
dq |V (q)|2Im[�r (q,ε)]. (A6)

This equation is similar to the well-known result by Metiu
[Eq. (2.30) in Ref. 43].

Finally, we provide without derivation the two-
dimensional Fourier transform (within the graphene plane) of
V (r)

V (q) = 2πie(d‖ cos(θ ) + id⊥)e−qz, (A7)

where d‖ is the projection of the QD transition dipole onto the
graphene’s plane, d‖ = |d‖| being its magnitude. The angle
between vectors d‖ and q is denoted by θ . The projection of
the QD transition dipole onto the normal to the graphene’s
plane is denoted by d⊥.
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