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Interference with coupled microcavities: Optical analog of spin 2π rotations
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It is well known that spinor wave functions change their sign under 2π rotation. Several experiments have
used magnetic precession of neutrons to implement rotations. Here we propose an all-optical analog of this
effect based on time-resolved optical interference in coupled optical microcavities. We show that feeding the
coupled-microcavity system with a pair of phase-locked probe pulses, separated by precise delay times, provides
direct information on the sign change of the transmitted field after one complete Rabi-like oscillation period.
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I. INTRODUCTION

All physicists at some time during their study of the quan-
tum theory of angular momentum encounter the seemingly
peculiar property of spinor, namely that it must be rotated
by 4π radians to return to its initial state. A rotation by
2π radians, which intuitively ought to be equivalent to no
rotation at all, multiplies the spinor wave function by −1.
As observables in quantum theory are quadratic in a wave
function, the change of sign cannot be detected by ordinary
experiments. Theoretically the origin of such behavior follows
from the form of unitary operators U (θ) = exp(−iσ · θ/2), (σ
are the Pauli matrices) which rotates a state vector of angular
momentum σ by an angle θ about the direction θ̂ . Hence, we
have U (2π ) = −1 independently of the rotation axis. As it
is well known, for more general angular momenta the spin
operator h̄σ/2 is replaced by the total angular momentum
operator J with 2N eigenvalues [N = J (J + 1)]. For J = n/2
(with n integer) an analogous behavior under 2π rotation
can be observed. The first Gedanken experiments aimed at
the observation of the sign change of spinors under 2π

rotations were published by Bernstein,1 and independently by
Aharonov and Susskind.2 These two proposed experiments,
the ffirst involving the interaction of a spin 1/2 particle with
a magnetic field, and the second involving the tunneling of a
current of free electrons, were conceptually similar. In both
cases one system was split into two separate subsystems,
one of them was affected by an additional 2π rotation
relative to the other one, and then recombined. The first
experimental verification of coherent spinor rotation was
provided by Rauch et al.3 and Werner et al.;4 both groups
employed unpolarized neutron interferometry as suggested in
the Bernstein-Gedanken experiment. Klein and Opat reported
the observation of 2π rotations by neutron Fresnel diffraction.5

The similarity of the mathematical description (that is, the
algebraic isomorphism) between spinor rotations and the
transitions between two atomic or molecular states of any
total angular momentum has been exploited to study analogies
of 2π spin rotations with different experimental approaches
that required no fermions.6–9 One other system, where such
an effect has been observed, consists of strongly interacting
Rydberg atoms and microwave photons: After a full cycle of
Rabi oscillation, the atom-cavity system experiences a global
quantum phase shift π (Ref. 10).

There exist interesting analogies between electron transport
and the transport of optical waves in dielectric structures.11

For example, photonic crystals are periodic dielectric sys-
tems that can exhibit a photonic band gap in analogy with
the electronic band gap in semiconductors.12 In disordered
systems the optical counterpart of weak localization,13,14

Anderson localization,15 and universal conductance have been
observed.16 The optical analog of electronic Bloch oscillations
in optical superlattices studied by means of time-resolved
spectroscopy was also reported.17,18 Often these processes are
easier to study with light because the coherence time of optical
wave packets is usually much longer than that of an electronic
wave packet.

The purpose of the present paper is to provide a concrete
and conceptually simple all-optical realization of the sign
change under 2π rotations. We consider a system of two
coupled planar microcavities (MCs). When one of the two
is excited by an ultrafast resonant optical pulse, the energy
oscillates between the two systems until losses through
the external mirrors prevails. Periodic optical media and
specifically stratified periodic structures play an important role
in a number of applications. Modern crystal-growth techniques
make it possible to grow multilayer media with well-controlled
periodicities and with the thicknesses’ precision below 1 nm.
Over the past two decades semiconductor coupled planar
MCs have been investigated as a way to further increase the
flexibility in controlling both radiation and material degrees
of freedom.19–25 In such systems the coupling of the two
cavity modes can be controlled by the transmission of the
central mirror and the two resonant modes are the optical
analogs of two atomic or molecular states, which, in turn, are
isomorphic to a spin 1/2 system. Although we present detailed
calculations for coupled planar semiconductor MCs, the results
here presented can also be verified in three-dimensional
coupled MCs such as coupled identical pillars etched from
a semiconductor planar MC,26 or coupled defects in photonic
crystals.27

II. COUPLED DOUBLE MICROCAVITY LIGHT MODES

A semiconductor planar MC is a structure formed by
high reflecting dielectric mirrors [distributed Bragg reflectors
(DBR)] on the two sides of a spacer (Sp) layer, of physical
length LC . Here, we consider a system composed by two planar
MCs connected through a common DBR (see Fig. 1). The
essential physical features of such a system may be understood
through a simplified analytical model. An analytical quantum
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FIG. 1. (Color online) Scheme of the double microcavity.

statistical model for interacting quantum systems in the strong-
coupling regime was adopted in Ref. 25. We assume that
the two MCs have a high Q factor and that the intracavity
modes are coupled with the external field via two partially
transmitting mirrors. More specifically we consider systems
with coupling-induced splittings quite larger than the linewidth
of the individual peaks.

To investigate the light propagation inside the heterostruc-
ture we exploit the transfer matrix approach.28,29 Here we
consider normal-incidence optical pulses propagating along
the growth axis. The electric field distribution within each
homogeneous layer can be expressed as the sum of an
incident plane wave and a reflected plane one. The complex
amplitudes of these two waves constitute the components of a
column vector. The light propagation in each DBR of N unit
cells constituted by two alternating dielectrics with refraction
indices n1 and n2, respectively, may be obtained by calculating
initially how the electric field propagates inside the single cell.
The electric field complex amplitudes emerging from the layer
between a medium l and a medium r are calculated from the
components of the incident light field through the relation28,29

(
ai−1

bi−1

)
= D−1

l TDr

(
ai

bi

)
, (1)

with

T = D2P2D−1
2 D1P1D−1

1 , (2)

where 1 and 2 label the two different dielectrics

Dα =
(

1 1

nα −nα

)
, (3)

represents the effects of the dielectric interface, and

Pα =
(

e−iφα 0

0 eiφα

)
, (4)

the propagation inside the single dielectric (φα = 2πnαdα/λ

where dα is the layer thickness in the direction of the light
propagation and λ is the light wavelength). To obtain the
amplitude of the electric field emerging from an N double
layer the calculation has to be iterated. We obtain

(
ai−1

bi−1

)
= D−1

l TNDr

(
ai

bi

)
. (5)

The N th power of the unimodular matrix T can be simplified
exploiting the Chebyshev identity.28,29 The system under
consideration is a double MC with one side on a substrate
with refraction index nsub and the other in contact with the
air; formally, such a system may be modeled by three DBRs
between two spacers with refraction index nc representing the

cavity in which the light propagates: the transfer matrix Td

results

Td = Tdbr1 PcTdbr2 PcTdbr3 , (6)

where Tdbr1
= D−1

air TN1 Dc, Tdbr2
= D−1

c TN2 Dc, Tdbr3
=

D−1
c TN3 Dsub. Once the matrix Td is calculated, the transmitted

T and reflected R intensity coefficients may be easily obtained
from the relations

T = nsub

nair
|T |2 , (7a)

R = |R|2, (7b)

where we have defined the transmission T = [Td
11]−1 and

reflection R = Td
21

Td
22

amplitudes. We consider a symmetric

structure formed by two cavities of length LC = λ0/(2n),
with λ0 = 800 nm embedded between two identical dielectric
mirrors formed by eight double layers of material A/B. In
addition, the mirror connecting the two cavities is formed by 12
double layers of the same A/B dielectrics. For the calculations
we have chosen LiF/ZnS Bragg mirrors24 with refraction
indexes n1 = 1.392, n2 = 2.352, the refraction index of the
spacer is n = 1.392 hence LC = 287.3 nm and the thickness
of the two layers forming the single DBR is, respectively,
dA = λ0/(4n1) = 143.7 nm and dB = λ0/(4n2) = 85 nm. The
frequency dependence of the transmitted intensity is shown in
Fig. 2: the Rabi peaks are the signature of the coupling between
the two proper light modes; in the inset the transmission is
shown in a longer energy range. We first consider excitation
of the system by a Gaussian light pulse arriving from the left
of the coupled system

Ein1(t) = 1

σ
√

2π
e−iω0(t−t0)e

− (t−t0)2

2σ2 ,
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FIG. 2. Detail of the calculated transmitted intensity as a function
of the energy (frequency) of incident light, showing the presence of
two split resonances due to the coupling between the two MCs. In the
inset is shown the calculated transmittance in a longer spectral range.
Owing to the wide frequency range the double peak is not resolved
in the inset.
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FIG. 3. (Color online) Light field transmitted intensity inside the
cavity in function of time when a single excitation is sent at t0 =
5.3 ps (in figure the Gaussian pulse with filled area). For reference
are shown also the other two light pulses [in the text, respectively,
Ein1(t) and Ein2(t)] that may be sent such that the time delay between
the two pulses corresponds to a complete Rabi-like oscillation and
in correspondence of the first to minima (at 11.36 and 16.83 ps,
respectively).

[with a full width at half maximum (FWHM) = 2.5 nm]
modulated at the central frequency ω0 = 2πc/λ0 = 2.356 ·
1015 Hz = 1.55 eV. The pulse arrival time is at t0 = 5σ being
σ = 1.06 ps. The time evolution of the transmitted electric
field is obtained by exploiting the Fourier transform,

Et(t) =
∫

dω T (ω)Ẽin(ω)e−iωt , (8)

with Ẽin(ω) being the Fourier transform of Ein(t). This
approach may be used also in more complex situations
when a nonclassical light beam is sent inside the cavity.30–32

The calculated field intensity |Et(t)|2, obtained for Ein(t) =
Ein1(t), is shown Fig. 3. The figure also displays (arb. units)
the corresponding Gaussian input pulse (filled curve) as well
as other two Gaussian pulses which will be employed in
addition to the first one for studying time-resolved interference
effects. The transmitted intensity displays a damped oscillatory
time behavior (with Rabi frequency 	R) originating from
the combination of coherent energy exchange between the
two MCs and losses through the external mirrors. To inspect
the phase of the transmitted field after one or two Rabi-like
oscillations, we now consider a second pulse in phase with
the first one sent from the left into the double semiconductor
planar MC (see Fig. 1). The total input field can be expressed
as,

Ein2(t) = Ein1(t) + A

σ
√

2π
e−iω0(t−t1)e

− (t−t1)2

2σ2 ,

with A = 0.8 being a real amplitude. The transmitted intensity
is calculated for two different physical situations as shown
in Fig. 4. First we address the case when the arrival time
of the second pulse is chosen so that the corresponding first
maximum in the transmitted field is exactly in time with the
second maximum originating from the first pulse [Fig. 4(a)]. In
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FIG. 4. (Color online) Transmitted intensity calculated when,
after the initial stimulation, a second pulse (red curve) in phase with
the first one is sent such that the time delay between the two pulses
corresponds to a complete Rabi-like oscillation (a) in correspondence
of the first minimum, (b) in correspondence of the second minimum.
The abrupt damping of the signal in (a) (destructive interference)
shows that the transmitted intensity after a complete oscillation (2π

phase shift) has a opposite phase with respect to the pulse, in (b) the
constructive interference (zero phase shift between the two signals)
is recovered after two complete oscillations (4π phase shift).

particular the time delay between the two pulses corresponds
to a complete Rabi-like oscillation: 	R(t1 − t0) = 2π . In this
case we find that the total signal is strongly damped due to
destructive interference. Hence, such an abrupt damping of the
signal demonstrates that the transmitted field after a complete
oscillation [	R(t1 − t0) = 2π ] acquires a π phase (minus
sign). If the arrival time of the second pulse is chosen so that
	R(t1 − t0) = 4π [see Fig. 4(a)] the total signal gets amplified
due to constructive interference. This condition is verified
when the corresponding first maximum in the transmitted field
is exactly in time with the next (third) maximum originating
from the first pulse. As a further analysis, we calculate the
interference effects in the transmitted intensity when the phase
shift of the second pulse with respect to the first one is
continuously varied. Figure 5 shows, in the same physical
situations described in Fig. 4, the transmitted field intensity as
a function of the time and of the phase shift φ between the two
input fields. The dots along the time axis indicate the starting
time of the light pulses. As expected in Fig. 5(a) a destructive
interference effect is observed at zero phase shift instead,
when the phase between the two excitations is opposite, we
observe constructive interference. A complementary behavior
is observed when the second pulse is sent with a time delay
	R(t1 − t0) = 4π .
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FIG. 5. (Color online) Transmitted intensity calculated analo-
gously to what is shown in Fig. 4. The second pulse (see the dots
in the panels showing when the two pulses are sent) are allowed to
vary the phase shift with respect to the first excitation.)

III. ANALYTICAL MODEL: TWO COUPLED
OSCILLATORS WITH SOURCE TERM

The numerical results obtained in the previous section
for coupled light modes in the double MC system may be
better understood through a simplified analytical model. We
adopt the quasimode approach. The discrete cavity modes
(one for each MC) interact with an external multimode field.
The quasimode approximation allows us to describe such
systems analogously to a two interacting oscillators system.
In particular, we consider a system of two coupled harmonic
oscillators (the light modes of the two coupled cavities) with
an external source ε(t). The Hamiltonian of such a system can
be written as

H = h̄ω0a†a + h̄ω0b†b − h̄g(a†b + H.c.) + [ε(t)a† + H.c.],

(9)

where a and b are, respectively, the bosonic operators relative
to the single mode in each cavity, the coupling g depends on
the reflectivity of the central mirror, and ε(t) describes the
feeding of the cavity by a classical input beam. The resulting
evolution equations for the photon operators inside the two
cavities are

ih̄
d

dt
〈a〉 = h̄ω0〈a〉 − h̄g〈b〉 − ih̄γ

2
〈a〉 + ε(t),

(10)

ih̄
d

dt
〈b〉 = h̄ω0〈b〉 − h̄〈a〉 − ih̄γ

2
〈b〉,

where 〈·〉 indicates the mean value of the operator, and γ

takes into account the damping and losses of a field inside
the structure and may be considered as a phenomenological
parameter or as obtained from the master equation for two
coupled oscillators interacting with a zero-temperature thermal
reservoir.34 In the rotating frame (putting ω0 = 0), if losses
are neglected (γ = 0) and considering the input field in
the cavity as a sharp pulse sent at t = t0 whose functional
expression may be modeled as ε(t) = Ae−iω0t δ(t − t0), we
obtain

〈a〉 = −i
A

h̄
cos

[
	R(t − t0)

2

]
,

(11a)

〈b〉 = A

h̄
sin

[
	R(t − t0)

2

]
,

〈a†a〉 = A2 1 + cos [	R(t − t0)]

2h̄2 ,

(11b)

〈b†b〉 = A2 1 − cos [	R(t − t0)]

2h̄2 ,

where 	R = 2g/h̄ represents the Rabi frequency. We now
calculate the number of photons emerging from the cavity
B, 〈b†b〉, that can be measured by a photodetector. Inspecting
Eq. (11b), we observe that it oscillates with a Rabi of frequency
	. Instead, we observe, as is evident from Eq. (11a), that
〈b〉 oscillates with a double period with respect to the light
cavity population (i.e., at a frequency equal to 	/2). After
a Rabi period T = 2π/	R, we have 〈b〉T = −〈b〉0 = −A/h̄.
Such behavior is the optical analog of the spin-1/2 system
undergoing a 2π rotation in ordinary space.3,4 In addition,
if the time delay is t = 2T = 4π/R (i.e., after a 4π Rabi
oscillation) then 〈b〉T = 〈b〉0 = A/h̄: the two signals are now
in phase and we have the corresponding 4π rotation in a
spin-1/2 system. We observe no phase change behavior in
〈b†b〉. The results in this section show that the simple analytical
model here analyzed contains all the essential physics of
the process discussed in the previous section, including the
π phase shift after a complete Rabi-like oscillation. It may
be useful for gathering analytical results and behaviors in
analogous systems.

IV. DISCUSSION

The homodyne-like technique here described can be ex-
ploited to gather complete information about the phase of
the electromagnetic field in general, coupled microcavity
systems.35 For example, the experiment here proposed can be
generalized to more than two coupled MC systems. We expect
that three coupled MCs are the optical analogs of J = 1 total
angular momentum. In this case no phase shift after a complete
oscillation should be observed in contrast with the case of two
coupled MCs here described and in contrast to the case of
4 MCs (J = 3/2).

The homodyne-like method here employed can be also
exploited to test the time-control of the wave-particle duality
recently proposed.33 Ridolfo et al. showed that the all-optical
control of photonic coherence can be realized with a cavity
embedded three-level emitter. In particular, the coherence of
cavity photons can be suddenly switched on and off by exciting
the emitter with suitable control pulses. The loss of coherence,
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after the arrival of a suitable control pulse, is inferred by
calculating the coherent part of the cavity-photon population33

|〈a〉|2, with a being the photon annihilation operator of the
MC mode. The experimental measurement of 〈a〉 requires
a phase sensitive scheme. In the present case, a homodyne
detection scheme could be implemented by superimposing the
output MC field with a portion of the input resonant laser
field feeding the MC (playing the role of local oscillator).
However, owing to the light-matter strong-coupling regime,
the amplitude and phase dynamics of the output MC field are
drastically different from that of the input field, resulting in
a complex and unclear dynamics hiding interference effects.
In this case the method of two phase-locked probe pulses
here adopted could be used to test the presence or absence
of coherence. In this way the coherence of MC photons can
be probed by simply measuring the cavity output photon-rate
after excitation with pairs of phase-locked weak pulses. In
the absence of coherence, no interference effects should be
observed in the transmitted intensity as a function of time and
phase in contrast to the results of Fig. 5.

Another intriguing application could be a double MC
system with an active layer (or even a single quantum
emitter for a three-dimensional MC) embedded in one of the
two MCs. In this case, the optical control of the quantum

state of the active layer by an additional beam could be
exploited to introduce controllable phase shifts during light
propagation.

V. CONCLUSION

In this paper we proposed an all-optical analog of the
well-known sign change of the spinor wave functions under
2π rotations. The system here investigated consists of two
planar MCs coupled through a central mirror. We exploited
the transfer-matrix approach and Fourier transform to study
the time resolved response after the arrival of coherent optical
pulses. Here the two modes (in the absence of coupling) play
the role of the two spin states, whereas the coupling induces a
quasiperiodic exchange of the optical excitation among the two
modes after ultrafast optical excitation. A complete oscillation
of the excitation from one mode to the other and back is the
optical analog of a 2π spin rotation. We showed that by feeding
the coupled-MC system with a pair of phase-locked probe
pulses separated by precise delay times, we can gather direct
information on the sign change of the transmitted field after
one complete Rabi-like oscillation period. Such results were
also explained qualitatively by a simplified physical model
considering two coupled damped oscillators.

1H. J. Bernstein, Phys. Rev. Lett. 18, 1102 (1967).
2Y. Aharonov and L. Susskind, Phys. Rev. 158, 1237 (1967).
3H. Rauch, A. Zeilinger, G. Badurek, A. Wilfing, W. Bauspiess, and
U. Bonse, Phys. Lett. A 54, 425 (1975).

4S. A. Werner, R. Colella, A. W. Overhauser, and C. F. Eagen, Phys.
Rev. Lett. 35, 1053 (1975).

5A. G. Klein and G. I. Opat, Phys. Rev. D 11, 523 (1975); Phys. Rev.
Lett. 37, 238 (1976).

6A. Abragam, The Principles of Nuclear Magnetism (Clarendon
Press, Oxford, 1961).

7E. Klempt, Phys. Rev. D 13, 3125 (1976).
8M. E. Stoll, A. J. Vega, and R. W. Vaughan, Phys. Rev. A 16, 1521
(1977).

9M. P. Silverman, Eur. J. Phys. 1, 116 (1980).
10J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 3

(2001).
11See, for example, Ping Sheng, Introduction to Wave Scattering,

Localization, and Mesoscopic Phenomena (Academic Press, New
York, 1995).

12See, for example, J. D. Joannopoulos, R. D. Meade, and J. N.
Winn, Photonic Crystals (Princeton University Press, Princeton,
NJ, 1995).

13M. P. Van Albada and A. Lagendijk, Phys. Rev. Lett. 55, 2692
(1985).

14P. E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696 (1985).
15R. Dalichaouch, J. P. Armstrong, S. Schultz, P. M. Platzman, and

S. L. McCall, Nature (London) 354, 53 (1991); A. Z. Genack and
N. Garcia, Phys. Rev. Lett. 66, 2064 (1991).

16F. Scheffold and G. Maret, Phys. Rev. Lett. 81, 5800
(1998).

17R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton,
and L. Pavesi, Phys. Rev. Lett. 91, 263902 (2003).

18V. Agarwal, J. A. del Rı́o, G. Malpuech, M. Zamfirescu, A. Kavokin,
D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, Phys. Rev.
Lett. 92, 097401 (2004).
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