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Hall viscosity, orbital spin, and geometry: Paired superfluids and quantum Hall systems
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The Hall viscosity, a nondissipative transport coefficient analogous to Hall conductivity, is considered for
quantum fluids in gapped or topological phases. The relation of the Hall viscosity to the mean orbital spin
per particle s (discovered in previous work) is elucidated with the help of examples and of the geometry of
shear transformations and rotations. For noninteracting particles in a magnetic field, there are several ways to
derive the result (even at nonzero temperature), including standard linear response theory. Arguments for the
quantization, and the robustness of s to small changes in the Hamiltonian that preserve rotational invariance,
are given. Numerical calculations of adiabatic transport are performed to check the predictions for quantum
Hall systems, with excellent agreement for trial states. The coefficient of k4 in the static structure factor is also
considered and shown to be exactly related to the orbital spin and robust to perturbations in rotation invariant
systems.
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I. INTRODUCTION

In recent work the notion of Hall viscosity in quantum
fluids1 has been revived2,3 and values of this parameter have
been calculated for several systems1,3 (the earlier works termed
it odd or antisymmetric viscosity1 or Lorentz shear modulus2;
the term Hall viscosity is from Ref. 3). The underlying
definition can be briefly described as follows:1 For an elastic
solid in d dimensions (d = 2, 3, . . .), the low-energy, long-
wavelength effective stress tensor σab(x,t) determines the local
force density fa on the system by fa = −∑b ∂σab/∂xb. The
stress tensor can be expanded in powers of the local strain
uab(x,t) (relative to a relaxed or unstrained configuration) and
its derivatives:4

σab = −
∑
e,f

λabef uef −
∑
e,f

ηabef

∂uef

∂t
+ · · · , (1.1)

where λabef is the tensor of elastic coefficients (moduli) and
ηabef is the viscosity tensor (a, b, . . . = 1, . . ., d). In an
isotropic solid, σ and u are symmetric, so we have λabef =
λbaef = λabf e, and the same for η. The linearized strain is
given in terms of the displacement ua(x,t) from the unstrained
configuration by

uab = 1

2

(
∂ua

∂xb

+ ∂ub

∂xa

)
. (1.2)

Similarly, for an isotropic fluid, the displacement from the
arbitrary choice of unstrained configuration should not enter,
so the elastic moduli vanish, with the exception of a bulk term
in σab which is pδab where p is the pressure (p depends on
the density). In place of the time derivative of the strain, one
has the symmetrized derivatives of the velocity field v(x,t),

∂uab

∂t
= 1

2

(
∂va

∂xb

+ ∂vb

∂xa

)
. (1.3)

In addition, for a fluid the momentum flux μvavb [where μ(x,t)
is the mass density] must be included as part of σab; then
∂ga/∂t +∑b ∂σba/∂xb = 0, where g(x,t) is the momentum
density.

Now (in either a solid or a fluid) η can be divided
into symmetric and antisymmetric parts with respect to
interchanging the first with the second pair of indices; thus
ηabef = η

(S)
abef + η

(A)
abef , where

η
(S)
abef = +η

(S)
ef ab, (1.4)

η
(A)
abef = −η

(A)
ef ab. (1.5)

Only the symmetric part contributes to dissipation of energy,
as can be seen from the rate of entropy production (per unit
volume) ∂s(x,t)/∂t due to the above stress tensor,4

kBT

(
∂s

∂t
+ ∇ · js

)
=
∑
abef

ηabef

∂uab

∂t

∂uef

∂t
, (1.6)

where js(x,t) is the entropy flux and η(S) should be a positive
quadratic form. In a gapped quantum fluid at zero temperature,
this part should vanish. The antisymmetric part η(A) is termed
here the Hall viscosity tensor. It is a set of nondissipative (or
reactive) transport coefficients and is closely analogous to the
antisymmetric Hall conductivity tensor. The analogy is best
seen by viewing the Hall viscosity as the stress response to an
applied field, which here is a time-dependent metric tensor, as
we will discuss shortly. In view of this analogy, there should
be no more objection (on the grounds that it is nondissipative)
to terming the former a viscosity than there is (on the same
grounds) to terming the latter a conductivity. It is not an elastic
modulus as the corresponding stress vanishes in the static limit
and is not in general connected with the Lorentz force.

In an isotropic fluid in d dimensions, the symmetric,
dissipative viscosity tensor is determined by only two coef-
ficients, the familiar bulk and shear viscosities (which must
be non-negative). For the Hall viscosity, rotational invariance
forces η(A) to vanish identically if d > 2, but in two dimensions
there is a single rotationally invariant tensor, and we denote
the corresponding coefficient by η(A) also.1 On the other
hand, even a mildly nonisotropic fluid in more than two
dimensions (for example, one in which rotational symmetry is
spontaneously broken by the appearance of an intrinsic angular
momentum only) can have a nonzero Hall viscosity, and we
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will have more to say about that later in this paper. However, we
note also that the Hall viscosity is odd under both time reversal1

and (in two dimensions) reflection of space and so must
vanish when either of those symmetries is unbroken (or, in the
case of reflections in nonrotationally invariant systems, some
components corresponding to unbroken reflection symmetries
must vanish). Hall viscosity has been known for some time in
classical plasmas in a magnetic field.5

Avron, Seiler, and Zograf (ASZ)1 related the Hall viscosity
to the adiabatic response to a slowly varying metric tensor. This
parallels certain formulations of Hall conductivity as a Chern
number or as adiabatic response6–8 and in the present case is
based on the fundamental fact that varying a Hamiltonian (or
an action) with respect to the metric tensor produces the stress
tensor. ASZ calculated the Hall viscosity of the filled lowest
Landau level (LL) in the noninteracting case and found that it
is an intensive quantity, independent of the shape of the fluid.
Independently at around the same time, Lévay calculated the
same adiabatic curvature for a single particle in any LL.9 This
may be used to extend the ASZ result to more general filling
factors and (by performing a thermal average) to recover the
classical result at high temperature.3

In the recent work by one of the authors,3 the adiabatic
approach to Hall viscosity was generalized to some other
systems, mainly in two dimensions, paired (and gapped)
superfluids and fractional quantum Hall (QH) wave functions,
starting with the Laughlin states.10 It was realized that the Hall
viscosity can be written in the form

η(A) = 1
2 s nh̄, (1.7)

where n is the particle number density and s can always be
naturally interpreted as minus the mean orbital spin per particle
(this is not always the total angular momentum per particle).
For noninteracting particles in a magnetic field, this spin is
due to the cyclotron motion. For paired states, it is the intrinsic
angular momentum of a Cooper pair. This s is also related
to the “shift” S, an offset that is required in the number of
magnetic flux quanta (in units of hc/e) piercing the surface
when the ground state is formulated on a sphere:

S = 2s. (1.8)

Both properties are expected to be robust (quantized) in a
quantum fluid as long as translation and rotation invariance
are not broken. We note that the notion of an orbital spin was
invoked in Ref. 11 in order to explain the shift. Two subsequent
papers have rederived the result for the Laughlin states12 and
attempted a general discussion.13

In the present paper, our main goals are to add some
insight into the general picture just described and to present
numerical tests of the results of Ref. 3. In particular, we wish
to explain why the stress in the adiabatic response to a strain
is related to some sort of angular momentum. The general
theory of adiabatic response, which we review in the main text
in Sec. II, states that the stress can be obtained by varying
the Hamiltonian with respect to the metric or by applying
a strain. A second variation gives the stress response to a
slowly varying strain. Now a small uniform strain (or uniform
change in metric) that preserves the area can be described by
a symmetric matrix with constant real coefficients, which is

close to the identity and has determinant 1; typical examples
in two dimensions are(

1 + ε 0

0 1 − ε

)
or

(
1 ε′

ε′ 1

)
, (1.9)

where ε and ε′ are small. The first of these stretches the x

coordinate and squashes the y coordinate. The second does the
same but for axes rotated by π/4. Then the adiabatic response
theory relates the response to the commutator of the effects
of two such changes (which describes a Berry phase). The
effects of applying two such strains in opposite orders differ
by a small rotation:(

1 + ε 0

0 1 − ε

)(
1 ε′

ε′ 1

)(
1 + ε 0

0 1 − ε

)−1 ( 1 ε′

ε′ 1

)−1

=
(

1 2εε′

−2εε′ 1

)
+ O(ε2,ε′2). (1.10)

If the system is in an angular momentum eigenstate, then the
effect of this rotation is to multiply it by a phase. Thus the
Berry phase is related to the spin of the system. We will go
through this argument in much more detail in what follows.
In practice, we need to consider the system on the torus (i.e.,
periodic boundary conditions), and it may not be an exact
eigenstate of angular momentum, but we will show that the
above simple picture captures the essence of the situation.
As far as possible, we use an operator approach, and a type
of vector bundle called a “homogeneous bundle” (related to
spin-coherent states) that generalizes the approach of Ref. 9.

In addition, we present in Sec. II various relevant examples
of calculations in toy models, including trial states in the
fractional QH effect in the disk geometry. We give the explicit
generalization to more than two dimensions. We show that
the result for noninteracting particles in a magnetic field can
be reproduced by standard (Kubo formula) linear response
theory. We present arguments for the quantization of s to
values that are rational numbers and for its robustness under
perturbations of the Hamiltonian subject to the requirement
of translation and rotation invariance (apart from boundary
conditions). We show numerically that the predictions of
Ref. 3 for the Hall viscosity of some fractional QH trial states
[the Laughlin and Moore-Read (MR)14 states] are correct.
We show that the results are robust to a perturbation of
the Hamiltonian in one case and examine the effect of a
particle-hole symmetry-breaking three-body term on the result
at half filling of a LL. We propose that the adiabatic calculation
of s can be used to determine the shift in the ground state at
a given filling factor and thus to obtain information about the
topological phase in question.

In a separate approach, motivated by some remarks in
Refs. 12 and 13, we consider in Sec. III the static structure
factor of a QH ground state and the related compressibility
χT of an equivalent two-dimensional (2D) system. We find
exact results for χT and for the coefficient of the k4 term in
the structure factor, under a hypothesis similar to one used
in Ref. 3. This can be tested numerically by Monte Carlo
simulation, with good agreement; the full static structure factor
s(k) for the MR state is also obtained. We find analogous
results also for wave functions for anyons in a zero magnetic
field, where we find χT and s(0). For QH states in the lowest
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LL, the exact χT allows us to recover the Hall viscosity
again.12

II. HALL VISCOSITY

In this section, we discuss the Hall viscosity. Section II A
discusses all the analytical arguments in some detail. Sec-
tion II B discusses our numerical work, in which the analytical
predictions are tested.

A. Analytical approach

We will give a direct a priori derivation of the relation
of the adiabatic curvature to the total orbital spin and hence
of the Hall viscosity with the orbital spin density, noted in
Ref. 3. We will be satisfied with the case of a system with
translational and rotational symmetry, for which the quantities
are quantized, though the approach is more general. However,
we do discuss higher-dimensional situations that are not truly
isotropic.

In more detail, in Sec. II A 1 we review the general setup
for calculating linear response of a system to a perturbation to
adiabatic transport, using the notions of adiabatic or Berry
connection and curvature (Berry phase). This approach is
generally useful for nondissipative transport coefficients in
a gapped system. In Sec. II A 2, we introduce notation for
some coordinate systems and for describing deformations
of the metric. We also define some group-theoretic notions.
In Sec. II A 3, we combine the preceding ideas to arrive at
explicit expressions for the Hall viscosity in terms of adiabatic
curvature (following ASZ).1 In Sec. II A 4, we introduce
the general idea of what we call a homogeneous bundle,
which will be useful in the calculations. In Sec. II A 5, we
give an explicit example of such a homogeneous bundle,
based in single-particle quantum mechanics, and show how
the adiabatic curvature is obtained. In Sec. II A 6, we intro-
duce periodic boundary conditions and point out that while
the resulting bundle is not a homogeneous bundle, it can
be well approximated as such in some limits. With this we
then recover the Hall viscosity of paired superfluids in two
dimensions, which is related to the angular momentum of the
pairs; the result is the same as in Ref. 3, but the derivation
differs. In Sec. II A 7, we turn to 2D systems in a magnetic
field, starting with a single-particle model as before. We
discuss different ways to deform the system before recovering
the Hall viscosity of noninteracting particles as in Refs. 1
and 9. We show that the result can also be obtained by direct
Kubo linear response theory. For correlated or fractional QH
states, the result obtained in Ref. 3 is recovered but now
using the disk geometry. In Sec. II A 8, we briefly discuss
the situation for paired superfluids in three dimensions. In
Sec. II A 9, we discuss the issue of the robustness of the spin
per particle s, to perturbations of the Hamiltonian. We first
give one very direct and compelling argument. Then we also
discuss a brute force approach in perturbation theory. Finally,
we also discuss robustness in terms of the claim that 2s is
the shift, which is a rational number. Further side discussions
related to this section appear in Appendices A, B, and C.

1. Adiabatic response and transport

This subsection, Sec. II A 1, is a short review of adiabatic
transport15–17 and response theory;8,18 the results will be
applied to Hall viscosity afterward. We suppose that the Hamil-
tonian H (λ) depends on a set of parameters (“generalized
coordinates”) λ = {λμ} (μ = 1, . . ., n), and we are interested
in a particular eigenstate |ϕ(λ)〉 of H (λ), which we assume for
the present is nondegenerate and also is separated by a gap
from the rest of the spectrum of H (λ); these statements should
hold at least in a neighborhood of the origin λ = 0 (thus no
levels cross). By subtracting the energy eigenvalue of |ϕ(λ)〉
from H (λ), we can assume that this eigenvalue is zero for
all λ.

Our interest is in calculating the linear response of some
“current” or “generalized force” in the state |ϕ〉 to the
application of some “field” or “generalized velocity.” We
assume that current operators of interest can be written as

Îμ(λ) = − ∂H

∂λμ

. (2.1)

We will also write ∂μ = ∂/∂λμ. Then the current in a state |ψ〉
is

Iμ(λ) = 〈ψ |Îμ(λ)|ψ〉. (2.2)

For |ψ〉 = |ϕ(λ)〉, it follows from H (λ)|ϕ(λ)〉 = 0 for all λ

that Iμ(λ) = 0, which expresses the absence of “persistent
currents.” The field or generalized velocity in the generalized
coordinates is represented by a time-dependent λ, with
generalized velocity Vν = dλν/dt . A basic example in the
QH effect is that in which the system has periodic boundary
conditions (i.e., is topologically a torus), and the coordinates
λ are the Aharonov-Bohm fluxes (line integrals of the vector
potential) φ1, φ2 through the two cycles of the torus. Then Iμ

is the current, and Vν is minus the electric field. A weak field
corresponds to slow variation of λ, and so linear response will
correspond to adiabatic response to time-dependent λ. In the
present case, the fact that we wish to take a derivative with
respect to λμ means that we must consider adiabatic transport
at any λ in some neighborhood of the origin, and so we use
a velocity field Vν(λ), which depends on λ but not explicitly
on t .

The quantum adiabatic theorem asserts that, if |ψV (λ)〉 is
the normalized solution to the time-dependent Schrödinger
equation

H (λ)|ψV (λ)〉 = i∂t |ψV (λ)〉 (2.3)

(where λ = λ(t) along an integral curve of Vν is understood,
and note that ∂t =∑ν Vν∂ν), with initial conditions |ψ〉 =
|ϕ(λ)〉 for λ on some n − 1-dimensional surface transverse to
Vν at time t = 0, then the limit |ψV (λ)〉 → |ψ(λ)〉 (as Vν → 0)
exists, and |ψ(λ)〉 is a multiple of |ϕ(λ)〉 (in general, |ψ(λ)〉 is
not independent of Vν(λ) from which it was obtained). Hence
(by considering different initial values of λ on the surface) we
have a smoothly varying state |ψ(λ)〉 for all λ.

It follows from the adiabatic theorem15,16 that, in the limit,
the state |ψ(t)〉 at any λ obeys

〈ψ |∂tψ〉 = 0, (2.4)

085316-3



N. READ AND E. H. REZAYI PHYSICAL REVIEW B 84, 085316 (2011)

which means that |ψ〉 is parallel transported by the adiabatic
evolution along the curves of Vν . Formally, we can view this
setup as a vector bundle over the manifold with coordinates λ,
in which the fiber at each point λ is the one-dimensional vector
space spanned by |ϕ(λ)〉. In terms of the basis states |ϕ(λ)〉,
there is a Berry or adiabatic connection (vector potential in λ

space) on the bundle, given by

Aμ = i〈ϕ|∂μϕ〉. (2.5)

For the adiabatic linear response, we differentiate Eq. (2.3)
with respect to λμ, to obtain

∂μH |ψV〉 + H |∂μψV〉 = i
∑

ν

∂μVν |∂νψV〉 + i∂t |∂μψV〉.

(2.6)

Using this and Eq. (2.3) itself in Eq. (2.2), we obtain

Iμ(λ) = −i∂t 〈ψV |∂μψV〉 − i
∑

ν

∂μVν〈ψV |∂νψV〉 (2.7)

(which appears to differ from Eq. (5.12) in Ref. 18), and then,
finally taking ∂μ of Eq. (2.4) for adiabatic transport, we obtain,
to linear order in Vν ,

Iμ(λ) = i
∑

ν

[∂μ〈ψ |∂νψ〉 − ∂ν〈ψ |∂μψ〉]Vν . (2.8)

The expression in closed brackets is gauge invariant (i.e., it is
invariant under multiplication of |ψ〉 by a λ-dependent phase
factor), and so the arbitrary smooth basis |ϕ〉 can be used
instead of the parallel-transported |ψ〉. We then have

Iμ(λ) =
∑

ν

Fμν(λ)Vν(λ), (2.9)

where

Fμν = ∂μAν − ∂νAμ (2.10)

is the adiabatic curvature or field strength of the connection A

above; it is manifestly gauge invariant, as claimed, and, hence,
independent of Vν . This final expression for the nondissipative
transport coefficients, given by F , can also be obtained by
other approaches based on conventional Kubo linear response
theory, rather than adiabatic transport, as has been shown
explicitly for the Hall conductance.7,8

More formally, the setup for a general Berry or adiabatic
connection calculation15–17 involves, again, a vector bundle
embedded in a Hilbert space H. A bundle has a base space
that is a manifold, again with coordinates λ = {λμ}. Over each
point λ, there is a fiber Vλ, which is a subspace of H, with the
same dimension (referred to as the dimension of the bundle; it
can be finite or infinite) at all λ; we write V for Vλ at generic
λ. A continuous vector function |ϕ(λ)〉 of λ with |ϕ(λ)〉 ∈
Vλ for all λ is called a section of the bundle. There is an
inner product on each fiber Vλ, determined by that on H. We
take orthonormal basis vectors |ϕα(λ)〉 (labeled by α = 1, . . .,
dim V ) in each Vλ, that are a collection of sections that vary
smoothly with the coordinates λ. Then the Berry or metric
connection16 is a Hermitian matrix function of λ given by15–17

Aμ,αβ = i〈ϕα|∂μϕβ〉. (2.11)

In components, a section is |ϕ(λ)〉 =∑a va(λ)|ϕa(λ)〉, and
the covariant derivative is then |Dμϕ(λ)〉 =∑αβ(δαβ∂μvβ −
iAμ,αβvβ)|ϕα(λ)〉. Parallel transport of a vector along a curve
with tangentVμ is defined by the condition

∑
μ Vμ|Dμϕ(λ)〉 =

0 or by
∑

μ Vμ(∂μvα − i
∑

β Aμ,αβvβ) = 0 in components.
Parallel transport around a small loop picks up the integral
of the curvature of the connection, given in matrix notation by

Fμν = i[Dμ,Dν] (2.12)

= ∂μAν − ∂νAμ − i[Aμ,Aν]. (2.13)

For a one-dimensional fiber the curvature reduces to

Fμν = i[〈∂μϕ|∂νϕ〉 − 〈∂νϕ|∂μϕ〉] (2.14)

as above. This curvature or field strength for dim V � 1 is
covariant under a unitary gauge change (varying smoothly
with λ) of the choice of orthonormal basis for Vλ. For the
applications here, the fiber may be spanned by a single
vector or may have dim V > 1. (A vector bundle in which
the fiber is one dimensional is also called a line bundle.)
We emphasize that the connection (covariant derivative) and
curvature depend on the choice of the fiber subspaces Vλ of the
Hilbert space. As an extreme case, if Vλ is the whole Hilbert
space H for each λ, then an easy calculation from Eq. (2.13)
(using

∑
α |ϕα(λ)〉〈ϕα(λ)| = I ) shows that Fμν,αβ = 0. This is

because |ϕα(λ)〉 differs by a (unitary) gauge transformation
from a λ-independent basis for H, so Fμν,αβ must vanish.

2. Deformations of shape and of metric

We now consider some geometric aspects of the problem
of uniform deformations of an object. A general linear
transformation of the Cartesian coordinates in d-dimensional
space (d � 1) that leaves the origin fixed is described by an
invertible d × d matrix with real entries and so is an element
of the group GL(d,R). Thus writing a typical element as a
matrix �, it acts as⎛⎜⎜⎜⎜⎜⎝

x1

x2

·
·

xd

⎞⎟⎟⎟⎟⎟⎠→ �T

⎛⎜⎜⎜⎜⎜⎝
x1

x2

·
·

xd

⎞⎟⎟⎟⎟⎟⎠ (2.15)

on x = (x1, . . . ,xd ) and this is viewed as an active transforma-
tion. [The transpose (superscript T ) of � is used to make later
notation simpler.] We will consider only the transformations
that can be continuously deformed to the identity (and not,
e.g., reflections); these matrices have positive determinant and
form the connected group GL+(d,R). For all d, this group
contains a subgroup that consists of the positive multiples of
the identity and is isomorphic to the group R×

+ of positive
real numbers (under multiplication); these elements represent
the simple scale transformations or dilatations. As we intend
to study mainly incompressible systems, we will usually
restrict to transformations that preserve the volume, which
are represented by matrices � with det � = 1; the group of
these is denoted SL(d,R) (we also restrict to d � 2 from here
onward). In any case, even if the subgroup ∼= R×

+ is included,
it decouples from the following considerations because its
elements commute with all others.
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We now fix a coordinate system with coordinates xa (a =
1, . . ., d). This will be important in setting up quantum
mechanics, which will work in a fixed Hilbert space, with
the norm-square of a state given by integrating the square of
the absolute-value of the wave function in these coordinates.
We will often write

X = �T x (2.16)

when � is given. We assume that the metric for the
d-dimensional space has the canonical form in terms
of displacements of X; that is, ds2 =∑ab δabdXadXb =∑

ab gabdxadxb, where g is always independent of position.
The metric, viewed as a matrix, is then

g = ��T . (2.17)

Linear transformations change the metric by g → �′g�′T but
leave the x coordinates unchanged. Thus we have parametrized
metrics by transformations � ∈ SL(d,R) from an initial metric
that we take to be g = I (I = In is the n × n identity matrix).

The group G = SL(d,R) contains a family of compact
subgroups isomorphic to SO(d). In particular, there is the
subgroup (which we will denote by K) consisting of d × d

orthogonal matrices O ∈ G obeying OT = O−1. These
leave the initial metric g = I invariant, and so any g is
invariant under � → �O for any O ∈ K . Consequently,
the possible metrics g are in one-to-one correspondence
with the cosets �K , which are the points of the coset space
G/K ∼= SL(d,R)/SO(d). The latter is a classical example
of a Riemannian symmetric space.19,20 An arbitrary metric
g = ��T is invariant under g → ÕgÕT for Õ of the form
Õ = �O�−1 for all O ∈ K . For each �, the set of such Õ is
a group K� that is isomorphic to K . As � varies, these form
a family of compact subgroups in G.

Now we pass to the Lie algebra. The Lie algebra elements a

correspond to elements A ∈ G by A = ea . The Lie algebra of
G is then represented by the real d × d matrices with zero trace
and is denoted sl(d,R). The Lie algebra of K is represented
by the antisymmetric matrices and is denoted so(d); it is a Lie
subalgebra. Hence, the quotient space of these two Lie algebras
can be viewed as consisting of the real symmetric matrices.
The latter do not form a Lie algebra [because so(d) is not a Lie
ideal in sl(d,R)]. Instead, the commutator of two symmetric
matrices is an antisymmetric matrix (an example was shown in
Sec. I). This means that if we consider two infinitesimal shear
transformations of the metric g = I , represented by symmetric
matrices, their commutator is antisymmetric and generates a
rotation. Further, the commutator of an antisymmetric with a
symmetric matrix is symmetric. [There is a similar picture for
any g, but in terms of K� and the quotient of sl(d,R) by the Lie
algebra of K�.] The decomposition of the Lie algebra into two
parts in this way, in which K is a maximal compact subgroup,
is called the Cartan decomposition and is the structure arising
in all Riemannian symmetric spaces.19,20

We add here some additional background on the structure
of the Lie groups. SL(2,R) is closely related to SO(2,1), the
group of real linear maps preserving a symmetric bilinear
form of signature (2,1). As in the better-known related case
of the corresponding compact groups SU(2) and SO(3),
SL(2,R) is a double cover of SO(2,1) (there is a two-to-one
group homomorphism from the former to the latter, with

kernel Z2 = {±I2}). However, unlike the compact versions,
SL(2,R) is multiply connected [like SO(2)], with fundamental
group π1(G) = Z [and hence π1 = Z for SO(2,1) also].
Consequently, it admits M-fold covers for all integers M > 0.
There is a universal cover of SL(2,R) that is simply connected,
but it cannot be faithfully represented as a group of finite
matrices. For d � 3, SL(d,R) is doubly connected [like SO(d)
for d � 3], so it has a simply connected double cover. For
all d � 2, we will denote the double cover of SL(d,R) by
S̃L(d,R). We emphasize that finite covers of a Lie group always
have the same Lie algebra; locally, they are the same groups.

3. Expressions for Hall viscosity

The parametrization in Sec. II A 2 is useful for deriving the
Hall viscosity, because it provides a system of nonredundant
coordinates λ, and the use of such coordinates was assumed in
the formulas of Sec. II A 1. (The condition that the matrices λ

be traceless is a remaining constraint, but we will eventually
see that it can be dropped.) For the continuity equation
involving momentum and stress of a many-particle system
to hold, the Hamiltonian H must be translationally invariant.
To obtain the stress tensor by adiabatic response, we begin by
noting that it can be defined as

σab = 2
δH

δgab

, (2.18)

where, again, H is the Hamiltonian and δ/δg is a functional
derivative, applied by varying g at a position x only. (This
may be checked by considering the momentum flux part,
which arise from the kinetic energy.) This definition produces
a symmetric tensor, because the metric tensor is symmetric.
The symmetry of the stress tensor follows from rotational
invariance. In a nonrotationally invariant system, the stress
tensor does not have to be symmetric and is not given by this
formula; the symmetry analysis of Sec. I does not hold in this
case.

To obtain the Hall viscosity, we wish to consider a system
of particles with periodic boundary conditions on a square or
cube in x space and make a uniform variation of the metric.1

For a uniform variation of g, we can instead write

�ab = 2
∂H

∂gab

, (2.19)

where (throughout the discussion) g is constant in x space.
Thus � = Ldσ , where throughout this paper Ld will be
the volume of a finite system in dimension d. For such an
expression, in which the symmetric tensor g is varied to
obtain the symmetric �, we should be careful because the
components of g are not all independent. The correct result is
obtained by viewing the variation of g as unconstrained and
then symmetrizing the tensor of partial derivatives.

In terms of �,

δgab =
∑

c

[(δ�.�−1)acgcb + gac(δ�.�−1)bc]. (2.20)

Now δ�.�−1 is rather complicated in terms of the global
coordinates λ, � = eλ. It will be simpler to use local
coordinates λ′ in the vicinity of any given g, defined by the
left action of G on � (sometimes called left translation on G),
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that is, � → �′� for �′ = eλ′ ∈ G, with λ′ small (λ′ = 0 at
the given g or �). Then δ�.�−1 = δλ′, and

δgab =
∑

c

(δλ′
acgcb + gacδλ

′
bc). (2.21)

Assuming λ′ enters the Hamiltonian only through g, we have

�ab = gbc ∂H

∂λ′
ac

, (2.22)

where gab is the inverse metric of gab, so gabgbc = δa
c . (Other

than for gab, we will not distinguish upper and lower indices,
but we may note that, if we did, then the coordinates xa ,
the stress σab as defined above, and viscosity ηabcd would
each have all indices upstairs, while momentum density ga

has a down index, and λ has first index down, second index
up. Indices can be raised using gab or lowered using gab.
The continuity equation for momentum is then ∂ga/∂t +
∂σ b

a /∂xb = 0. The distinction of up and down is ultimately
unimportant as we set g = I at the end of the calculation.) The
right-hand side of Eq. (2.22) will be automatically symmetric
but can be explicitly symmetrized if there is any concern over
this.

Similarly, for the definition of viscosity, we can identify
∂uef /∂t = 1

2∂gef /∂t , and write∑
ef

ηabef

∂uef

∂t
= 1

2

∑
ef c

ηabef

(
∂λ′

ec

∂t
gcf + ∂λ′

f c

∂t
gce

)
(2.23)

=
∑
ef c

ηabef gec

∂λ′
f c

∂t
, (2.24)

using the symmetry of ηabef under e ↔ f .
We may now compare these definitions with that for

adiabatic response, in which the indices like μ will be replaced
with pairs like ab, which appear on the nonredundant local
coordinates λ′

ab. We find (assuming a nondegenerate state for
the present)

ηabcd = 1

Ld

∑
ef

gbegdf Fae,cf . (2.25)

This tensor η = η(A) is explicitly antisymmetric under ex-
change of pairs ab ↔ cd and also symmetric under a ↔ b

and under c ↔ d if the calculation has been set up as we
defined it. If there is any doubt (and the system is translation
and rotation invariant), symmetrization under both exchanges
can be applied to the right-hand side. For a nonrotationally
invariant Hamiltonian, λ′ does not enter only through the
metric, and, moreover, the stress tensor need not be symmetric.
We may, nonetheless, consider adiabatic deformations of the
shape with λ′, and the result (2.25) still applies (if there is a
metric), though the symmetries of η discussed in Sec. I are lost,
except for ηab,cd = −ηcd,ab. In this way we can approach the
results of Haldane.13 In what follows, we usually concentrate
on rotationally invariant systems.

4. Homogeneous bundles

Some vector bundles of a particular type will be relevant
here; in mathematics these are called homogeneous bundles.21

Suppose that we have a unitary representation W of G in some
complex Hilbert space (it need not be the entire Hilbert space).
As G is non-compact, such a representation is either trivial
(all elements of G act as the identity) or infinite dimensional.
We obtain a finite-dimensional vector bundle over G/K by
first taking a finite-dimensional unitary representation V0 of
K , with V0 ⊆ W (these exist because K is compact). We
associate this vector space V0 with the origin λ = 0, where
the coordinates λ are obtained from any representatives for the
Lie algebra coset space corresponding to G/K [thus λ = 0
corresponds to � = I (mod K)]. Then we associate a similar
vector space with every point of G/K by applying the action
(in W ) of a corresponding � ∈ G to V0. This is well defined
on G/K because V0 is a representation of K . Then we have a
vector bundle over the base space G/K , in which the fiber Vλ

over each point � = eλ (mod K) is isomorphic to V0. Similarly,
by replacing K with the trivial subgroup, we will also consider
vector bundles over G constructed in a similar way and also
call these homogeneous bundles. In all cases, the union of the
subspaces Vλ forms a representation of G, and without loss of
generality we assume from here onward that this subspace of
Hilbert space is all of the representation W . Then W is said to
be the representation of G generated from the representation
V0 of K ⊆ G. In many cases occurring in our discussion,
the representation W is irreducible, and its structure can be
determined, though it is not clear if this information is useful
physically. Detailed examples of homogeneous bundles will
appear in the following discussion.

A homogeneous bundle is a more general version of some
constructions that are fairly well known in physics, such as
coherent states for a quantum spin (for a review, see Ref. 22 and
papers reprinted therein); we describe these now. For coherent
states of a compact or noncompact Lie group G, W is taken
to be a highest-weight representation, and the representation
V0 is spanned by the highest weight vector of W , that is
annihilated by all the “raising operators” of the Lie algebra
of G (the positive roots). There is then a compact subgroup K

that contains the Cartan subgroup and that maps the highest
weight vector to a scalar multiple of itself. (There is a similar
construction for lowest weights, of course.) The best-known
example is G = SU(2), and K the U(1) subgroup generated
by (say) Sz, so G/K is the two-sphere S2. Then when W is
the spin-S representation (S = 0, 1/2, 1, . . .), V0 is spanned
by the vector of maximum Sz = S. Similar bundles, though
they are not usually called coherent states, can be constructed
from the same G, K , and W by choosing V0 to be spanned
by an eigenvector of Sz with eigenvalue m < S (for m = −S,
one is back to coherent states constructed from the lowest
weight). Analogs of these with dim V0 = 1 can be found also
for other Lie groups by lowering the highest-weight vector
in a highest-weight representation W , with K defined as the
isotropy subgroup that maps V0 into itself. In such cases, the
representation W is irreducible. (Some authors would define
coherent states for a group G as any example in which V0 is
one dimensional;23 in this case W may not be irreducible.) But
these coherent-state examples are not the most general ones for
the construction described above. Examples of homogeneous
bundles with dim V0 > 1 (as we will obtain later) can arise
from coherent state bundles only as direct sums.
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5. Example of a homogeneous bundle

Now we will give an example of the setup described in
the previous subsections and demonstrate the basic result
for the adiabatic curvature (or holonomy or anholonomy)
of a homogeneous bundle over G for G = SL(d,R) using
this example. For simplicity, we assume V0 is spanned by a
single vector, which we represent by a fixed function f (x) in
the Hilbert space H = L2(Rd ) of square-integrable functions,
which represents a single particle in zero magnetic field. Then
Vλ is spanned by ϕ� (we make a small change in notation; this
corresponds to |ϕ(λ)〉 in the previous sections),

ϕ�(x) = f (�T x), (2.26)

and ϕ� is normalized,
∫

ddx |ϕ�(x)|2 = ∫ ddx |f (x)|2 = 1,
for all � as det � = 1. This form could arise, for example,
from the family of Hamiltonians

H� = − 1

2mp

∇2
X + U (X) (2.27)

(where ∇X has components ∂/∂Xa , mp is the particle mass,
and U is a potential function), which are to be viewed as
operators on the Hilbert space of functions of x, not X. If
f (x) is a nondegenerate eigenstate of HI , then f (�T x) is
an eigenstate of H� with the same eigenvalue. Then a short
calculation shows that the left action of G, that is, � → �′�
for �′ = eλ′

on ϕ� as before, is given by

∂ϕ�

∂λ′
ab

= xa

∂f

∂xb

, (2.28)

where the derivatives are taken at λ′ = 0, and on the left-hand
side x is held constant, while on the right-hand side f (�T x) is
viewed as a function of x with � held constant. Therefore we
define

Jab = ixa

∂

∂xb

, (2.29)

as operators on H. Their commutation relations are those of
gl(d,R) (here with factors i included in the generators),

[Jab,Jcd ] = i(δbcJad − δadJcb). (2.30)

The operators Jab are not all self-adjoint, though they are
for the traceless combinations used to generate SL(d,R). It
is convenient for us to use λ’s that are not constrained to be
traceless, so instead we define

J̃ab = ixa

∂

∂xb

+ 1

2
iδab, (2.31)

which are self-adjoint: J̃
†
ab = J̃ab. The traceless combinations

are unaffected by this change—only the generator of the sub-
group isomorphic to R×

+ of scale transformations is affected.
The commutation relations of J̃ab are the same as those of Jab.

In H we can then write

|ϕ�〉 = e−itr λT J̃ |ϕI 〉. (2.32)

We define S(�) = e−itr λT J̃ to be the “strain operator” that im-
plements the transformation from � = I to �. This completes
the construction of a homogeneous bundle over G. In fact, if
λ is not required to be traceless, then the same construction

yields a homogeneous bundle over � ∈ GL(d,R), in which the
wave function of ϕ�(x) is

ϕ�(x) = (det �)1/2f (�T x), (2.33)

and the determinant factor maintains the normalization as �

varies, as it must because the representation is unitary (the
generators are self-adjoint). However, if we want this ϕ� to be
an eigenstate of H� for all � ∈ GL(d,R), then U (X) must, in
general, also depend directly on det �, unless U (X) scales as
degree −2 (i.e., the same as the kinetic term).

To obtain a homogeneous bundle over G/K in the d = 2
case [or the same with GL(2,R) in place of G], V0 is supposed
to be a representation of K , so we assume that f has the form
f (x) = |f (x)|e−isφ , where x1 + ix2 = reiφ and r � 0 and φ

are real (s is an integer). This can arise from the family of
Hamiltonians H� if in addition U (x) is rotationally invariant.
For the subgroup K , we have −J12 + J21 = −i∂/∂φ, and |ϕI 〉
is an eigenvector with eigenvalue −s. We note that for � ∈ K ,
�T = �−1, and the definition of ϕ� for this coincides with
the standard action of an active rotation of the state ϕI . Hence
we have obtained a line bundle over G/K for any such choice
of f .

The representation W of G associated with such a bundle
has one of two forms. First, we note that while the eigenvalues
of −i∂/∂φ are integers, the remaining generators of sl(2,R)
raise or lower this eigenvalue in steps of 2, due to the
“quadrupolar” nature of the strain. It turns out then that
the unitary representation W is irreducible and contains
eigenfunctions for −i∂/∂φ of all possible eigenvalues that
equal s (mod 2), each occurring with multiplicity 1. These
representations lie in the set known as the principal series
of irreducible unitary representations of SL(2,R), for which
the possible values of the quadratic Casimir of SL(2,R) are
continuous and bounded below (or above, depending on a sign
convention).24 In our representations, the value of the Casimir
depends on f but will not be needed.

When we apply the general result for adiabatic curvature
in the case of the homogeneous bundle over G at general � ∈
GL(d,R) (dropping indices α, β), we express it in terms of the
local coordinates λ′

ab by applying the further strain S(eλ′
) to

|ϕ�〉 and taking derivatives at λ′ = 0. This yields

Fab,cd (λ) = i〈ϕ�|[J̃ab,J̃cd ]|ϕ�〉 (2.34)

= i〈ϕI |S(�)†[J̃ab,J̃cd ]S(�)|ϕI 〉. (2.35)

For general �, this is simply the same as at � = I , up
to the linear transformation by � or �−1 (because of the
unitary strain operator). This is an important general fact
about homogeneous bundles: G/K is a homogeneous space
(its geometry is covariant under left translation), and the same
holds for properties of the homogeneous bundle over G/K (or
over G). Hence we can concentrate on � = I . Then

Fab,cd (0) = δad〈J̃cb〉 − δbc〈J̃ad〉, (2.36)

where the expectation value is in |ϕI 〉. Specializing further to
the G/K case with d = 2, in which ϕI is an eigenstate of the
generator of K with eigenvalue (or spin) −s, we have

Fab,cd (0) = 1
2 s(δadεcb − δbcεad ), (2.37)
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where εab is the two-dimensional ε symbol with ε12 = 1.
The information in this fourth-rank tensor can be most
compactly expressed using the language of differential forms:
the curvature two-form is

F = 1

2

∑
abef

Fab,ef dλab ∧ dλef (2.38)

= −1

2
s(dλ11 − dλ22) ∧ (dλ12 + dλ21) (2.39)

at � = I . Either expression shows that, if we choose for either
ab or cd the antisymmetric combination corresponding to the
generator of K , then F vanishes. So F is nonzero only for ab

and cd in the remaining directions, corresponding to traceless
symmetric matrices, which lie along the coset space G/K .
This means that the adiabatic connection and curvature are
well defined when we pass from the manifold G to G/K .

It should be clear that the calculation is the same for any
homogeneous bundle over G/K for G = SL(2,R), given a
state |ϕI 〉 that is an eigenstate of the generator of K with
eigenvalue −s. Hence it applies also to many-particle systems.

6. Two space dimensions without magnetic field–paired states

To obtain the Hall viscosity, we need to introduce periodic
boundary conditions as in the work of Refs. 1, 3, and 9, as
well as vary the metric. The resulting bundles are still over G

or G/K but are not homogeneous bundles, although we will
see that they can be approximated as such in some limits. The
difference in the physical situation from the homogeneous
bundles considered above can be illustrated by considering
a generalization of the previous single-particle example. For
� = I , where the metric is in canonical form g = I , we can
take the system to be a (hyper-)cube (or square for d = 2)
of side L, oriented with its sides parallel to the coordinate
axes. For general metrics g, this becomes a rhomboid (or
parallelogram for d = 2) if viewed in the coordinates X.
The norm-square on the Hilbert space is now

∫
ddx|ϕ(x)|2

where the integral is over the d-dimensional (hyper-)cube. We
will construct a bundle over G/K with fiber isomorphic to a
one-dimensional space V0. Then the choice of a vector in each
fiber can be written

ϕ�(x) = f�(�T x). (2.40)

To satisfy the boundary conditions, we require

f�[�T (x + R)] = f�(�T x) (2.41)

for R = Rn1,n2,...,nd
= L(n1,n2, . . . ,nd ) with n1, . . ., nd inte-

gers. We see clearly that f� cannot be a fixed function f but
must have explicit dependence on �. Consequently, the left
action of G does not reduce to fixed differential operators as
it did before, and so this bundle is not a homogeneous bundle.
For the family of Hamiltonians H�, the corresponding form is
now

H� = − 1

2mp

∇2
X + U�(X), (2.42)

in which U (X) now has explicit dependence on �, because of
the periodic boundary conditions. See Appendix A for some
further remarks.

We can still, however, impose an analog of the condition
that ϕI be an eigenvector of the generator of K (in d = 2). We
can require that

ϕ�O(x) = eisθϕ�(x) (2.43)

for O a rotation by θ . This means that f� must obey

f�O(OT �T x) = eisθf�(�T x). (2.44)

It is then still the case that ϕ� for �’s that differ by the
right action of K are the same vector in the Hilbert space
(up to a phase) and so represent the same state. In Eq. (2.14),
if μ corresponds to the θ direction, then |∂μϕ〉 = is|ϕ〉 and
then Fμν = 0. Consequently, there is no obstruction to simply
identifying the fibers over points � that differ by right
multiplication of � by O ∈ K (up to multiplication by a phase)
and viewing the bundle as being over G/K instead of over G.

Similarly, in order that ϕ� with these properties be an
eigenstate of H� for all �, we require that H�, and in particular
U�, have the corresponding invariance property:

U�O(OT �T x) = U�(�T x), (2.45)

which means that H� is invariant under simultaneous rotation
of both X and the lattice defined by the periodic boundary
conditions. Thus the explicit dependence of U� on � is in fact
only a dependence on ��T or in effect on the metric. This
deals with an issue the reader may have noticed: we stated
earlier that varying H� with respect to λ gives the stress tensor,
provided λ enters only through the metric. While the present
single-particle model does not directly relate to Hall viscosity
(momentum is not conserved if the potential term is nonzero),
this question becomes relevant in the applications that follow,
in which there is instead an interaction potential that preserves
translation invariance. Varying λ in a (translation-invariant)
Hamiltonian with these properties is the correct definition
to study the effect of strain on the system and ensures the
symmetries of the viscosity ηabef under a ↔ b and e ↔ f .

A particular class of functions f� obeying the conditions
can be obtained by summing a function f (x) (as before) over
translations, provided the sum converges in H. (We consider
only d = 2, although d > 2 is similar, and in this case we can
assume f is an eigenfunction of rotations.) Then we have

f�(�T x) =
∑
n1,n2

f [�T (x + Rn1n2 )]. (2.46)

Now if f has compact support, then for all � such that
the support of f (�T x) does not overlap that of its translates
f [�T (x + Rn1n2 )] for any (n1,n2) �= (0,0), the adiabatic cur-
vature calculation is identical to that for ϕ�(x) = f (�T x).
Thus, for such f , the curvature on the bundle is the same as
above over a portion of G/K , though possibly not for the more
extreme � that can cause f to overlap with its translates. In
the limit in which the ratio of L to the diameter of the support
of f (x) goes to infinity, this portion of G/K becomes all of
it. More generally, if f (x) does not have compact support, but
decays rapidly in x, then as the ratio of L to the decay length
of f goes to infinity, the curvature in the bundle approaches
that for the group case as analyzed above.

The preceding discussion can be immediately extended to
(symmetric or antisymmetric) functions of many variables xi
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that satisfy the same periodic boundary conditions in each
xi . For example, for two particles (a single Cooper pair) in
a translation-invariant state with px-ipy symmetry, the wave
function is a function of the relative coordinate x = x1 − x2

only. The preceding discussion then applies directly, as the
center-of-mass coordinate drops out. It is very similar for
the many–Cooper-pair case, viewed in real space. Because
of antisymmetrization for fermion wave functions, this is not
simply the sum of the single–Cooper-pair contributions just
mentioned; there are cross-terms between different pairings.
If the Cooper-pair “pairing” function (called g in Ref. 3)
that appears in the real-space wave function is a sum
over translations of a rotationally covariant pairing function
(corresponding to f above) that decays rapidly with distance,
as it does in the strong-pairing phase,32 then the “diagonal”
(not cross-term) contributions give rapid convergence of the
adiabatic curvature to the group-bundle result proportional
to the spin −s, which is −1 for each pair, or −1/2 for
each fermion. For the general terms, including cross-terms,
the overlap integral between two pairings described by two
permutations P , P ′ of a reference pairing such as (12),
(34), . . ., contains integrals that are a product of integrals
over variables in each cycle in P −1P ′. If these integrands
have negligible contributions from overlaps with translates
of the underlying rotationally covariant function, then the
adiabatic curvature is determined by the total spin once again.
In Ref. 3, the treatment surrounding Eqs. (2.49) to (2.51) of
that paper used Fourier space, and the assumed form of gk
corresponds to the sum of translates of a rotationally invariant
g in position space via Poisson summation. (The reasoning
using k space resembles that used here in position space.) The
precise expressions contain |gk|2/(1 + |gk|2) which deals with
the overlaps between the permutations P , P ′. (The approach is
extended a little further in Appendix B.) In the strong-pairing
phase, convergence of the result there to that given by total spin
only is exponentially fast because the expressions are analytic
in k. In the weak-pairing phase, there is nonanalyticity at
small k, and convergence is slower, due to the long tail of the
rotationally covariant pairing function in that case.

This reasoning, and the previous calculations, lead to
the result for the viscosity tensor for a paired state in two
dimensions (at � = I )

ηabcd = stot

2L2
(δadεcb − δbcεad ), (2.47)

where stot is minus the eigenvalue of total angular momentum
in the state. Defining η(A) = η

(A)
1211 (in the thermodynamic limit

of a homogeneous system) we have

η(A) = 1
2 s nh̄, (2.48)

where s = limL→∞ stot/N , n = limL→∞ N/Ld (with d = 2
here), and we have restored h̄ to exhibit the correct dimensions
(with s dimensionless). The Hall viscosity is minus one-half
multiplied by the orbital spin density. For l-wave pairs, s =
−l/2; for example, for p-ip pairing, s = 1/2. The form (2.48)
was obtained in Ref. 3 and holds generally in d = 2 (though
the meaning of s must be clarified when there is a magnetic
field) and for certain components in d > 2 with some caveats,
as we will discuss. The generality of the result for gapped

quantum fluids, and the quantization of η(A), will be discussed
later also.

The result for Hall viscosity was given at � = I only. How-
ever, as the bundle is well approximated by a homogeneous
bundle (under conditions that were discussed), the adiabatic
curvature and the viscosity tensor can easily be found at general
�. We have

ηabcd = −η(A)(gadεbc + gbcεad ), (2.49)

in which we have restored indices to their proper positions
to emphasize that this is now a covariant expression (and is
symmetric under exchange of a with b or of c with d), and η(A)

is still given by Eq. (2.48). In particular, while our tensors are
usually written relative to the xa coordinates, if we use instead
the Xa coordinates in which gab = δab, then we see that the
tensor is independent of the “strain,” that is, the aspect ratio
imposed by the boundary conditions. This means that the Hall
viscosity in X space is independent of the shape of the system,
as should be the case for a local property of a fluid. The form
of these expressions applies to any case of a homogeneous
bundle over G/K for d = 2. Also, the curvature tensor F has
a similar form by lowering the b and d indices using the metric
g. This defines a G-invariant two-form on G/K that is unique
up to scalar multiples.

7. Magnetic field case in two dimensions

We next consider particles in a uniform magnetic field in
two dimensions. It will be worthwhile to spend some time
on the single-particle problem. We will use the same gauge
choice (relative to the x variables) even if g changes, so we
can freely take overlaps of state vectors even for different
g. (The material in the remainder of this paragraph and in
the next is standard but is reproduced here for the reader’s
convenience.) First, in the infinite x1, x2 plane, it is convenient
to use the symmetric gauge with A1 = − 1

2Bx2, A2 = 1
2Bx1,

that is, Aa = − 1
2Bεabxb, where B is the magnetic field. The

covariant derivatives that act on the particle’s wave functions
are then Da = ∂/∂xa − iAa and [Da,Db] = −iBεab. In the
conventional choice of units in which the magnetic length is
1, B = 1. Beginning with the metric g = I , the Hamiltonian
for a single particle with no other potentials is

H = 1

2mp

∑
a

π2
a , (2.50)

where πa = −iDa is the kinetic momentum of the particle and
mp is its mass (the canonical momentum is pa = −i∂/∂xa).
The kinetic momenta commute with two other combinations
of xa and πa , which can be taken to be the guiding center
coordinates wa ,

wa = xa +
∑

b

εabπb (2.51)

in gauge-covariant form and have commutation relations
[wa,wb] = −iεab. (An alternative choice is to use the gener-
ators of magnetic translations Ka = −∑b εabwb, which obey
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[wa,Kb] = iδab, [πa,Kb] = 0.) In the symmetric gauge, these
are

wa = 1

2
xa − i

∑
b

εab

∂

∂xb

. (2.52)

These can be written in terms of complex coordinates z =
x1 + ix2 as

D

Dz
= ∂

∂z
− 1

4
z, (2.53)

D

Dz
= ∂

∂z
+ 1

4
z, (2.54)

w = 1

2
z − 2

∂

∂z
, (2.55)

w = 1

2
z + 2

∂

∂z
. (2.56)

We define two sets (self-adjoint pairs) of simple harmonic
oscillator raising and lowering operators by

b = −i
√

2
D

Dz
, (2.57)

b† = −i
√

2
D

Dz
, (2.58)

a = − i√
2
w, (2.59)

a† = i√
2
w. (2.60)

These satisfy

[b,b†] = [a,a†] = 1 (2.61)

and [a,b] = [a†,b] = 0. We emphasize that the covariant
derivatives, guiding center coordinates, and a and b operators
can be constructed in any gauge, although the expressions in
terms of xa and pa will vary.

In terms of these operators, the Hamiltonian becomes H =
1

mp
(b†b + 1

2 ), and the normalized eigenstates can be written

in terms of the normalized ground state φ0 = e− 1
4 |z|2/

√
2π of

both oscillators, aφ0 = bφ0 = 0, as (b†)n(a†)mφ0/
√

n!m!. In
the lowest Landau level (LL), consisting of states annihilated
by b, w acts in the symmetric gauge as multiplication by z and
w acts as differentiation (multiplied by two) of the resulting
polynomial in z that multiplies φ0.25

Linear transformations in G = SL(2,R) map x to X =
�T x and so also map D = ( D1

D2
) to �−1D to preserve the

commutation relations with Xa . The Hamiltonian in general is
therefore

H� = − 1

2mp

∑
ab

gabDaDb, (2.62)

where gab are the elements of the inverse metric to g, g−1 =
�T −1�−1. In terms of operators on x, the generators of these
left translations are self-adjoint linear combinations of

1
2a†2 − 1

2b2, 1
2a2 − 1

2b†
2
, a†a − b†b. (2.63)

The relative minus signs ensure that xa , wa transform by �T

while πa , Ka transform by �−1. The combination a†a-b†b is
the conventional rotation generator or angular momentum and
has integer eigenvalues.

Now we can imitate the previous adiabatic transport
calculations in the presence of a magnetic field. Working first
in the plane, we make the (overly naive) assumption that we
have a single state of the form Eq. (2.32) [now with J ’s given
by the expressions above; the modification to obtain the J̃

generators of GL(2,R) has to be considered carefully as the
magnetic field is not invariant under dilatations, but we omit
details], that is, an eigenstate of rotations of X [for example,
using an eigenstate of H� that includes a potential term U (X)
with U (X) a function of X2 only]. Then the same reasoning as
in zero magnetic field shows that we have a homogeneous
bundle, and the adiabatic curvature is proportional to the
(orbital) angular momentum eigenvalue s. [This result does
not require that the state f (x) lie in a single LL; indeed,
in general, a potential term mixes the LLs.] This result can
be immediately generalized to any finite number of particles
[the generators of GL(2,R) simply add]; the Hamiltonian HI

could contain translation- and rotation-invariant interactions,
and a rotation-invariant confining background potential term.
The state is assumed to be a nondegenerate eigenstate of H�.
(For suitable H�, this could be one of the usual trial wave
functions in the fractional QH effect, in which all particles are
confined to the lowest LL, the wave function is an eigenstate
of total angular momentum, and the particles cover a disk in
the X plane.) The resulting bundle is a homogeneous bundle
by construction, and hence the Berry curvature is determined
exactly by the total angular momentum, which is an integer.
This differs from the results in Refs. 1 and 3 (which used
the torus geometry), in that the total angular momentum here
scales as O(ν−1N2/2) (ν is the filling factor), which is not
even extensive. We will see below that the difference can be
traced in part to the step of dealing with the degeneracy of
states in the plane by either ignoring it or removing it with
the particular form of potential used above. Thus, the present
case, with a magnetic field, possesses more subtleties than the
earlier zero-field cases.

First, to gain insight, we return to the single-particle
problem and examine the representation theory of the Lie
algebra sl(2,R) implied by the above generators. We see that
the transformations act on the a and b oscillators separately.
The single-particle Hilbert space H can be viewed as the
tensor product of the two corresponding oscillator Hilbert
spaces. For each such oscillator (we write the expressions for
a only), we have the generators a2/2, a†2

/2, a†a + 1/2, the
commutators of which close on themselves, and so we have an
infinite-dimensional representation of the sl(2,R) algebra. The
raising operator (or S+) a†2

/2 increases a†a by 2, as in the zero
magnetic field case earlier. The representation is reducible and
splits into irreducible representations consisting of the states
of even and odd a†a, respectively. These are lowest-weight
representations, with the lowest Sz = a†a + 1/2 values being
1/2 and 3/2, respectively. If, in view of the commutation
relations, one thinks of the wa as coordinates on phase space,
then it is natural to think of the Lie algebra as that for the
symplectic group Sp(2,R) of symplectic (or linear canonical)
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transformations that preserve the antisymmetric form εab.
Sp(2,R) is isomorphic to SL(2,R) and has the same Lie
algebra. However, the appearance of half-integer values of
Sz implies that the reducible representation constructed from
the oscillator is only a projective representation or can be
viewed as a representation of the double cover S̃L(2,R) of
Sp(2,R) or SL(2,R) [analogous to the finite-dimensional spin
representations of SO(3), which are actually representations
of the double cover SU(2)]. This representation is sometimes
called the oscillator, the metaplectic, or the Segal-Shale-Weil
representation.24

We have considered the bundle defined by a strain operator
applied to a single (nondegenerate) state. To make contact
with earlier work,1,9 especially that of Lévay, we need to
consider transport of degenerate subspaces. We will consider
what happens when we take V0 to be the subspace containing
all states in a given LL and show that the adiabatic connection
is projectively flat; that is, the curvature is proportional
to the identity operator within the LL. This corresponds
to considering the single-particle Hamiltonian H� (with no
potential term), Eq. (2.62). This contains the inverse metric,
and the πa or b operators, but not the a operators, and each LL
is a degenerate subspace. The proper definition for adiabatic
transport, and for adiabatic response, is in terms of varying
the Hamiltonian with respect to the metric (see Sec. II A 1),
and so the construction of a bundle, or of the action of G,
is not a free choice at our disposal. In the present example,
the Hamiltonian contains b, b† only, and (for a given LL) the
tensor factor in H of oscillator states generated by a and a† is
the degenerate subspace we wish to transport. Consequently,
we must view sl(2,R) as acting by only the b terms in the
generators, dropping the a terms, as the latter only mix the LL
states among themselves (such operators appeared in Lévay).9

That is, we are free to choose a basis for the space Vλ at each
point λ to be the a†a eigenstates. As varying λ corresponds to
Lie algebra transformations acting on b and b† only, it is then
clear that the connection and the curvature are proportional
to the identity matrix. [Alternatively, we mentioned earlier
that if the subspace V0 that is transported is the whole of H,
then the curvature vanishes. The result here can be viewed
in the same way, using the fact that the Hilbert space is
a tensor product, and we transport all of one of the tensor
factors. This approach shows that a choice of the action of
G on the a, a† variables, or of how the orthonormal basis
vectors |ϕα(λ)〉 depend on λ, makes no difference in this case.]
Moreover, the curvature must be proportional to the eigenvalue
of (minus) the sl(2,R) generator b†b + 1/2 at � = I . This
gives exactly the result found by Lévay by a similar method
(on the torus), which is N + 1/2 for the N th LL. Compared
with the case of transporting a single state, the contribution
of a†a has dropped out to leave this part. We will explain this
result in yet another way when we address fractional QH states
below.

We emphasize that b†b + 1/2 is the angular momentum
associated with the cyclotron motion on a circular orbit.
Multiplied by ωc (ωc is the cyclotron frequency, which
becomes 1/mp in our units), it is also the Hamiltonian H .

Explicit formulas can be obtained easily. If the subspace
V0 is the lowest LL, then a basis (unnormalized) is (a†)mφ0

(m = 0, 1, . . .), which spans the space annihilated by D/Dz.
If we parametrize � ∈ GL(2,R) generally by

� = el

(
τ

−1/2
2 0

τ1 τ
1/2
2

)(
cos θ − sin θ

sin θ cos θ

)
(2.64)

(τ2 > 0), where θ is a rotation angle for the element of K =
SO(2) and l is a real number, then for the representative of � ∈
G (mod K) in which θ = l = 0, we have Z = (x1 + τx2)/τ 1/2

2
(τ = τ1 + iτ2), and1

H� = −1

2mpτ2

[|τ |2D2
1 − τ1(D1D2 + D2D1) + D2

2

]
(2.65)

= 1

mp

(
−2

D

DZ

D

DZ
+ 1

2

)
. (2.66)

Thus for g = ��T , the corresponding lowest LL is annihilated
by D/DZ, where Z = X1 + iX2. In terms of the operators b,
this is solved by a Bogoliubov transformation. Then we have a
basis for the space Vλ given by (a†)m acting on the normalized
state

(1 − |α|2)1/4e
1
2 αb†

2

φ0

= (1 − |α|2)1/4

√
2π

exp

(
−1

4
αz2 − 1

4
|z|2
)

, (2.67)

where

α = i − τ

i + τ
. (2.68)

Here |α| < 1, which corresponds to τ in the upper-half
complex plane, τ2 > 0.

Passing to the case of the torus, periodic boundary con-
ditions are imposed by requiring that the states be invariant
under magnetic translations implemented by e−iK.Rn1 ,n2 (or,
more generally, invariant up to a phase); this is possible only if
the number of flux quanta piercing the square is an integer Nφ ,
that is, L2 = 2πNφ in our units. As these operators involve
only the operators a, a†, for each LL, the boundary conditions
select a finite-dimensional subspace of the a, a† oscillator
space, and the resulting Hilbert space H of functions that
satisfy these conditions still has the tensor product structure,
in which one factor is finite dimensional with dimension Nφ ,
and the other is the oscillator space for b, b†. Instead of a,
a†, there is still an algebra of operators e−iK.Rn1 ,n2 /Nφ that
preserve the boundary conditions and commute with b, b†.
Consequently, any of the arguments we used for the case of
the plane when transporting a LL also apply for the same on the
torus. The adiabatic connection for each N is, consequently,
the same as in the plane and is projectively flat. That is, using
the nonredundant parametrization of � by τ1, τ2, θ , l, and at
� = I , which corresponds to τ = i, we can change variables
in the general result Eq. (2.39) and obtain for the curvature
two-form (removing the identity matrix in the Landau-level
variables)

F = −N + 1/2

2
dτ1 ∧ dτ2. (2.69)

Because this example is a homogeneous bundle case, we can
use the uniqueness of the invariant (under the action of G on
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G/K by left action) two-form on G/K (discussed above in
tensor form) to deduce that anywhere in the upper-half plane
(i.e., in global coordinates τ1, τ2) one has

F = −N + 1/2

2

dτ1 ∧ dτ2

τ 2
2

. (2.70)

This was Lévay’s result,9 obtained by a similar operator point
of view; there is no need for explicit reference to elliptic
θ functions. For the N -particle version, one works in the
(anti-)symmetrized tensor product of single-particle Hilbert
spaces. The transport of such a subspace is obtained in the
same way and is again projectively flat; the scalar curvature is
N multiplied by the single-particle value. (In all these cases
no approximation is needed to obtain a homogeneous bundle:
The bundle has exactly that form even for finite N .) For the
case of fermions filling an LL, N = Nφ , the antisymmetrized
product of the LL spaces is one dimensional. The curvature
is −N (N + 1/2)/2, which agrees with Ref. 1 for N = 0
and is extensive. For a fluid filling the N th LL, we have,
finally,

η(A) = 1
2

(
N + 1

2

)
n. (2.71)

If, instead, the lowest ν LLs are filled, we obtain

η(A) = ν

4
n. (2.72)

In these examples, the orbital spin of a particle is minus the
angular momentum of the cyclotron motion only. For filling the
lowest ν LLs (with the “real” spin of the electrons polarized),
s = ν/2.

These results for noninteracting particles can be extended
easily to nonzero temperatures. Indeed, the derivation of
adiabatic response can be extended to handle a density
matrix. In equilibrium, the relevant density matrix is the
Boltzmann-Gibbs weight e−βH , where β = 1/(kBT ) and T

is the temperature. Because this gives uniform weight to
subspaces degenerate in energy, the results for the Landau-
level problem are similar to the preceding. The Hall viscosity
can be found by simply averaging the single-particle adiabatic
curvature with the Fermi function multiplied by the density.
It was reported in Ref. 3 that at high temperatures this
gives η(A) = nkBT /(2ωc), in agreement with the classical
derivation.5

Moreover, for noninteracting particles, the standard linear
response approach is fully tractable and provides an alternative
derivation. The stress tensor is the momentum flux,

�ab = 1

2mp

∑
i

(πiaπib + πibπia), (2.73)

where πia are the components of the kinetic momentum of the
ith particle. The Kubo formula gives the viscosity tensor as

the zero-frequency limit of the stress-stress response:

ηabcd = lim
ω→0

−1

ωL2

{
i〈HI 〉(δacδbd + δadδbc − δabδcd )

+
∫

dt eiωt 〈[�ab(t),�cd (0)]〉 �(t)

}
, (2.74)

where HI is the many-particle Hamiltonian (i.e., kinetic
energy) and �(t) is the step function. (The derivation of
this formula, including the “contact” term containing HI ,
which is analogous to the diamagnetic term in a conductivity
calculation, will be discussed further in a separate paper.26)
The subsequent calculation is very similar to that for the
conductivity tensor for noninteracting particles in a magnetic
field (though in that case it also goes through with interactions,
yielding Kohn’s theorem). The time dependence of the stress
tensor can be found explicitly; it possesses eigencomponents
(which are linear combinations of the two traceless parts of
the symmetric tensor) that simply precess at plus or minus
twice the cyclotron frequency. The commutator is then reduced
to an equal-time one, which can be computed to yield the
expectation value of

∑
ia π2

ia , which is proportional to HI

and to the b†b + 1/2 part of the angular momentum. One
finds then that the final result is the same as above for any
equilibrium system with T � 0 (more details will appear in
Ref. 26).

We emphasize that the result for the adiabatic curvature
differs substantially from that for a disk of fluid in the infinite
plane, treated as transporting a single state using the strain
operator as we did first. In that case, the fluid was always
a disk in the X plane. By contrast, if we parallel transport
an initial disk at λ = 0 in the plane using the connection we
obtained for transporting a LL, then, apart from the LL mixing
given by the function (2.67), the fluid remains circular in the x
variables (i.e., is an eigenstate of the sum of a†a + 1/2 rotation
generators) and so is elliptical in the X variables. In the first
case, which had a confining potential, the fluid was rigid and
not even strained. If we wish to find the Hall viscosity, this is
less physical than the second case, in which there is a change in
shape in the X plane, exactly like the shape of the whole system
(a parallelogram in X space because we used the torus) for the
paired states in zero magnetic field. In the latter system, the
individual pairs do retain their circular form in X space, and so
the total internal angular momentum of the pairs is obtained;
this corresponds to the effect on the cyclotron variables b, b†

or the wave function (2.67).
We now consider more general many-particle states in

which the particles are strongly correlated, such as fractional
QH states, that are ground states of some Hamiltonian that
includes interaction terms. First, we consider the torus, that is,
periodic boundary conditions. As before, we assume that the
Hamiltonian is translation and (in the thermodynamic limit)
rotation invariant and that it has a gap in its energy spectrum
above the ground states that survives in the limit. Because of
symmetry under magnetic translations of the center of mass,27

all states possess an exact degeneracy of Q when the filling
factor ν = N/Nφ = P/Q (with no common factors in P , Q).
There may be further degeneracy of the ground states, at least
in the thermodynamic limit. The total degeneracy (necessarily
divisible by Q27) is associated with the nontrivial nature of the
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topological phase of matter. As usual, we should adiabatically
transport the subspace of degenerate states of interest, and
we will do this even if there are small energy splittings
between them in the finite size system. To simplify notation,
we will sometimes ignore the degeneracy, as in practice in
various important situations3 it turns out that the adiabatic
connection is projectively flat on the space of degenerate states.
In particular, the states in the Q-fold degenerate space are
connected by center-of-mass translations, just like the states
in a single LL for a single particle, and we have just seen that
this leads to a projectively flat connection.

For the state |ϕ〉 that we consider, we have in mind
especially the ground state of some Hamiltonian restricted to
the lowest LL, or the same in a higher LL, with the lower ones
all filled. Clearly, these forms result from weak interaction
strengths. LL mixing is possible, but the trial states that serve
as a starting point should usually be of the form stated, because
otherwise the mean spin per particle s is unlikely to be of the
form S/2, for S a rational number, as we discuss below, and
this suggests that they do not represent a topological phase.

One might imagine that for a state in a partially filled
LL, the Hall viscosity would be given by the same form as
before, with s = N + 1/2. However, this is not the case: the
choice of a particular subspace of ground states within the LL
space affects the adiabatic transport. This choice reflects the
short-range interaction Hamiltonian that produces the states,
which is rotation invariant in X space (in the large-size limit).
It does not, however, in practice (for reasonably physical
states) lead to the restoration of the earlier result given by
total angular momentum. The Hall viscosity of a large family
of trial states in the lowest LL, given by conformal blocks,
was calculated in Ref. 3. We will not repeat the earlier
derivation here. The approach used in Ref. 3 was based on the
“normalization factor” argument, which says that if we have
a normalized (orthonormal, in the degenerate case) section of
a bundle (embedded in Hilbert space) that is holomorphic
in its τ dependence except for an overall xi-independent
normalization factor, then the adiabatic connection can be
found from that factor. The trial functions (with certain factors
included) were argued to be normalized using screening
properties in the 2D plasma mapping of the Laughlin states
and for any given more-general conformal-block state under
the hypothesis that a generalization of screening holds. The
necessary normalization factors (up to a shape-independent
factor) were found by requiring that the short-range behavior of
the interactions in the plasma be independent of the geometry;
also it was useful to discretize the uniform neutralizing
background in the plasma as a set of small point charges.
The final result had the general form discussed above, with

s = ν−1/2 + hψ, (2.75)

where ν is the filling factor and hψ is the conformal weight
of the field in the “statistics sector” which is part of the
construction in the general case.14 The right-hand side can also
be termed the total conformal weight. For trial wave functions
that are more general than conformal blocks, one can find s

from this by the usual techniques of particle-hole inversion
(for fermions only, and this is discussed further in Sec. II A 9),
flux attachment, and so on. We note that, once again for a

large system, the bundle over G/K is well approximated by
a homogeneous bundle, though the value of stot or s may
not be obvious from the trial wave function on the torus (in
un-normalized form) or from a Hamiltonian for which it is an
eigenstate.

It was found in Ref. 3 that this mean orbital spin per particle
is related to the shift. The shift S is defined for a system on the
surface of a sphere, through the relation of the particle number
N and number Nφ of magnetic flux quanta (in multiples of
hc/e in conventional units, 2π in ours) piercing the surface
for the ground state, which is free of defects or excitations.
The relation is given by the form,28

Nφ = ν−1N − S. (2.76)

It was argued11 that the shift originates from the coupling of
the curvature of the sphere to some sort of (mean) orbital spin
per particle and so is given by

S = 2s. (2.77)

With s defined from the Hall viscosity, this is exactly what was
found in Ref. 3.

Now we turn to the derivation of the adiabatic curvature in
the plane geometry for fractional QH states, for an initial disk
of fluid, in order to make contact with the approach used in this
paper, particularly with angular momentum and homogeneous
bundles. As mentioned, it is essential to take account of the
degeneracy of the states. We will consider here the special
Hamiltonians for which lowest LL ground, quasihole, and edge
states that are zero-energy eigenstates of the Hamiltonian are
known. These exist for the Laughlin,28 Moore-Read,29 and
Read-Rezayi30 states, among others. In addition, we assume
that the interaction Hamiltonian can be written in terms of the
guiding center coordinates wi , wi only, so it commutes with
the inter-LL operators πia . This enables us to separate fully
the inter- and intra-LL contributions.

First, we note that the general non-Abelian adiabatic
curvature, Eq. (2.13), for an orthonormal set |ϕα(λ)〉 of states
depending on λ can be rewritten as

Fμν,αβ = i[〈∂μϕα|P⊥|∂νϕβ〉 − 〈∂νϕα|P⊥|∂μϕβ〉], (2.78)

where P⊥(λ) is the projection operator on the subspace
orthogonal to the “allowed” or degenerate states,

P⊥(λ) = 1 −
∑

γ

|ϕγ (λ)〉〈ϕγ (λ)|. (2.79)

Thus, only the variation of |ϕ〉 with λ that takes it out of the
degenerate subspace (for that λ) contributes to the curvature.

We apply this to our usual construction of a homogeneous
bundle, now for a degenerate set of states,

|ϕ�,α〉 = e−itr λT J |ϕI,α〉. (2.80)

For the degenerate subspaces that arise in the trial states of
the QH effect, we can assume that there is a basis of angular
momentum eigenstates. In addition, we will assume there is a
unique state with minimum angular momentum in the subspace
and take this as one of the basis states, written as |ϕI,0〉. This
state is the trial “ground state” in the familiar constructions.

For such a subspace of states, the contributions to adiabatic
curvature from inter-LL operators πia (or bi , b

†
i ) and from
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intra-LL operators wia (or ai , a
†
i ) in the generators Jab

decouple. As only the lowest LL is involved, the inter-
LL contribution to the Hall viscosity is the same as the
noninteracting part discussed above. Accordingly, we focus on
the intra-LL contribution. Instead of the real components Jab,
it is illuminating to go to the complex components, and then
the relevant nonzero part of the curvature, corresponding to
minus the total angular momentum in the zero-magnetic-field
cases, is (at � = I )

F00(0) = 〈ϕI,0|
⎡⎣∑

i

a
†
i

2

2
,
∑

j

a2
j

2

⎤⎦ |ϕI,0〉

−
∑
γ,i,j

〈ϕI,0|a
†
i

2

2
|ϕI,γ 〉〈ϕI,γ |a

2
j

2
|ϕI,0〉

+
∑
γ,i,j

〈ϕI,0|a
2
i

2
|ϕI,γ 〉〈ϕI,γ |a

†
j

2

2
|ϕI,0〉. (2.81)

We have set α = β = 0 because our interest is transporting the
ground state. In this case,

∑
i a

2
i lowers the angular momentum

and must map the ground state out from the degenerate

subspace, while
∑

i a
†
i

2
multiplies the lowest LL state (in the

symmetric gauge) by
∑

i z
2
i /2, and in all the familiar cases this

lies in the degenerate subspace. Hence, the expression reduces
to

F00(0) = 〈ϕI,0|
∑

i

a
†
i

2

2

∑
j

a2
j

2
|ϕI,0〉. (2.82)

This expression is manifestly non-negative. [If, instead, we
consider any states α, β in the noninteracting problem, then
the two operators leave the state in the degenerate subspace
(or annihilate it), and so this part of Fαβ(0) cancels completely.
This reproduces the result we discussed earlier.] We now
reverse the order of the two operators and obtain

F00(0) = −
∑

i

〈ϕI,0|(a†
i ai + 1/2)|ϕI,0〉

+
∑
i,j

〈ϕI,0|a
2
i

2

a
†
j

2

2
|ϕI,0〉 (2.83)

= 1

2
N (S − 1 − ν−1N )

+
∑
i,j

〈ϕI,0|a
2
i

2

a
†
j

2

2
|ϕI,0〉, (2.84)

where the first term on the right-hand side of either line is minus
the guiding-center angular momentum, N (Nφ + 1)/2. The last
term is again non-negative, while the first term is negative for
N > ν(S − 1) and large in magnitude for large N . The first
term would be the full result if we ignored the degeneracy
of the subspace and transport the single (ground) state, as we
mentioned earlier. In the special case of the noninteracting
problem in which all the lowest LL single-particle angular
momentum eigenstates up to Nφ are occupied by fermions
(the ν = 1 case),

∑
i a

2
i annihilates the ground state, and any

of the above expressions apply but vanish.

Returning to the strongly correlated cases, it remains to
evaluate the last term. As a

†2
i appears on the right, in the

symmetric gauge wave functions it can be replaced by z2
i /2,

and similarly for the adjoint acting to the left.25 The expectation
value we require is thus given by a multiple integral. This
can be obtained by replacing the Gaussian factor in the wave
function of the ground state |ϕI,0〉 by

exp

(
−1

4
α
∑

i

z2
i − 1

4

∑
i

|zi |2
)

, (2.85)

differentiating the normalization integral for this state with
respect to α and α at α = α = 0 and, finally, dividing by the
normalization factor for the unmodified state. In the plasma
mapping for the Laughlin ground state,10 the extra term in the
exponent corresponds to perturbing the plasma by a quadrupo-
lar harmonic potential. (This mapping is discussed further
in Sec. III below, where some justification for generalizing
the mapping to apply to other trial wave functions is also
given.) The required second derivative is hence a quadrupolar
susceptibility for the finite-size plasma. The plasma is in a
screening phase and, with a perturbing potential, will change
shape so the total electric field inside the region covered by the
plasma is zero. If we model the charge (i.e., particle number)
distribution as a uniform charge density of ν/(2π ) inside a
boundary, and zero outside, then it is easy to calculate the
response to the applied potential (see Appendix C). The result
is simply ν−1N2/2; one can see that this must be so, because
for ν = 1 we can do the calculation by operator methods,
and it is clear that for the simple form of charge distribution
assumed, the result must scale as stated. (The result can also
be extracted from Ref. 31, which uses a related approach;
however, that paper does not estimate the subleading terms
that we will require.) Using this in general, we then obtain for
the intra-LL part of the adiabatic curvature,

F00(0) = N (s − 1/2), (2.86)

which, in conjunction with the inter-LL part, which is N/2
for the lowest LL, yields the curvature Ns, and the result for
the Hall viscosity is again Eq. (2.48), as in the torus geometry
in Ref. 3. We note that s − 1/2 is positive for the class of
functions under discussion.

In this argument, we made a simplifying assumption for the
charge density. One may be concerned about this assumption,
particularly about whether the form of the charge distribution
near the edge affects the result, presumably not at the level
of terms of order N2, which should be as stated, but at order
N , and this level of accuracy was required to calculate the
adiabatic curvature. In Appendix C, we consider the plasma
arguments in more detail and show that the preceding result for
the curvature is correct to sufficient accuracy for our purposes,
up to possible errors from the edge of order O(N1/2) at most.

8. Higher space dimension with zero magnetic field

In this section we address the generalization to higher-
dimensional many-particle systems. To simplify the discus-
sion, and because of the major physical applications, we
consider only d = 3. An external magnetic field breaks
rotation symmetry, so we set it to zero and consider only
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paired states, as for two dimensions in Sec. II A 6 above. As
in that case, the paired states can be largely understood by
generalizing the single-particle example of a homogeneous
bundle. In the present case, we consider only wave functions
f (x) that are eigenstates of rotation about a single axis. The
functions are thus covariant under a subgroup K = SO(2)
(which hence is compact but not maximal compact) of G =
SL(3,R), and it is natural to consider a bundle over this
G/K . We take the reference state f (x) to be covariant under
rotations about the z axis, with eigenvalue −s as before. We
then consider adiabatic transport of the states |ϕ�〉, viewed as
depending on λ (readers are cautioned that a corresponding
Hamiltonian would here depend on λ directly and not only
through the metric). For the homogeneous bundle we obtain, by
similar arguments as before, the adiabatic curvature at � = I ,

Fab,cd (0) = −1

2
s
∑

e

(δadεbce + δbcεade)ne, (2.87)

where n = (0,0,1) is a unit vector in the z direction, that is,
along the axis of the angular momentum. The same result
holds in local coordinates at any � and also in terms of the
X components, where the metric is δab, and in these cases
ne is along the angular momentum vector. This tensor is not
symmetric under exchange of a with b, or of c with d, while the
stress tensor is symmetric because of the underlying rotation
symmetry. Passing to the paired state of the many-particle
system, the corresponding result (in the thermodynamic limit)
must therefore be explicitly symmetrized to obtain the Hall
viscosity tensor,

ηabcd = −1

4
sn
∑

e

(δadεbce + δbcεade

+ δbdεace + δacεbde)ne.

(2.88)

The Hall viscosity response is in the plane perpendicular
to the angular-momentum vector, as was to be expected.
There is, of course, also a part of the adiabatic curvature
that is antisymmetric under exchange of a with b or of c

with d. This gives a Berry phase for rotations of the angular
momentum vector, which is familiar from spin-coherent states
as mentioned earlier. The cross terms between symmetric and
antisymmetric under the same exchanges vanish for symmetry
reasons in our example, so there are no “viscomagnetic” effects
in adiabatic response in the present states.

Three space dimensions also brings up the topic of “real”
spin. For a single-particle Hilbert space, the spin enters as a
finite-dimensional vector space tensored with the Hilbert space
of functions of position. If there is no spin-dependent term in
the Hamiltonian to constrain the direction of the spin, then
we can consider adiabatic transport of the degenerate (tensor
factor) space of spin states; the latter is independent of the
strain �. As in the case of transporting a LL, there will then
be no contribution to the adiabatic curvature from the spin
degrees of freedom.

9. Quantization in rotationally invariant system

For gapped systems (topological phases) that possess
translational and rotational invariance (in the sense that we are

neglecting breaking of the latter by the boundary conditions,
as before), we will argue here that the mean orbital spin
per particle s (as defined in the thermodynamic limit) is
robust; that is, it does not change under small changes in
the Hamiltonian, provided no phase boundary is crossed. Thus
it is constant throughout a phase. We argue further that it is
actually quantized to rational values.

We may compare the situation with that for the Hall
conductivity. In a translation invariant system, the quantization
and robustness of the Hall conductivity follow directly, and its
value is given simply by the filling factor. (For paired states
in zero magnetic field, the Hall conductivity is zero.32) The
situation is less simple for the Hall viscosity, the connection of
which with rotational invariance is more subtle, particularly for
the QH systems, as we have seen. Another approach for Hall
conductivity that is suggestive when translation symmetry is
broken (say, by disorder) is to average the Hall conductivity of
a finite system on a torus over the possible boundary conditions
φ1, φ2 (which play the role of λ in this case). Then the integral
of the curvature must be proportional to an integer (a Chern
number), because the φ1, φ2 space is compact.7,8 For the Hall
viscosity situation, the corresponding integral would be over
the noncompact “fundamental domain” in the upper half plane
(for d = 2) discussed in Appendix A. As this is not compact, no
argument for robustness is evident1 (moreover, the curvature,
and its integral, are extensive in system size, and at best it
would seem we might obtain quantization of Ns, not of s).
Hence, we must turn to other approaches.

First, we present a fairly simple and direct argument
involving rotational invariance. We assume the Hamiltonian
conserves particle number, and so we have a ground state that
is an eigenstate of particle number, with eigenvalue N . In the
notation of Sec. II A 1, we suppose that (for d = 2) λ1, λ2 are
two coordinates on G/K , for example, τ1, τ2. We also suppose
that the family of perturbed Hamiltonian is the unperturbed
Hamiltonian plus (in terms of X space)

δH� =
∑

μ=3,4,...

λμ

∫
d2X Uμ, (2.89)

where the coefficients λμ, μ = 3, 4, . . ., can be viewed as
further coordinates. The operators Uμ are local and viewed in
terms of X variables have no direct dependence on the system
size or on �, except for obeying the boundary conditions, and
we will assume they are also translation invariant and would
be rotationally invariant if not for the boundary conditions.
As the perturbation cannot immediately close the gap in the
spectrum, there is some neighborhood of the unperturbed
Hamiltonian in which we may consider adiabatic transport
with respect to all these coordinates. Now the “current” Îμ(λ)
for μ = 1, 2 represents the (traceless part of) the stress tensor,
integrated over space. The stress tensor of a system with
(local) interactions is a local operator, and we know that its
components transform like a quadrupole in an infinite system,
due to translational and rotational invariance. The expectation
of the (traceless) stress tensor in a ground state therefore tends
to zero and presumably will do so exponentially fast in system
size, due to the gap. This is also true for adiabatic variation
of the perturbation coefficients λ3, λ4, . . ., Hence Fμν/L

2 for
μ = 1 or 2, ν = 3, 4, . . ., will go to zero as L → ∞, whereas
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F12/L
2 is of order one. This symmetry argument is valid

at all points λ, using the symmetry under the left action of
K�, which holds even in finite size with periodic boundary
condition (for any λ, it corresponds to rotations of X space).
We can think about this in another way: in the thermodynamic
limit, the bundle over G/K [with λν , (ν � 3) fixed] is well
approximated as homogeneous (the local properties of a fluid
should not depend on its shape), and G = SL(2,R) acts on
it as a symmetry group. The curvature Fμν(λ) for μ = 1, 2,
ν � 3, can be viewed as a one-form on the manifold G/K (by
suppressing ν), and we are saying that it becomes invariant
under G in the limit. But as G/K is a homogeneous space,
and in particular isotropic, any invariant vector or one-form
field on G/K must vanish. Now it is an identity that (again,
we neglect degeneracy of |ϕ〉 to simplify writing)

∂[ρFμν] = 0, (2.90)

where, as usual, the square brackets on the indices denote
antisymmetrization (in terms of differential forms, dF =
d2A = 0). As F1ν/L

2 = F2ν/L
2 = 0 for ν � 3 and at all

λ1, λ2, this implies that ∂μF12/L
2 = 0 for μ � 3. (Strictly

speaking, F1ν/L
2 → 0 does not imply ∂2F1ν/L

2 → 0, but we
can integrate over a cube and use Stokes’s Theorem to obtain
the result.) That is, the adiabatic curvature, and, hence also the
Hall viscosity and s, are unchanged by the perturbations if the
system is sufficiently large. A converse to this argument is that
if the perturbation does not preserve rotational invariance, then
one expects that, in general, the Hall viscosity will change (and
the symmetry properties of the viscosity tensor also change so,
in general, there is more than one independent component in
η

(A)
ab,ef even in d = 2).

So far in this argument, we assumed that the particle
number N stays constant under the perturbation. This is a good
assumption for incompressible fluids (as in the QH effect) but
not for compressible ones, such as paired states. In particular, if
in the latter we view the chemical potential as a parameter, then
perturbing it can change n. In terms of states with fixed N , this
can occur only if energy levels cross, so N in the ground state
jumps by some integer (most likely, an even integer). When
this occurs, the preceding analysis that assumes continuous
changes in the ground state vector does not apply, so Ns can
change. But by connecting the state at the changed value of N

continuously with any simpler unperturbed state at the same
N , we expect s to be the same as for the previous N , as long
as the system remains in the same phase. This is the desired
conclusion.

Finally, we may consider the same question of compressible
paired states for the Bogoliubov or reduced Hamiltonian
that is quadratic in particle number, for which the simple
Bardeen-Cooper-Schrieffer (BCS) paired form (discussed in
Appendix B) is exact, and with a gap function that transforms
with a definite nonzero angular momentum under rotations,
such as p-ip. In these, neither particle number nor angular
momentum is a conserved quantum number. Hence, we must
work over G, not G/K . Under a perturbation of (for example)
the chemical potential, the ground state and the expectation
value of N change continuously; however, the arguments
for the case of G/K no longer apply, and ns can change
continuously. But these model states physically represent the

same phases that can also be studied at fixed N as above. In
both cases we have seen that s is determined by the angular
momentum of the pairing, so we ascribe the continuous change
to n and expect that there is no change in s.

We now turn to a slightly different argument within pertur-
bation theory that may give more insight into the mechanisms
for robustness. We consider the effect of a perturbation in
the Hamiltonian H� for which the Hall viscosity is known
exactly in the absence of the perturbation. For example, the
corresponding unperturbed wave function could be one of the
paired states or the conformal-block QH states. The arguments
we give (which are for each order in perturbation theory)
are somewhat schematic at this stage, and we only give a
sketch.

In general, the effect of a perturbation on a many-particle
system (or quantum field theory) can be viewed as adding
other states in which some excitations occur to the original
ground state. These excitations can be factored as distinct
“linked” excitations, each of which has to be integrated in
position uniformly over the whole sample (due to translational
invariance). (This reflects the linked cluster theorem.) We
then focus on a single such linked excitation. This object
may be thought of as some collection of excitations (perhaps
“elementary excitations” of the ground state) multiplied by an
amplitude that depends on the separations of the excitations.
We claim that in a system with a local Hamiltonian (both
the unperturbed one and the perturbation) and a gap in the
spectrum, these objects are local, in each order in perturbation
theory. That is, the amplitude decays rapidly as the separation
of its constituent excitations increases, with the separation at
which this sets in, and the decay rate independent of system
size as the latter goes to infinity. The rotational invariance of
the system in the X variables then implies the same for this
amplitude (in the limit) also. In this case, the Hall viscosity
acquires contributions from each excited object that add to
that of the unperturbed ground state. The contribution of the
excited object can be handled similarly to the pairs in the paired
states discussed in Sec. II A 6. As the effect of the boundary
conditions drops out as the system size goes to infinity (due
to the claimed locality of the object), and the object carries no
net angular momentum in this limit, there will be no change
in the adiabatic curvature in the limit.

The claim of locality is clear for the linked objects of first
order in the perturbation. These are obtained essentially by
acting with the perturbation on the unperturbed ground state
(multiplied by an energy denominator). The presence of a gap
should make these local. For higher orders, the constituent
excitations may be created by separate applications of the
perturbation Hamiltonian and so might appear not to be near
one another. However, we believe that the result still holds
because of the gap and because of the finite propagation
speed of excitations that hold in many systems (as expressed
for lattice systems in the Lieb-Robinson bound).33 Indeed,
because we consider only systems with translational and
rotational symmetry, we expect that a fully rigorous proof of
quantization of the Hall viscosity along these lines should be
possible. Essentially, angular momentum should be exchanged
among the particles only locally by the perturbation. The total
angular momentum (or the net orbital spin in the QH case) in
a large region should be unaffected.

085316-16



HALL VISCOSITY, ORBITAL SPIN, AND GEOMETRY: . . . PHYSICAL REVIEW B 84, 085316 (2011)

A third route to proving the robustness of the Hall viscosity
(in systems with translation and rotation invariance) rests
on its connection with the shift S (here, again, we focus on
two dimensions only), which was discussed above, and on
the quantization thereof. The relation [Eq. (2.76)] applies to
quantum fluids, not only in the QH effect. (In example like
the paired states with no intensive magnetic field, ν−1 = 0.)
It can always be understood as an orbital spin associated
with each particle so S = 2s, and we expect that the same
s enters the Hall viscosity (as we have seen in examples). In
the definition of the shift, N and Nφ are integers (because
of flux quantization for the latter), at least when the particles
are bosons or fermions. For ν−1 = 0, S must be an integer.
Otherwise, if ν = P/Q, where P and Q have no common
factors, and if integer solutions (N,Nφ) to Eq. (2.76) exist,
then multiplying Eq. (2.76) by P we see that PS must be
an integer. [Conversely, given integers P , Q, PS with P , Q

coprime, infinitely many integer solutions for N , Nφ can be
found.] In fact, in many of the well-known fractional QH states,
S itself is an integer. Examples in which S is not an integer can
be found in the particle-hole conjugates of the Read-Rezayi
(RR) states30 at general level k and with M > 1, in the notation
of that paper. For the RR states,

ν = k

Mk + 2
(2.91)

and 2s = M + 2, where k = 1, 2, . . ., and M = 0, 1, 2, . . .,
Particle-hole conjugation generally acts on 2s (whether it is
defined via Hall viscosity or as S) as

2s → 1 − 2νs

1 − ν
, (2.92)

and on ν as ν → 1 − ν. In terms of PS, we have

PS → Q − PS. (2.93)

Applying this to the RR states, we note that particle-hole
conjugation applies to fermions, for which M is odd,30 and one
finds that for M > 1 the resulting S is not an integer for values
k > 1. The simplest example is the particle-hole conjugate
(at ν = 3/4) of the MR state at filling factor ν = 1/4 (k = 2,
M = 3); the shift at ν = 3/4 is S = −1/3.

That s must be a rational number, although probably not too
surprising, was not obvious from the original definition using
adiabatic transport. [One might expect that arbitrary values
of orbital spin for a single particle are allowed because any
covering group of SO(2) might be relevant to rotations in two
dimensions within quantum mechanics.] Incidentally, the spin-
statistics relation does hold for s when the trial wave function
is a conformal block from a unitary rational conformal field
theory3; that is, in these cases S is an even integer for bosons
and an odd integer for fermions. The (orbital) spin agrees with
that of the hole excitations, which also obey spin statistics in
such cases34 (see Ref. 11 for a contrary view). However, such
a spin-statistics relation does not have to hold for the average s

when different particles in the ground state have different spin
values. An example is the case of filling ν LLs with fermions:
a fermion in the N th LL has half-odd-integer spin N + 1/2,
but the average gives s = ν/2.

Because 2Ps apparently must be an integer (for ν−1 =
0, P = 1), and given that P is fixed, s cannot vary under

small perturbations. [The shift has long been viewed as such a
“topological property” of (nondisordered) QH systems, even
before Ref. 11.] It follows that the Hall viscosity is robust
against perturbations at fixed density. Moreover, it would be
of interest to make these arguments more rigorous. Finally, we
note that there is no definite N -Nφ relation when disorder is
present, so the shift ceases to have significance, due to the loss
of rotational invariance on the sphere. The same will be true
for the Hall viscosity.

B. Numerical tests and use as diagnostic tool

Now we turn to numerical tests. We recall that for parallel
(adiabatic) transport of a vector around a closed path, in general
(for a one-dimensional fiber) the vector changes by the phase
(in the notation of Sec. II A 1)

ei
∮

Aμ(λ)dλμ = ei
∫

Fμνdλμdλν , (2.94)

where the integral of Fμν is over a surface bounded by the path,
and we recall that Aμ(λ) = i〈ϕ(λ)|∂μϕ(λ)〉. If we discretize the
path and the integral in small steps, so we have the sequence
of states |ϕj 〉 = |ϕ(λ(j ))〉, where λ(j ) are evenly spaced along
the path (j = 0, 1, . . ., M ≡ 0), we can then form the product
(which is manifestly gauge invariant)

M−1∏
j=0

〈ϕj+1|ϕj 〉 �
M−1∏
j=0

[
1 + 〈∂μϕ|ϕ〉δλμ(j ) + O

(
δλ2

μ

)]
,

(2.95)

→ ei
∮

Aμ(λ)dλμ (2.96)

as the size of the steps goes to zero (M → ∞). We will
evaluate the product numerically for circular paths in the
(τ1,τ2) plane using a large number of steps. For comparison
with the analytical result, we note that the relevant integral for
the curvature over a disk D of radius ρ0 centered at (τ10,τ20)
in the (τ1,τ2) plane (ρ0 < τ20) is∫

D

dτ1dτ2

τ 2
2

= 2π

[
1√

1 − (ρ0/τ20)2
− 1

]
. (2.97)

We will consider states with all particles in the lowest LL,
although we know that the results can be immediately adapted
to the case of all particles in any one higher LL. Using a basis
of single-particle states on the torus, for example, eigenstates
of e−iK1/Nφ , defined independently of � (or τ ), we form Slater
determinants (for fermions; for bosons, permanents) and label
an orthonormal basis of these by α to obtain a basis of N -
particle states |ϕα(λ)〉. A general state for N particles in the
lowest LL can then be expanded as

|ϕ(λ)〉 =
∑

α

vα(λ)|ϕα(λ)〉. (2.98)

Normalization of |ϕ(λ)〉 implies
∑

α |vα|2 = 1. The ground
state of some Hamiltonian that acts within the LL takes this
form, but the coefficients must be found for each λ. We can
treat the fiber of the bundle as one dimensional, because in the
examples we study the degenerate ground states have distinct
quantum numbers and so are orthogonal for all λ. Directly
from the definitions, we find that the adiabatic connection is a
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sum of the noninteracting result, coming from the basis states,
and a part from the coefficients:

F =
[
− N

4τ 2
2

+ i
∑

α

(
∂τ1vα.∂τ2vα − ∂τ2vα.∂τ1vα

)]
dτ1 ∧ dτ2.

(2.99)

In effect, the nontrival second part is calculated as if the basis
states were independent of λ, and the result for noninteracting
particles is simply added. This is very convenient for numerical
purposes. A similar separation of contributions to the phase can
be made in the overlaps for discrete steps.

A consequence of particle-hole symmetry should be men-
tioned here (it is also mentioned in Ref. 13): In Eq. (2.99),
we know that the last term vanishes for the filled lowest LL.
Because particle-hole symmetry can be defined by conjugating
a wave function, multiplying by the filled LL wave function
(in the original and additional coordinates) at the same flux
and integrating over the original coordinates, it follows easily
that the last term reverses sign under this transformation.
This can also be seen by rewriting the particle-hole symmetry
transformation, Eq. (2.92), as a transformation of 2s − 1; the
last term here corresponds to ν(2s − 1). Hence it vanishes for
the (finite-size) ground state at ν = 1/2 of a Hamiltonian that
is invariant under particle-hole symmetry.

In Fig. 1, we show s obtained through the above procedure
by calculating the Berry phase for adiabatically transporting
the Laughlin ground state around a circle in the (τ1,τ2)
plane. For each τ , the Laughlin state with periodic boundary
conditions is generated numerically as the zero-energy ground
state of the special pseudopotential Hamiltonian28 on the torus.
The phase is divided by the integral of the SL(2,R)-invariant
area form dτ1 ∧ dτ2/τ

2
2 to obtain the coefficient Ns/2. In

Fig. 1, the center of the circle is at τ = eiπ/3 (corresponding
to the hexagonal symmetry case—we write τ for τ0 from here
onward), and the radius ρ0 and number of steps are shown in
the figure. We verified that for such small radii, the result is
independent of radius and likewise independent of the number
of steps when it is this large (200 steps). The circle was used

FIG. 1. (Color online) The s̄ of Laughlin states for various sizes,
showing rapid convergence with size. Both boson (ν = 1/2) and
fermion (ν = 1/3) cases are shown. τ = eiπ/3 at the center of the
circular path, corresponding to hexagonal geometry. The data for
each case lie very close to the horizontal line that is the corresponding
expected result.

FIG. 2. (Color online) Same as Fig. 1, but dependence on τ at
the center of the circular path is shown. Writing τ = |τ | exp iθ , the
horizontal axis is θ , and the corresponding |τ | is shown for each point.
The square geometry is at θ = 90◦.

to minimize effects of finite step size relative to the local
radius of curvature of the path, which can be severe if the path
has corners (for example, a square). For the Laughlin states
at ν = 1/2 and ν = 1/3, convergence to the values predicted
in Ref. 3 is very rapid. In Fig. 2, tests of the dependence
of the curvature or s on the position τ of the center of the
circle are shown for several arbitrarily chosen values of τ ,
as well as τ = i, the square geometry. The results are seen
to be independent of τ for moderate sizes. Thus, for these
states and for moderate sizes, s or the adiabatic curvature/L2

is independent of the shape and size of the system, as expected
for the Hall viscosity of a fluid.

In Figs. 3 and 4, results of similar calculations are shown
for the MR state, for ν = 1 (bosons) in Fig. 3, and for ν = 1/2
(fermions) in Fig. 4. Here the ground states on the torus are
found as the zero-energy states of the three-body Hamiltonian
(see, e.g., Ref. 29). The ground-state quantum numbers differ
for even and for odd particle numbers; for N even, there are
three sets of Q degenerate ground states that can be mapped to
each other by symmetry in the hexagonal case (hereafter, all
results are for the τ = eiπ/3 hexagonal case). For the Q = 2
(fermion) case, convergence is slower but does appear to set
in by around N = 14. Convergence is also slower for odd N

than for even N .

FIG. 3. (Color online) Same as Fig. 1 but for ν = 1 (boson) MR
state for various sizes.
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FIG. 4. (Color online) Same as Fig. 1 but for ν = 1/2 (fermion)
MR state for various sizes. Convergence here is slower than previous
cases.

We next turn to effects of perturbing the Hamiltonian.
First, we take the Hamiltonian for which the ν = 1/2 (boson)
Laughlin state is exact, namely with the pseudopotential
V0 = 1, and all others zero, and perturb it by adding a positive
V2 pseudopotential. A transition occurs at V2/V0 � 0.35. In
Fig. 5, the overlap with the Laughlin state and s are plotted. The
overlap does not drop much until close to the transition point.
At the same time, s stays close to 1 but displays large deviations
as the transition is reached or passed. It also depends strongly
on τ for V2 larger than about 0.25 (not shown). Such effects can
be attributed to increasing correlation lengths (which control
the rate of convergence with increasing size) in the vicinity of
the transition.

Finally, we examine particle-hole symmetry breaking ef-
fects at ν = 1/2 for fermions, using interactions appropriate
to the first excited LL and relevant to ν = 5/2 in experimental
systems. We begin with the Coulomb interaction, with finite
thickness (Fang-Howard parameter w = 2), and with V1

increased by 0.005. This Hamiltonian has particle-hole sym-
metry, and its ground state is known to have high overlap with
the particle-hole symmetrized MR state.35 By particle-hole

FIG. 5. (Color online) The s̄ and overlap-squared with the ν =
1/2 Laughlin state as a V2 pseudopotential is varied; V0 = 1. Here
N = 10. The adiabatic curvature behaves erratically very near the
transition.

FIG. 6. (Color online) The s̄ of the first excited Landau level
ν = 1/2 state as a function of the strength of an ultra-short-range
three-body potential. For positive values s̄ asymptotically approaches
the MR value. For negative values it passes through the anti-Pfaffian
value, indicated by the lower dashed line, with no sign of the formation
of a plateau.

symmetry, it has s = 1/2 exactly, which does not correspond
to the value in any obvious topological phase. When perturbed
by the three-body interaction,36 it will eventually become the
(non-particle-hole-invariant) MR state that has s = 3/2. It has
been argued37 that, because the MR phase is not particle-hole
symmetric, particle-hole symmetry must break spontaneously
at ν = 5/2, and both MR and its particle-hole conjugate phase
C(MR) (which has been dubbed the anti-Pfaffian) are present
in finite-size ground states. The s in the particle-hole conjugate
phase is −1/2. Making the coefficient of the three-body
interaction negative, one might expect the C(MR) state to
be found, but this is somewhat naive, as there are, in fact,
instabilities in this parameter region. In Fig. 6, we show s

for this system, for N = 12 particles. The positive three-body
interaction does show signs of the crossover to the MR value
s = 3/2, while for negative values no saturation at −1/2 is
apparent. We conclude that the C(MR) phase is not seen, at
least for this size. This illustrates how the value of s (or Hall
viscosity) can be used to distinguish topological phases.

We propose that numerical measurements of the mean
orbital spin per particle s (or adiabatic curvature or Hall
viscosity) can be used as a tool to determine the correct value
of the shift. We recall that when a particular filling factor is
studied in finite size on the sphere (or the disk also), one does
not know a priori the value of the flux Nφ (angular momentum,
respectively) for each particle number N because the shift S
of the state is unknown. One may search for values of N , Nφ

at which the angular momentum on the sphere is zero and the
ground-state energy has a minimum or cusp (or there is a gap
in the spectrum). However, this is plagued with uncertainties,
and by “aliasing,” namely the fact that sequences of states
at different filling factors can have the some N , Nφ pairs in
common because they have different shifts. Although such
effects should go away as one passes to the thermodynamic
limit, aliasing can lead to misleading results given the relatively
small sizes available. On the other hand, working on the torus
provides unbiased numerics, as one simply seeks the ground
state at N = νNφ for the ν of interest, but in the past this gave
no direct clue to the value of S for the corresponding state on

085316-19



N. READ AND E. H. REZAYI PHYSICAL REVIEW B 84, 085316 (2011)

the sphere. Our proposal is to find the ground state on the torus
at different τ and evaluate s by adiabatic transport. This gives
a numerical value for S = 2s. More importantly, the value of
the shift is an invariant of a topological phase, so we gain
information about the phase of matter the system is in. Such
properties are preferable to quantities such as overlaps with
trial states (useful though those are), which will ultimately
tend to zero in thermodynamic limit, for the ground state of
any local Hamiltonian except that which produces the trial state
exactly. Here we have presented only some demonstrations that
this technique can work, leaving more significant applications
for later work.

III. EXACT COMPRESSIBILITY OF 2D SYSTEM AND
STATIC STRUCTURE FACTOR

In this section, we consider the “static” structure factor
for ground states of QH systems and for some anyon wave
functions. We recall that “static” actually means “equal time”
so at zero temperature this structure factor can be computed
from the ground-state wave function of a system. Related to the
static structure factor in ways that we will review is a “com-
pressibility,” not the physical compressibility of the 2 + 1-
dimensional particle system (which is not a purely ground-state
property) but that of a 2D classical statistical mechanics system
that can be defined from the ground-state wave function alone.

The motivation to consider this has come from two sources.
The first was the version of a Hall viscosity calculation in
Ref. 12, which largely follows Ref. 3 but in a different
(cylindrical) geometry and, most interestingly, invokes the
known compressibility (in the sense just described) of the
one-component plasma38,39 related to the Laughlin state10 in
order to reproduce the Hall viscosity of that state. It suggested
to us that there might be a comparable exact result for other QH
states also and that these compressibilities might be (almost
but not quite) as robust to perturbations as we believe the
Hall viscosity is. A second motivation was that another recent
paper13 obtains a bound on the k4 coefficient of the static
structure factor that is related to the Hall viscosity, and it was
stated that the bound seems to be saturated in various lowest
LL trial states.

We find exact results for this 2D compressibility and, hence,
also for the structure factor. For the QH systems, the result is
the exact coefficient of k4 in the small-wave-vector expansion
in powers of k. We also use the compressibility to recover the
Hall viscosity for lowest LL states.

A. Quantum Hall wave functions

First, we review the argument for the exact compressibility
in the one-component plasma. We recall that the normalization
integral for the Laughlin state |�L〉 with exponent Q (filling
factor 1/Q) is the partition function of a one-component
plasma with a uniform neutralizing background:10

Z = ‖|�L〉‖2

=
∫ ∏

i

d2zi exp

[
Q
∑
i<j

ln |zi − zj |2 − 1

2

∑
i

|zi |2
]
.

(3.1)

To go further, we must make the system explicitly neutral
by restricting the background charge to a disk of radius R

containing charge N (in units where the particles carry charge
1) and include the self-interaction of this disk of charge. We
then have

Z =
∫ ∏

i

d2zi exp Q

[∑
i<j

ln |zi − zj |2

+
∑

i

∫
d2x ′ ρ(x′) ln |xi − x′|2

+ 1

2

∫
d2x d2x ′ ρ(x)ρ(x′) ln |x − x′|2

]
, (3.2)

where ρ(x) = −N/(πR2) for |x| < R, 0 otherwise. This
change should make no difference to correlations well inside
the boundary, providing the system is in the screening phase.
Note that ρ = −1/(2πQ) inside the disk produces the same
density as the standard Laughlin state. In the standard notation
for the one-component plasma, � = 2Q here.

We are interested in the isothermal compressibility of this
system, which is related to the response at fixed temperature
(and fixed Q) of the density of particles to the total potential,
including that produced by the other particles, as well as
the background potential. This can be found by a scaling
argument.38 The area covered by the particles is determined
by the background charge density or the potential it produces,
assuming that the system is in the screening phase. The
dependence of the free energy on the area of the system can be
found by scaling: if the area � = πR2 is changed to πR2λ2

(note that this changes ρ also), then by rescaling lengths r = r̃λ

we have

Z(λ) = λ2N+QN(N−1)−2QN2+QN2Z(1) (3.3)

= λ(2−Q)NZ(1). (3.4)

Thus the dependence of Z on � has been determined.
With Z = e−F , and the pressure p = −(∂F/∂�)β,N (we
set the inverse effective temperature to one as it is purely
conventional), we obtain the equation of state

p =
(

1 − Q

2

)
n, (3.5)

where n = N/� is the number density. The isothermal
compressibility is then defined as χT = n−1(∂n/∂p)T ,N and
is given by39

χ−1
T =

(
1 − Q

2

)
n. (3.6)

A negative value of this compressibility does not imply an
instability in this system due to the long-range interaction. For
Q = 0, χ−1

T 0 = n is the ideal-gas result.
This argument generalizes immediately to other states in

the lowest LL, as follows. We see that the important points
are as follows: (i) the treatment of the background charge with
uniform density that is set to −ν/(2π ) after taking derivatives
and (ii) the wave function (other than the background charge
parts) was homogeneous of total degree NNφ/2, where Nφ is
given by the relation (2.76). For the Laughlin state, we had
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ν−1 = S = Q. Using the general form for a general lowest LL
state, we obtain similarly

χ−1
T = p =

(
1 − S

2

)
n (3.7)

(ν drops out). This is the first main result of this section. We
can replace S/2 by the mean spin per particle s if we wish.

We should emphasize the conditions under which this argu-
ment is meaningful. The result gives the isothermal compress-
ibility, which is supposed to be an intensive thermodynamic
property of the system, provided that the boundary effects
are negligible. This holds if the 2D system is in a screening
phase for charge and also screens (has exponentially decaying
correlations) for the other, “non-charge” or “statistics” sector.
This is the same hypothesis under which results were obtained
for states constructed from conformal blocks in Ref. 3. Note
also that the 2D Coulomb interaction of the one-component
plasma has been supplemented by interactions that are neither
two-body nor simple to write as a Hamiltonian (logarithm
of the Boltzmann weight). We assume that, in spite of their
long-range appearance, they do not produce any net long-range
two-body number-number interaction and so do not require
any neutralizing background. The filling factor is therefore
determined by the charge sector only (assuming screening);
this is a standard line of reasoning in QH systems. The
argument here is so general that it still applies directly even for
a ground state that is obtained as a perturbation of a trial state,
as long as it remains in the lowest LL and in the screening
phase. Thus it is robust within a topological phase within the
lowest LL, as long as rotational symmetry holds.

By combining this result for the compressibility with the
derivation of Tokatly and Vignale,12 we can recover the result
for the Hall viscosity. In their derivation, the quantity that
enters is the “interaction” part of the bulk modulus, which
corresponds to χ−1

T − n in terms of the above. We see that,
when multiplied by −h̄/2, this is precisely the Hall viscosity
result, Eq. (2.48). This establishes a connection between η(A)

and the compressibility, and reaffirms the connection3 with the
shift S for LLL states. By comparing the various arguments,
we can see that, apart from the different geometry, the approach
in Ref. 12 essentially takes a different route to the same result
as Ref. 3 for the normalization of the ground state or at least
for a relevant derivative of that normalization with respect to
τ , which is also connected with the derivation of χT above.

We now turn to the “static” (equal time) structure factor
of the system. It can be defined in terms of the (number)
density-density correlation function at equal time:40,41

S(x,x′) = 〈�|δn(x)δn(x′)|�〉/(nZ), (3.8)

where δn(x) = n(x) − 〈�|n(x)|�〉/Z (note that the factor
1/Z is required because |�〉 introduced above was not
normalized). After taking the thermodynamic limit for fixed
x and x′, we can assume that S(x,x′) is translationally and
rotationally invariant and write S(x − x′) ≡ S(x,x′). S(x) is
related to the two-particle reduced density matrix g(x) of the
state |�〉 by

S(x) = δ(x) + nh(x) (3.9)

and h(x) = g(x) − 1 → 0 as x → ∞. As these definitions
involve only the coordinates of the particles and not the
momenta that would require differentiation of the wave
function �, they can be defined in exactly the same way for
any classical system by replacing |�|2/Z by the probability
density for the particles’ coordinates. s(k) is now defined
by taking the Fourier transform of S(x). Because we assume
rotation invariance, we will write it as s(k).

The 2D Coulomb interaction in the charge sector, as the only
effective long-range force, requires the background charge and
can be separated out in the same way as in the one-component
plasma (see Ref. 40 for a detailed discussion). In the screening
phase, standard arguments then lead to

s(k) = k2

k2
D

− k4χ−1
T

k4
Dχ−1

T 0

+ o(k4), (3.10)

where the standard notation f (k) = o(k4) means f (k)/k4 →
0 as k → 0. Here k2

D is the inverse Debye length squared,
and the appearance of χT expresses the “compressibility sum
rule”40 (similarly, the vanishing coefficient of k0 and the fixed
coefficient of k2 are due to “charge neutrality” and “perfect
screening” sum rules, respectively). For the present case, k2

D =
2 in our units,41 and we obtain for a trial state in the lowest LL
the static structure factor, exact through O(k4),

s(k) = 1
2k2 + 1

4 (S/2 − 1)k4 + o(k4). (3.11)

This is the second main result of this section. For the Laughlin
stateS = Q, it was obtained in the same way in Ref. 41. It does
not seem to have been known previously that the k4 coefficient
is robust within a phase, even for the Laughlin case.

We have given the result here for the full static structure
factor as this seems to us more natural. The lowest-LL
projected structure factor is given by41

s0(k) = s(k) − (1 − e−k2/2). (3.12)

Thus for s0(k) one should drop k2 entirely and add 1/8 to
the coefficient of k4, which becomes (S − 1)/8. We note that
(S − 1)/2 is s with the noninteracting or inter-LL contribution
1/2 subtracted off. Haldane13 obtained such a relation as an
inequality by analytical arguments and found that it appears to
be an equality in numerical calculations for some examples,
all for rotation-invariant systems. We find that it is exact for all
lowest LL states under conditions that should correspond to
their being in a topological phase, as long as rotation invariance
holds.

We have tested the above prediction for the exact coefficient
of k4 in the case of some trial states, using Monte Carlo (MC)
techniques on the torus. For both the Laughlin and MR trial
states, MC is tractable. We focus here on the MR state at
ν = 1 for bosons. The wave functions for these states on the
torus have been found previously (see, e.g., Refs. 29 and 32).
We consider any one of the three states for N even; these
are related by symmetry for the case of the hexagonal system
τ = eiπ/3. First, in Fig. 7, we show s(k) in full and at low k

for 100 particles. In Fig. 8, we make the subtraction on the
same data set to obtain s0(k) and compare with the expected
behavior k4/8 (no fitting parameter). The agreement is good.

In Fig. 9, we show results from MC at different particle
numbers. For each size, we measured s(k) at the smallest two
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FIG. 7. (Color online) The static structure factor s(k) of the ν = 1
MR state for bosons, with N = 100 particles. Measurements were
taken over 2 × 108 MC steps. The inset shows s(k) over the entire
range of k.

nonzero k values only, subtracted k2/2, and divided by k4.
There is a very clear trend toward the expected value S/2 −
1 = 0 in this example.

In the preceding results for the compressibility of the 2D
system, the correction to the ideal gas law p = n (for β = 1)
contains s, and one might expect this always to be the same as
the Hall viscosity. However, this is not so. For a wave function
with all particles in the N th LL, the wave function contains∏

i z
n
i multiplied by a corresponding lowest LL function plus

terms in which zi’s and zi’s cancel in pairs (for each i). We
emphasize that here it is not correct to interpret each zi as
∂/∂zi , as we are not in the lowest LL. The latter would be valid
if we were calculating the total spin of the wave function, as
for the Hall viscosity. But for the compressibility of the 2D
system, we instead need the scaling dimension, which is the
degree under the rescaling of the polynomial part of the wave
function under z → λz, z → λz. The wave functions with any
particles in the N > 0 LLs are not, in general, homogeneous
under such a rescaling. One might proceed by using some
average degree, but its value is difficult to predict. Hence the
results for the compressibility and the k4 term in the structure

FIG. 8. (Color online) The small k behavior of s0 (k) (the lowest-
LL–projected structure factor) of the ν = 1 MR state for 100 bosons,
obtained from s(k). Also shown is the expected small k behavior k4/8.

FIG. 9. (Color online) The coefficients of k4 in s(k) − k2/2 for
the two smallest nonzero k values plotted versus 1

N
for various sizes.

The expected value as N → ∞ is shown as a horizontal line.

factor are not valid in higher LLs, nor for LL mixing with an
initial lowest LL state, unlike the results for Hall viscosity.

B. Anyon wave functions

We may make a similar argument for trial states whose
wave functions are conformal blocks without a neutralizing
background (e.g., by “removing the charge sector” from the
QH functions). These can describe states of some kind of
anyons (not necessarily Abelian). An example would be the
SU(2) level one conformal block for spin-1/2 primary fields,[∏

i<j (zi − zj )(wi − wj )∏
k,l(zk − wl)

]1/2

, (3.13)

which is a two-component state (zi , wi , i = 1, . . ., N/2, are the
coordinates of the spin ↑ and ↓ particles, respectively);42 other
examples, including that corresponding to the p+ip superfluid,
were also discussed in Ref. 3. Such a function can be put in a
finite area by transferring it to the torus, for example. The same
scaling argument now gives χ−1

T = (1 − h)n, where h is the
conformal weight of the field representing a particle in � (h =
1/4 in the example) and replaces S/2 in the above (indeed,
one may think of these wave functions as having ν = ∞ and
S = 2h). For a system without a long-range Coulomb force or
neutralizing background, one then has for the structure factor
at k = 0 (actually defined as the limit k → 0 after N → ∞)

ns(0) = ∂n

∂μ
(3.14)

by the fluctuation-dissipation theorem applied to the classical
system for T = 1 (μ is the chemical potential) and ∂n/∂μ =
n2χT by a thermodynamic argument. This yields

s(0) = 1

1 − h
. (3.15)

We should mention also that the expected Hall viscosity of the
system is η(A) = 1

2hnh̄ Ref. 3, although this value might be
corrected due to the presence of gapless excitations. We note
that for sufficiently small h (h < 1/2 in a paired example like
that above; in general, the condition depends on the operator
product structure implied by the wave function), the integral
of |�|2 is convergent at short separations but for large values
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of h is not. In the latter cases, a short distance cutoff will be
required, and it is not clear if this defeats the scaling argument.

For stability, ∂n/∂μ should be positive, and hence (ignoring
the concerns at the end of the previous paragraph here) h � 1.
The latter is the condition that the perturbation of the vacuum
by the field be a relevant perturbation (as discussed in Ref. 3),
and in the present situation this is necessary in order for the
system to be in the “screening” phase in the statistics (not
charge) sector. Thus a transition in behavior should certainly
occur if h passes 1, where the system does not screen. (The
structure of the wave function obtained from a conformal field
theory will depend usually on h, so it generally cannot be
varied continuously; nonetheless the point holds.) If h > 1 one
expects the particles to form bound clusters and drop out of
the long-distance behavior instead of exhibiting screening; the
structure of the clusters may involve a short-distance cutoff
scale. For the example above, |�|2 can be viewed as a 2D
plasma with both + and − “charges,” which correspond to the
spins ↑ and ↓; for this plasma, the conventional parameter
� = 4h. Screening holds for the spin-density correlations
because in the example h = 1/4 < 1.42 Physically, as a wave
function, it is a (paired) charge superfluid, and a spin liquid
with a Hall conductivity for the spin current. The preceding
arguments imply that it has s(0) = 4/3. More generally, if
the wave function is scale covariant as well as translationally
invariant and rotationally covariant, but not holomorphic (as is
a conformal block, away from the diagonals zi = zj ), the same
arguments hold with 2h replaced by x, the scaling dimension
of the fields in |�|2, and x < 2 for screening and stability.

To test the prediction on the example, we performed Monte
Carlo simulations on the torus, that is, with periodic boundary
conditions, in order to calculate s(k). For this we need the
wave function on the torus, which can be obtained from the
Coulomb plasma on the torus as in Ref. 3. The wave function
is not single valued; instead, it changes when one particle
(of either spin) performs a circuit around one of the cycles.
This means that there are in fact two “conformal blocks.” The
Boltzmann weight for the plasma can be obtained, following,
for example, Refs. 43 and 44; it is∑

e=0,1

|�e(z1, . . . ; w1, . . . |τ )|2, (3.16)

where the two conformal blocks are

�e(zi,wk|τ )

= ϑe/2,0(2Z/Lx |2τ )

η(τ )
e−2π (Im Z)2/(L2

x Im τ )

×L−N/4
x

∏
i<j

E(zij /Lx |τ )1/2
∏
k<l

E(wkl/Lx |τ )1/2

×
∏
ik

E([zi − wk]/Lx |τ )−1/2, (3.17)

where Z = 1
2

∑
i zi − 1

2

∑
k wk , zij = zi − zj , and wij =

wi − wj . ϑa,b(z|τ ) are elliptic θ functions with characteristics,
defined by

ϑa,b(z|τ ) =
∑

n

eiπτ (n+a)2+2πi(n+a)(z+b). (3.18)

FIG. 10. (Color online) s(k) at the smallest nonzero k for systems
of up to 150 anyons in the wave function in the text. The horizontal
line is the expected value s(0) = 4/3.

The function η(τ ) is the Dedekind function (q = e2πiτ ),

η(τ ) = q1/24
∞∏

n=1

(1 − qn). (3.19)

The function E(z/Lx |τ ),

E(z|τ ) = ϑ1(z|τ )

∂zϑ1(0|τ )
e−π(Im z)2/Im τ (3.20)

[where we have used the more familiar notation ϑ1(z|τ ) =
−ϑ1/2,1/2(z|τ )], is called the prime form for the torus and is
periodic up to phase factors. Using L2

xτ2 = L2, which is held
fixed as τ varies, we can write the conformal blocks as

�e(zi,wk|τ )

= ϑe/2,0(2Z/Lx |2τ )

η(τ )

∏
i<j

[
ϑ1(zij /Lx |τ )

η(τ )

]1/2

×
∏
i<j

[
ϑ1(wij/Lx |τ )

η(τ )

]1/2∏
ik

[
ϑ1([zi − wk]/Lx |τ )

η(τ )

]−1/2

× [(Im τ )1/4η(τ )]N/2, (3.21)

up to z-, w-, and τ -independent factors. This form is more
convenient for exhibiting the symmetry properties (note that
the Gaussian factors cancel). We note the property of the θ

functions in the center-of-mass (Z) factor,

ϑa,0(z + τ |2τ ) = e−iπτ/2−iπzϑa+1/2,0(z|2τ ), (3.22)

which implies that if a zi (wk) is increased by Lxτ (−Lxτ ),
the two blocks are mapped to each other (by a unitary
transformation), as was stated above.

We have tested the prediction on the trial state by
Monte Carlo, using these wave functions on the torus. We
estimate s(0) simply as the value of s(k) at the smallest nonzero
k. The results shown in Fig. 10 are in excellent agreement with
the predicted value s(0) = 4/3.

IV. CONCLUSION

To summarize, the main results are that the general
connection of Hall viscosity to mean orbital spin, uncovered
in Ref. 3, can be understood from the purely geometrical
relation that the commutator of distinct shear operations is
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a rotation. This brings in the angular-momentum eigenvalue
(in the simplest cases). The robustness of the Hall viscosity
to perturbations of the Hamiltonian, as long as one remains
within a topological phase, has been shown, making use of
rotational invariance. The relation to the shift3 is known from
all examples and has been shown for all lowest LL states
but still lacks a truly general derivation. When proved directly,
this result will be a theorem that relates two physical properties
defined separately. In addition, we performed numerical tests
of the stated results, which are very convincing at least for trial
states. Moreover, we gave a proof that the 2D compressibility
and coefficient of k4 in the static structure factor are also related
to the shift13 and again tested these numerically on trial states,
this time by Monte Carlo calculations with up to 100 particles.

The orbital spin is revealed here as a true emergent property:
It was not evident microscopically that there is a conserved
quantity of this type. Macroscopically (i.e., on scales larger
than the correlation length and at energies below the gap),
there is a well-defined spin per particle and hence an orbital
spin density. When the particles are in motion, there must also
be a conserved (spatial) orbital spin current density.

Many open problems remain for Hall viscosity. Calcula-
tions can be extended to nonrotationally invariant systems.
Further tests of its robustness to perturbations can be made.
It can be used as a diagnostic for which topological phase a
system is in. Most importantly, it will be interesting to find
techniques to experimentally measure it in any of the systems
discussed here.
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APPENDIX A: AUTOMORPHIC PROPERTIES

Here we address briefly some further points in the case of
systems with periodic boundary conditions, using the example
from Sec. II A 6, although similar considerations apply mutatis
mutandis in all other cases. If the elements of �′ are integers,
then �′T Rn1n2 is again a lattice point Rn′

1n
′
2

for all n1, n2. Such
matrices form the discrete subgroup � = SL(2,Z), which,
again, acts on the left on G as � → �′� with �′ ∈ �. In
general, this does not map ϕ� to itself but only to another state
ϕ′

� = ϕ�′� with the same properties (note that the left action
of � commutes with the right action of K). It is similar in the
case of the Hamiltonians H�: while for all �, U�(X) has the
symmetry under all translations of X by �T Rn1n2 , it may not
obey invariance under the left action by �, U�′�(X) = U�(X)
for �′ ∈ �. However, in many physical situations one would
require such invariance, so the system does not depend on
the choice of the basis vectors for the lattice. Examples
may be obtained by summing a rotationally invariant U (X)
over the lattice translations, similarly to the wave functions
in Sec. II A 6. (One important special case is a periodic δ

function.) In many cases the nondegenerate eigenstate f�(X)

then must be mapped to itself (as a function of X) by elements
of �, that is, for any �′ ∈ �, f�′�(X) = f�(X) up to a phase
and some action of K (this assumes that energy levels of H� do
not cross as � is varied to implement the transformation in �,
as would be required in order to use the adiabatic theorem). A
function f�(X) that is invariant under � (up to a phase and K

action) would be called an automorphic function (for the group
of translations and operations in �); (if f is also an eigenstate
of K) we then have a line bundle over the space �\G/K . In
the case d = 2, � is called the modular group, and �\G/K

can be represented by a fundamental domain in the upper half
plane G/K . [In cases with a set of degenerate functions f�(X),
one must unfortunately speak of “vector-valued automorphic
functions.”] Physically, we should view f�′�(X) and f�(X)
as representing the same state. However, it is important to
realize that even when f�(X) is invariant (or invariant up to
a phase and so on) under the left action of �, this does not
mean that the state ϕ�(x) is; instead, ϕ�′�(x) = ϕ�(�′T x). We
can recover ϕ�(x) by changing variables �′T x → x. Such a
change of variable induces a unitary mapping of the Hilbert
space (of functions of x) to itself if the boundary conditions
are unchanged as they are in our example (more generally, a
change in boundary condition, and a corresponding change of
Hilbert space may be involved).1,3 For a nontrivial closed path
in �\G/K , the latter transformation is a form of monodromy3;
the adiabatic transport around the path produces a well-defined
holonomy (up to a phase associated with the path dependence
due to the curvature), which gives a “holonomy representation”
of the modular group �, which was studied in Ref. 3 and will
not be considered further in this paper.

APPENDIX B: PAIRED STATES IN K SPACE

In this Appendix, we give an expression for the adiabatic
curvature for a paired state, working in k space with (anti-)
periodic boundary conditions. Expressions of this type were
given in Ref. 3, but in terms of gk = vk/uk (these quantities
will be defined below). However, this form may raise concerns
in the weak coupling region in which it might be that uk is zero
over a range of k, say |k| < k0. In order to be certain that this
does not change the claimed result, which leads to a quantized
s in the thermodynamic limit, we will obtain here an expression
that is more general and deals with this situation.

The BCS ground state for a translationally invariant spinless
or spin-polarized system on the torus is

|ϕ〉 =
∏

k

′
(uk + vkc

†
kc

†
−k)|0〉. (B1)

Here uk and vk are complex functions of k, and the product∏′ is over each distinct pair (k, − k). To be slightly more
general than elsewhere in this paper, we can take the boundary
conditions in the two-dimensional system to be either periodic
(+ or m = 0) or antiperiodic (− or m = 1) in each of the
two directions. The allowed values of k are then given in
complex form by kx + iky = 2πi(n2 − n1τ )/(Lτ

1/2
2 ), where

we parametrize � by τ = τ1 + iτ2 as in Sec. II A 7. These
values of k refer to X space, but note that in x space the plane
waves are independent of τ or �. n1 and n2 are defined by
n1 = m1/2 (modulo integers) and similarly for n2. For ++ or
m1 = m2 = 0, the value k = 0 is omitted from the sum, but an
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additional fermion occupies that mode if the system is in the
weak pairing phase.32 We may consider any of these boundary
conditions. The state is normalized provided |uk|2 + |vk|2 = 1
for all k (we may define uk and vk for all k, i.e., both k and
−k in some suitable way).

We may immediately find the Berry or adiabatic connection,
here for complex τ as the generalized coordinate, Aτ =
i〈ϕ|∂τϕ〉 (∂τ = ∂/∂τ ),

Aτ = i

4

∑
k

[uk∂τuk − (∂τuk)uk + vk∂τ vk − (∂τ vk)vk] .

(B2)

(The sum is over the allowed k; k = 0 is omitted in the ++
case.) We now proceed similarly as in Ref. 3. We will consider
the p-ip paired state. We may make the gauge choice, for
example, that uk = u(|k|) is real and a function of |k| only,
while

vk = τ
1/2
2

n2 − n1τ
w(|k|), (B3)

where w is real, and then

Aτ = i

4

∑
k

n1

n2 − n1τ
|vk|2. (B4)

This is exactly what was found in Ref. 3 (with the same gauge
choice), but here we have a more general derivation. From
this point, one can differentiate with respect to τ (to obtain
the curvature) either before or after taking the thermodynamic
limit in which the discrete k sum becomes an integral. The
resulting adiabatic curvature leads to precisely the same Hall
viscosity or s Ref. 3 as discussed in the main text, from a
different point of view. This is a consequence of the assumed
form for uk, vk (though independent of the choice of gauge),
which are rotationally covariant functions of k and depend on
τ only through the discreteness of k. (The present trial state is
not an eigenstate of particle number N , unlike those in the text,
but standard arguments about the size of number fluctuations
in it suggest that if we project the state to definite N , we obtain
the same result with N replaced by N .) The finite-size result
may differ for other assumed forms or for the state resulting
from solving the gap equation in the finite geometry. We have
not investigated these possible effects further, but we note that
the general quantization argument in Sec. II A 9 suggests that,
in a physical setting, the result for s in the thermodynamic
limit of a rotationally invariant system cannot change unless a
phase boundary is crossed.

APPENDIX C: QUADRUPOLAR SUSCEPTIBILITY
OF A 2D PLASMA

Here we consider in more detail the quadrupolar suscepti-
bility of the 2D system, as discussed in Secs. II A 7 and III. For
the Laughlin state, the 2D system has partition function as in
Eq. (3.1) (in this Appendix we use the uniform background
charge density of infinite extent, the potential of which is
shown in this equation). The modification of interest is to
add to the exponent the harmonic potential acting on all the

particles,

−1

2
α1

∑
i

(
x2

i − y2
i

)
, (C1)

where we took α = α = α1 real for definiteness. For trial states
other than the Laughlin state, there are additional interactions
in the plasma, but we assume these do not change the essentials
of the plasma arguments, as they only change short-range
correlations (see Sec. III).

To estimate the free energy of the plasma in the presence
of the perturbation, or its second derivative, the susceptibility,
we should use the correlations of the particle density. With
the long-range 2D Coulomb interaction between the particles,
we expect that the main effects can be handled as a “self-
consistent” field or potential produced using the mean number
density as the source. Technically, this means that in the
correlation functions, we express them in terms of one-
interaction irreducible parts, and the latter are short range (this
is like the random-phase approximation, but here we cannot
assume translational invariance, because of the boundary of
the plasma; this is also part of the standard arguments used in
the bulk of the system in Sec. III.40) Little or no information
about these short-range effects will be needed other than the
assumption that screening holds.

We will treat the plasma from a macroscopic viewpoint,
using electrostatics, but, in order to deal with possible mi-
croscopic effects and length scales (related to the short-range
correlation effects), we will later include possible densities
of higher multipoles, in addition to the charge density. In the
screening phase, the plasma behaves similarly to a conductor.
In standard treatments of electrostatics,45 a conductor is
viewed as a charge-neutral system with fixed boundaries but
with mobile charges in the interior. In an external field, a
charge density accumulates on the surface (edge, in 2D) so the
net electric field in the interior vanishes. The surface charge
per unit length of edge is proportional to the discontinuity in
the normal electric field. By contrast, in the plasma we have
no a priori position for the edge, which can move in response
to the field. Hence the (self-consistent) edge is not only an
equipotential, so the tangential field vanishes, but also the
normal component of electric field must vanish, as does the
surface charge density. We note that, because our perturbation
is harmonic, the interior of the perturbed plasma has the same
constant charge or number density as the unperturbed one. At
this level of treatment, the charge density is viewed as constant
in the interior, with (in the macroscopic viewpoint) a step at
the edge.

To find the shape of the drop in the presence of the harmonic
perturbation, we can consider the (real and single-valued)
potential experienced by an additional test particle outside
�, which can be expanded in the form

�(x) = �0 ln |z|2 − 1

2
|z|2 +

∞∑
m=1

(�mz−m + �mz−m), (C2)

where �m are constants. The coefficients can be related to the
multipole moments of n(x), in a standard way.45 The charge
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density inside � does not change, so the potential there is
given by a similar expansion (without the first two terms and
with positive, rather than negative, powers of z and z). The net
change in potential due to the perturbation must be independent
of x inside �, and this condition determines the change in
shape �. In polar coordinates (r,θ ), we find that the radius as
a function of polar angle θ is

r(θ ) = R(1 − α1 cos 2θ ) (C3)

to first order in α1; here R is the unperturbed radius, πnR2 =
νR2/2 = N . Thus for a small quadrupolar harmonic perturba-
tion, � has a small elliptical deformation. The potential outside
is then

�(x) = NQ ln |z|2 − 1

2
|z|2 − 1

2
α1(x2 − y2)

+ 1

2
α1

R4

|z|4 (x2 − y2) (C4)

to first order in α1 and up to an additive constant. The curve
on which −∇� = 0 for this � reproduces Eq. (C3).

In reality, the edge of the QH trial state is not sharp but
rounded on a scale of order the particle spacing (or a screening
length in the plasma). We can include this in the macroscopic
viewpoint to a first approximation as a (normally oriented)
dipole layer on the surface, due to moving some charge
in- or outward, compared with the step distribution. In the
presence of a dipole layer, the potential has a discontinuity
on crossing the layer, equal to the dipole moment per unit
length D. However, for a conductor, or for our plasma, the
potential both just inside and just outside the edge must be
constant along the edge, and, hence, the dipole moment is
independent of position on the edge (though its magnitude
may depend on the shape, in principle). The charge density
of our plasma can then be modeled to this approximation
as

n(x) = ν

2π
I� + D∇2I� + · · · , (C5)

where I� is the indicator function for the region � in which
the charge density is nonzero, that is, I� = 1 inside and 0
outside. The existence of such a dipole layer can be seen
by evaluating the expectation of

∑
i |zi |2 in the unperturbed

plasma and also by viewing it as related to the angular

momentum in the unperturbed wave function. For this state, we
evaluate:〈∑

i

1

2
|zi |2

〉
= 1

2
N (Nφ + 2) (C6)

= 1

2
ν−1N2 + 2πν−1DN + · · · , (C7)

where the first equality comes from the operator viewpoint
and the value of the angular momentum and for the second
we used Eq. (C5) to evaluate the left-hand side. The terms of
order N2 agree, while the terms of order N give

D = ν(2 − S)

4π
, (C8)

for the circular edge. This seems to be related to the dipole
moment on the edge discussed by Haldane.13

The quadrupole moment of the first term in n(x) in Eq. (C5)
then should still agree with that in the potential. This is the
case, because the second term gives zero:

D

∫
d2x(x2 − y2)∇2I� = 0 (C9)

by integrating by parts. (Similarly, the contribution of D to all
other multipole moments is zero.) Hence D plays no role in
the quadrupolar susceptibility, which is determined only by the
shape of � to our accuracy. For consistency, the dipole moment
should not contribute to the electrostatic energy either. This is
the case because it enters as the integral of DEn along the edge,
where En is the normal electric field and En is zero, even for
the deformed shape. Consequently, we see no reason why D

should change in the presence of the perturbation, as the local
environment at the edge is unchanged. There may be effects
involving more derivatives which do cause D to change weakly
with the perturbation; however, it does not contribute to the
quadrupole moment in any case. Higher multipole moments at
the edge involve more derivatives and do not contribute either.
We conclude that the susceptibility required in the main text
is simply

1
2ν−1N2 + O(N1/2). (C10)

The error term is present because there may be true edge
effects in which the free energy of the plasma depends on the
length of the edge due to short-range effects that we have not
considered. Under the small elliptic deformation, the change
in the perimeter of � is of order the unperturbed perimeter,
multiplied by α2

1 , which gives the possible error term of the
order as stated.
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