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Numerically exact long-time behavior of nonequilibrium quantum impurity models
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A Monte Carlo sampling of diagrammatic corrections to the noncrossing approximation is shown to provide
numerically exact estimates of the long-time dynamics and steady-state properties of nonequilibrium quantum
impurity models. This “bold” expansion converges uniformly in time and significantly ameliorates the sign
problem that has heretofore limited the power of real-time Monte Carlo approaches to strongly interacting
real-time quantum problems. The approach enables the study of previously intractable problems ranging from
generic long-time nonequilibrium transport characteristics in systems with large on-site repulsion to the direct
description of spectral functions on the real frequency axis in dynamical mean field theory.
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I. INTRODUCTION

The nonequilibrium physics of strongly interacting quan-
tum systems is a frontier research topic essential for fields
ranging from the evolution of the early universe1 to the
current-voltage characteristics of single molecule devices.2 A
broad class of physically important nonequilibrium situations,
including the physics of nanosystems coupled to leads,3

adsorption of atoms on surfaces,4 and magnetic impurities
in metals,5 can be expressed in terms of quantum impurity
models: finite-size clusters of interacting fermions coupled to
a noninteracting bath. These also serve as auxiliary problems
in the dynamical mean field theory of equilibrium6 and
nonequilibrium7 infinite lattice correlated systems.

Theoretical study of nonequilibrium physics has been
hampered by a lack of effective and broadly applicable
methods. Analytical approaches either involve uncontrolled
approximations or have been restricted to weak interactions or
to a special class of integrable systems.8 Numerical approaches
have also proven very limited. The standard quantum Monte
Carlo approach is formulated in imaginary time and cannot
be easily extended to the real-time situation needed for
nonequilibrium problems. Numerical9 and density matrix
renormalization group10 methods show promise but have not
yet reached the level of generally useful tools.

Diagrammatic Monte Carlo evaluation of diagrammatic
perturbation series has been very successful for equilib-
rium problems, producing important results in fields in-
cluding quantum electrodynamics,11 statistical mechanics,12

and condensed-matter physics.13–18 In these methods the
Hamiltonian H is partitioned as H = H0 + H1 and the
partition function Z at temperature T is expressed in an
interaction representation and expanded in powers of H1/T .
The diagrammatic expansion order needed to obtain reliable
results grows as 〈H1〉/T , but in practice the method works
down to temperatures that are much lower than the basic
scales.19

In nonequilibrium problems the role of the partition
function is played by the time evolution operator K ∼
exp[iH1t] and the role of inverse temperature is played by
the time interval t to be studied. The factor of i means that
a straightforward expansion suffers from a phase problem,
which in practice severely limits the diagrammatic order which

can be sampled and therefore the time intervals which can be
studied. To date only relatively short times (up to ∼2–3 times
the hybridization scale) could be accessed.20–23

In analytic many-body theory, partial resummation tech-
niques are often used to sum up specific classes of diagrams. If
the resummation captures enough of the physics, one may hope
that an expansion around it will converge rapidly. In this paper
we present a numerical formulation of an expansion around
a partial resummation, applicable to nonequilibrium quantum
impurity models and time-dependent dynamical mean field
theory. We use the noncrossing approximation (NCA)24,25 to
perform the partial resummation, but we emphasize that the
concepts and methods developed are general. We refer to this
expansion as a “bold” expansion but note that it differs from
“bold” algorithms which implicitly sample higher-order self-
energy diagrams based on numerically computed lower-order
diagrams.26,27 Our method is based on a stochastic sampling
of the full configuration space of all diagrams. It generalizes
a previous expansion for equilibrium problems,28 and it is
numerically exact. It goes beyond previous work by including
a treatment of the vertex corrections essential for the evaluation
of expectation values and most importantly by converging
uniformly in time: In contrast to the bare expansion, even
the long-time behavior is adequately characterized by finite
orders of bold perturbation theory. We present results for
the steady-state density matrix and current, as well as the
charge and magnetic relaxation times, which demonstrate that
the method allows access to the nonequilibrium steady state
for nontrivial interacting systems.

II. MODEL AND METHOD

We demonstrate the power of the method on the Anderson
model with Hamiltonian

HA =
∑

σ

(εd + Hσ )d†
σ dσ + Un↑n↓ + Hhyb + Hlead, (1)

which describes a quantum dot with a single spin-degenerate
orbital with correlation energy U hybridized to two leads
labeled by a = L,R. The Hilbert space of the impurity
consists of four states: |0〉, |↑〉, |↓〉, and |↑↓〉. H describes
a magnetic field directed parallel to the spin quantiza-
tion axis, Hhyb = ∑

kaσ [Vkaσ d†
σ ckaσ + H.c.] parametrizes the
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hybridization between the level and the leads, and Hlead

describes the dynamics of the leads. Lead a is assumed to
be in equilibrium at chemical potential μa and temperature
Ta; the presence of two leads allows for departures from equi-
librium parametrized by μL �= μR or TL �= TR . An important
parameter is the level width � = ∑

ka V 2
kaδ(εka − μa). For our

specific calculations we use the parametrization of Ref. 23
with μL = −μR = V/2, ν = 10 = ωc.

We wish to compute time-dependent expectation values of
operators Ô such as the dot charge (n) and spin (m) densities
n↑ ± n↓ or the current flowing into the dot from (say) the left
lead JL = i

∑
kσ [VkLσ d†

σ ckLσ − H.c.]. These may be obtained
from the time-dependent density matrix ρ̂(t) as

〈Ô(tF )〉 = Tr[Ôρ̂(tF )] = Tr[Ôe−iHAtF ρ̂0e
iHAtF ]. (2)

For nonequilibrium problems the only approach known to be
reliable is to compute ρ̂(t) by evolving forward from an initial
condition ρ̂0, as in the second term of Eq. (2).

We take ρ̂0 = ρ̂dot
0 ⊗ ρ̂ lead corresponding to decoupled

impurity and leads and assume that ρ̂dot
0 is diagonal in the

occupation number basis. We evaluate Eq. (2) by writing the
time evolution operators e±itHA in an interaction representation
with respect to Hhyb and expanding powers of Hhyb. The bare
expansion produces diagrams of the form shown in Figs. 1(a)
and 1(b). The presence of two time evolution operators in
Eq. (2) means that two time contours are required, one running
from an initial time t = 0 (left-hand side of the lower contour)
to the measurement time tF (right-hand side) and the other
running back to initial time (left-hand side of the upper
contour, with the label 2tF indicating the total time interval
along the double contour). Hybridization vertices Vkaσ d†

σ ckaσ

(V ∗
kaσ c

†
kaσ dσ ) occurring at times t1 · · · tj are indicated by heavy

(open) dots as in Ref. 28 and are connected by light lines
displaced from the basic contour, indicating contractions of
the lead (c) operators computed using ρ̂ lead and by solid, wavy,
or dashed lines indicating propagation in eigenstates of Hdot.

A straightforward evaluation of Eq. (2) thus requires a
sum over all diagrams, a sum over all contractions of lead
operators, and an integral over all times. The sign problem
arising from the powers of i limits diagrammatic Monte Carlo
studies to situations where the mean perturbation order is �10
(see Refs. 20–22) and for this reason only times t � 2/� are
accessible with this method.

(a) (b)

(c) (d)

(e) (f)

FIG. 1. (Color online) Diagrams arising in the bare hybridization
and “bold” expansions of Eq. (1) on the Keldysh contour: Propagation
in eigenstates of Hdot is described by wavy and dashed lines. Solid
lines denote hybridization functions, and circles denote hybridization
vertices. (a) NCA diagram. (b) Diagram containing crossing. (d) Bold
propagator (dashed double line) which resums (a). (c) Diagram of
bold expansion which resums diagrams including (b). Diagram (e)
illustrates vertex resummations, and diagram (f) shows a bold vertex
diagram.

Our bold method begins from the NCA, which integrates di-
agrams without “crossing” hybridization lines [e.g., Fig. 1(a)]
using coupled integral equations. The correction diagrams are
obtained along lines that are similar to those of the equilibrium
algorithm of Ref. 28. Bare “atomic state” propagators and
noncrossing hybridization lines are replaced by “bold” NCA
propagators (denoted by heavy lines in Fig. 1). Diagrams with
noncrossing hybridization lines contained in the underlying
NCA propagators are not sampled. Thus, for example, the
bold sampling process collapses Fig. 1(a) to Fig. 1(d), and
Fig. 1(b) to Fig. 1(c).

Lines connecting one contour to another may be interpreted
as vertex corrections to the operator placed at the measurement
point tF and to the initial density matrix. While they can be
sampled directly, we find that it is best to resum noncrossing
lines spanning a contour into NCA vertex corrections, and to
replace the bare operator by a combination of the operator and
its NCA vertex correction. An example is shown in Fig. 1(e)
and the resulting “bold” version is shown in Fig. 1(f). Vertex
corrections, especially for the vertices spanning the initial
density matrix, significantly reduce the expansion order and the
dynamic sign problem and allow us to perform an expansion
about the NCA steady state.

Our Monte Carlo process is defined by moves which
propose the addition or removal of vertices on either contour.
The proposals are made without regard to whether or not
the diagram is bold, but a proposed move which produces a
diagram which is subsumable into a bold diagram is rejected.
The procedure is exact because each bare diagram is contained
in exactly one bold diagram. We combine diagrams in such a
way that all terms are real,22 so the phase problem becomes
a sign problem. For computations of a given observable Ô,
the acceptance and rejection probabilities of a given move
are determined from the absolute value of the contribution
to 〈Ô〉 and one measures 〈Ô sign〉/〈sign〉. The expectation
value of the sign decays exponentially with the perturbation
order considered and thus with the time interval to be studied.
Management of the sign problem is a crucial issue in this and
related methods.

We have found it useful to define a diagrammatic configura-
tion at expansion order k (i.e., a set of vertices at times t1 · · · t2k)
as the sum of all contractions of lead operators consistent with
the crossing condition. The lack of a Wick’s theorem means
that the sum must be performed explicitly. The exponential
growth with perturbation order of the number of contractions
sets a limit ∼10 on the order which can be reached, but this
limit is less severe in practice than the limit imposed by the
sign.

III. RESULTS

Figure 2 shows the time dependence of the expectation
value of the sign computed in an expansion of the current for
the nonequilibrium Anderson model. The diamonds show the
sign obtained from the bare hybridization expansion method
of Refs. 20–22 and the circles show the sign obtained from
a straightforward application of the bold method. (Essentially
identical sign versus time curves are found for all parameters
studied except that 〈sign〉 increases at very high T � �.) The
larger mean value of the sign at a given time in the bold
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FIG. 2. (Color online) Average sign as a function of time in
evaluation of expectation value of current for U = 4, β = 50, H = 0,
V = 5. Bare expansion: diamonds. Bold expansion (all orders):
circles. Other lines: Bold expansion truncated at orders 3–6.

method arises because fewer perturbation orders are needed to
reach a solution. The exponential decrease of 〈sign〉 with time
constrains the times that can be studied with finite resources.
We see that the straightforward bold expansion can reach
approximately twice as long a time as the bare expansion.

In contrast to equilibrium simulations, where the diagrams
generated by the Monte Carlo process are typically the
ones most important to the evaluation of the observable, we
find that in the nonequilibrium situations considered here
an unconstrained Monte Carlo exploration of bold diagrams
generates many high-order diagrams which sum to zero in
the observable. Thus we define a Monte Carlo process which
considers only diagrams with perturbation order less than or
equal to some value k, and then increase k until convergence
is reached. For the cases studied here, k � 8 sufficed. Figure 2
shows that the mean sign decreases exponentially with increas-
ing maximum perturbation order, but for a given perturbation
order saturates at a nonzero value. We find that once the correct
k is identified, the bold expansion can be arranged so that
convergence is uniform in time: The mean perturbation order
required to obtain a convergent result does not increase as the
time interval is increased.

Convergence is poorest for spin-dependent properties of
spin-imbalanced initial conditions; the main panel of Fig. 3
shows the slowest-converging case we have encountered so
far. The straightforward bold expansion only converges out
to times t ≈ 2, the convergence with order is oscillatory, but
by seventh order an acceptable convergence is reached, as
can be seen from the coincidence of the sixth-, seventh-, and
eighth-order results. The lower panel shows a more typical
case, where convergence is monotonic and occurs by fourth
order. The upper inset presents the contribution w(t) made to
the current at time t by the sum of all diagrams of a given
order. We see that for this case diagrams of order �5 make
no net contribution, but would be extensively sampled in a
straightforward bold Monte Carlo calculation.

The much longer times accessible via the methods proposed
here allow us to reach physically interesting steady states.
Figure 4 shows the evolution of particular diagonal elements
of the density matrix for different model parameters and
starting from different initial conditions. The top and bottom
traces (U = 8, V = 1, H = 0.5) show the evolution of the
spin down (favored by H ) and empty states starting from the
initial condition in which the dot is in |↓〉. The similar time
scales in the evolution of the empty and singly occupied states
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FIG. 3. (Color online) Order-by-order convergence for times
t = 1.5, . . . ,4. Upper panel: Spin imbalanced parameters, density
expansion, U = 4, V = 5, state |↑〉 (initial state |↑〉), blowup to
region of biggest differences. Lower panel: Typical case, U = 8,
V = 2, H = 0, state |↑↓〉 starting from |↑〉. Inset: Order-by-order
contribution to current, for U = 4, V = 5 and times indicated.

show that the time dependence, which is rapid and is captured
correctly by the bare and straightforward bold methods, is
almost entirely due to charge relaxation. By contrast, the
middle traces (U = 4, V = 5, H = 0) show the evolution
of spin-up and spin-down states from a spin-polarized initial
condition. A much slower spin relaxation is evident. The times
t � 3 required to access the steady state are only accessible by
the methods proposed here. Similarly, Fig. 5 shows the time
evolution of the current.

For a wide range of parameters and initial conditions we
find that the magnetization relaxes exponentially to its steady-
state value m ∼ exp[−t/T1]. The inset of Fig. 4 compares the
voltage and temperature dependence of the spin relaxation rate
computed in the bold expansion and in the NCA. The latter
systematically underestimates relaxation rates. Remarkably,
the temperature dependence of T1 is opposite at high and low
voltages.
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FIG. 4. (Color online) Time evolution of dot states from a
specified initial condition, for parameters indicated calculated using
bare expansion, bold expansion, and truncated bold expansion. Dotted
line: NCA. Inset: Decay rate 1/T1 calculated for a nonequilibrium
Anderson model at voltages and temperatures indicated for U = 8.
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FIG. 5. (Color online) Time evolution of current for parameters
indicated. Main panel: Starting from an empty dot. Inset: Starting
from the NCA steady state.

The presence of analytically computed vertex functions
in the algorithm allows improved access to the steady state
by starting the bold computation from the density matrix
corresponding to the NCA steady state rather than from a
decoupled or noninteracting initial condition. In practice we
use the NCA equations to propagate forward for a time t0 from
a decoupled state, after which the bold interactions are turned
on and a further time tB is studied. For the parameters we
have studied the NCA density matrix is typically close to the
true steady state, with the largest differences occurring for a
nonzero field (dotted line, Fig. 4). Transients decay quickly.
While NCA propagators and vertices are required for the entire
time interval tF = t0 + tB , the bold expansion needs only to
operate over the much shorter time tB . The inset of Fig. 5
shows the time evolution of the current from the NCA steady

state to the numerically exact steady state for a representative
choice of parameters. The large initial transient observed in
the main panel is absent.

IV. CONCLUSION

In conclusion, we have developed a real-time diagrammatic
method that enables a description of long-time and steady-state
properties in nontrivial quantum impurity models over a wide
range of interaction strengths and time scales. The approach
is based on a systematic summation of terms contained
in an expansion in powers of the hybridization portion of
the Hamiltonian about a state described by an analytical
resummation. This “bold expansion” is numerically exact,
uniformly convergent, and greatly reduces the real-time sign
problem that inhibits the study of long-time properties in
“bare” continuous-time quantum Monte Carlo methods. We
found that in many cases the noncrossing approximation
provides reasonably accurate (�5%) estimates of the diagonal
elements of the steady-state density matrix, but is less reliable
for relaxation rates. A crucial open question is how far into the
Kondo regime the method can be pushed.
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